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PREFACE

In the curricular structure introduced by this University for sludents of Post-
Graduate degree programme, the opportunity to pursuc Post-Graduale course in Subject
introduced by this University is equally available to all learncrs. Instead of being guided
by any presumption about ability level, it would perhaps stand to reason if receptivity
of a learner 15 judged in the cowse of the learning process. That would be entively in
keeping with the objectives of open education which does not believe in artificial
differentiation.

Keeping this in view, study malerials of the Post-Graduate level in difTerent
stibjects arc being preparcd on the basis of'a well laid-out syllabus. The course structure
cotnbines the best eleinents in the approved syllabi of Central and State Universitics in
tespective subjects. It has been so designed as Lo be upgradable with the addition of
new information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has becn tollowed in the
preparation of these study materials. Co-operation in every form of experienced scholars
is indispensable for a work of this kind. We, therefore, owe an enormons debt of gratitude
to everyone whose tircless efforts went into the writing, editing and devising ol proper
lay-out of the meterials. Practically speaking, their role amounts to an involvement in
invisible teaching, For, whoever makes usc of these study materials would virtually
derive the benefit of learning under their colleetive care withoul cach being seen by the
other.

The more a learner would seriously pursue these study materials the easier it
will be for him or her to reach out lo larger horizons of a subject, Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality selt-learning materials, If anything remains sUll obseare or difficult to follow,
arrangements are there to come to terms with them through the counselling sessions
regularly available at the network of study centres set up by the University.

Needless to add, a great part of these efforts is still experimental—in fact,
pioncering in certain areas, Naturally, there is every possibility of some lapse or deficiency
here and there. However, these to admit ol rectilication and further improveiment in due
course, On the whole, therefore, these study materials are expected to evoke wider
appreciation the more they receive serious attention of all concerned.

Profegsor (Dr.) Sublia Sankar Sarkar
Vice-Cliancellor
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Unit 1 ] Two Dimensional Elastostatic Problems

Structure

1.1 Introduction

1.2 Plancstrain

1.3  Plane stress and Generalized plan stress
1.4 Planeclastotalic problem

1.5 Airy'sstressfunction

1.6 Summary

1.7 Excerciscs

1.1 Introduction

Here we study a general method ol solution of certain broad classes of two-
dimensional boundary-value prablems is elasticity. The method is based on the reduction
of the boundary-value problems in elasticity to the solutions of certain fundamental
equations in a complex domain. Two-dimensional problem with which we shall be
concerncd can be classified into two physically distinet types. viz. plane strain and plane
slress.

1.2 Plane strain

A body is said to be in the state ol plane strain or plane deformation parallel to
the xx, planc. if the component 1y of the displacement veetor i = (.00 ) \uhishies and

the compenents u, and u, are functions of the coordinates x, and x,, but not of x,. Thus
in the plane deformation we have

TR e S ( JES R PR )
i, =0

The strain and rotational components are
{"‘uﬂ = _.i.'_(”u_ﬁ + ”r'uu)" (m*ﬁ = ]'2}""”""""“{1‘2)

W= _%(u_,_ﬁ ~ g }




The siress-strain relations for isotropic medium, in this case are

Ty = A0 80 + j.t(r.f“_“ + ”u.u)~ (o,B=12)
Tu=A0, T, =1, =0. (13)

where 0=u_ ., =u +1i,;

and A, p are Lame's constants.
From (1:3), we have

Ty + T, = 2004 200 = 2(A [-'_;)Ef- (by 1:3)
e Ty =0T, +1.,) (1-4)
where 0= E{l . M} is called the Poisson’s ratio.

It follows from (1-2), (1:3) and (1-4) that the deformation and stresses in an elastic
body in plane-strain condition arc completely determined by the five quantities, viz. s s
and Ty Tayihys

Now it is known that the stress equations of equilibrium under body force F. per unit
volume are

Tn".r g F: 3 ﬂ, {f' -‘r = I" 3'3}
For : i =j = 3, this equation gives

Tyt iy =10

Since in the plane strain condition T,, does not contain Xy, 80 Ty, =0 and, therefore,
F,=0.
Thus the above equilibrium equations contain only two cquations given by
Tl = QRO =LY i (1:5)

Substitution ql:;f (1:3) in (1-5) yields the Navier equations of equilibrium as

! o
WV, + {P~-+u]E—_=—P.. Ges) (1:6)

1

. PP
4 e + Tt
where Vi ﬂxf E.'.r; :



The equilibrium equations (1-6) are to be satisfied in some two-dimensional region R
of the eross-section of the body formed by the plane x,=constant. If C is the boundary
of the region R, then the boundary conditions are to be satisfied on C.

The Beltrami-Michell compatibility equations, in this case, contain only one equation

{ ) = o
1 = _.._._.,_I F = ]..2 f
El E)l }I' E“L . L0 { }.....“.....,...............{1 T}

where ©,=1,, +Ty.

The boundary conditions, when the stresses T, (xl,xz)arc prescribed along the

contour (' are

Bt =T ) 02 L 2) i (1-8)

where v, are components of exterior unit normal vector on C.

We seek a solution of the system of equations (1:5) and (1-7) in the region R subjeet
to the eqndition (1-8) on the boundary C.

1.3 Plane Stress and Generalized Plane Stress

Plane Stress @
A body is said 1o be in the state of plane stress parallel to the x, x, plane when the

slress COMponents: T,,. Ty, Ty; vanish,
From the stress-strain relations,
1, = M08, +R(n,, +u,,), O=u, (h7i=123) (1-9)
we have
Ty = M3+ 200, .
Since for plane-stress condition parallel to x, x, plane

1,, =0, s0

l(uu Fiflsn u_m)+ 2Wa,=0.

ST e
or, 4525 a2 £ M ) PO e e oL (4 31K )

[u”-lri : 1] i—

Hence O =, +u., +u,, = CFE TR

3". 21




where %, =1, +u,,

Thus T, = A0 + 210w, reduces to

T = i O +2pn, )
A+ 21 '
ST e I R e e e (1-11)
2 -fl; 0, +2pn Ity 4 )
and T, = u,{ul_l + u_,._,)

/

Substituting the stress components from (1-11) into the equation ﬁl'equiliEriLun we get

2hp 1),
[M?u ”]'&;—‘*W NeB = s

a.’ a:
-:”:a“m2

where &, =u,, +u,, and V] =

[t is to be noted that in planc strain problem, the displacements 1, and stresses T
are independent of x,-coordinate, whereas in the problem of plane stress, these functions

may depend on x,. However, the cquations (1:6) and (1-12) become identical, if one

replaces the constant

20 by A.
+2p

Generalized plane stress ;
Consider a cylinder with the generators parallel to the x -axis and with bases in the

planes x, = +h, the height 2/ being very small compared to the linear dimensions of the

cross-section. Now for thin plates the mean valucs 77 of the displacements i give uselul

information as that furmshed by the u,, This suggests dealing with the average values
fi

5 1
7 (xe3)= o [ (00 ) (1013)

=

where 71, =0,

Since the faces of the plates are assumed to be free of external loads, so
Ty (X250 ) = Tog (3020 2R) = 15, (3,50, 20) = 0 .......(1414)

and these equations together with the equation of equilibrium

10



Ty +Tasn FTaga = 0

require T, (xl,xz,ih] =10, Since T,, and its derivative with respect to x, vanish on

the faces of the plate, so T,, can differ from zero but slightly throughout the plate if h is

small. The stress plate will be said to be in a state of generalized plane stress if the
condition.

Ty =0 (1-15),
holds everywhere.
The remaining equations of equilibrium

T.:P|+Tft""+1u3']-+}‘ "'ﬂ ( —jl)

upon integration with respect to x, between the limits —h and +h and +h give

1 i

2 j( ot FRaza ¥ T f';;)dxa =10, {‘I =1,2) (1-16)

=lr
i.ﬂ., ._[.m|+Tu7"+;r:1={} (1"'?)
where Tuﬂ{xu-‘-':)— Zhj‘T““ XXy, Xy el (0 o,f=12) (1:18)

=l

F (x,%)=— i _{F (21655, ey

Taking the mean values in the stress-strain relations (1.9) we get

T, = ADB + W (T + Ty ) (1B =1.2) (1-19)
e 2 e e
with A = o and 8 =7, (1:20)

These. together with two equations (1.17), determine the [ive unknown mean valucs

i, (x,.%,) and Ty (x5,
Putting (1.20) in (1.18) we get two equations of Navier type, viz.

pvii, +(i+ “)g}"‘ﬁ(:ﬁ.x}):{}* (=12) (121)

from which the average displacements i, can be determined.

11




Again taking the average stresses the Beltrami-Michell compatibility equations tum out
to be

E(I-i-il) .

Wwhere ©, = T+ T
The equation together with the equilibrium equations (1.17), determine the mean

VO = o =12) (1-22)

stresses T, with the boundary conditions on the edges given by

T =L.(p) | (123)
Integrating these with respect to X between the limits -4 and +% and then dividing by

2h gives

TV =T (s), (0.B=1.2) on the boundary C, (1-24)
, where 7, (s)ds are the components of the force applied on the arc ds of the conlour

G,

The two-dimensional boundary-value problem comprising the system of equations
(1.17), (1.22) and (1.24) is known as generalized plane stress problem,

1.4 Plane Elastostatic Problem

It is obvious from discussions in sections 1,2 and 1.3 that the mathematical formulations
of plane deformation and generalized plane stress problems are identical, (he only

difference is the appearance of barred symbols ; Hys Typs T- 1, etc. Therefore, we refer

i

these two types as plane elastostatic problems.
The treatment of plane problems of elasticity is simplified to some extent il the body

forces F, does not appear in (he differential equations. However in the case of appearance
of the body forces, we may take

Ty =t (0B=12)

where T, is any set of functions satisfying equilibrium equations

(L4

.I:u[L.[I-+E| =0 {{l,i}: I‘Z} {1'25]

and Ty, satisfy the homogeneous equations

Tap=0 (ef=12) (1:26)




Thus we see that when there are body forces £, we find particular solution Tf:l” of

the equations

Tf‘ﬂ-“ = _'_F

i
. Ik s
and the solution TL“ of the homogeneous equations
Tap = 0

Similar considerations are also applied to the Nairer equations (1.12). Then the general
solution will be
] i1
Tup = T + T
For example, in the case of constant gravitational force [, directed along the x -axis,

we have £, =0, F, =—gp where p is the density unit volume and g is the gravitational
acceleration.

The particular solutions T, of (1.24) are then

LI R, T |
Ty = (= T

T’ = PaYs

™ .l pe XX

l up(A+p) T

(E11] +2p‘ ol i
= y Y

T 8u(hap) T 8u(A )H’I'

1.5 Airy’s Stress Function

We have already noted that the boundary value problems in plane elasticity can always
be reduced to those in which the body forces are absent. Accordingly, we consider the
equlibrium equations in the form,

Tap=0. (p=1.2) (1:27)
in which T, satisfy the compatibility equation

Vit +1,)=0 (1:28)
in the region R and on the boundary ' of £ we have

TopVp = T (9) (1-29)
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in which v, represent the components of the exterior unit normal vector to € and

I.(s) are known functions of the arc parameter s of C,
Now, if we introduce a function U(x,,x,) such that

Ty =0y Tp=-U,, and 1, =0, (1-30)

then it can be easily seen that equilibrium cquations (1.27) are satisfied identically. The
compatibility equations (1.28) will be satisfied if

V,V;1/ =0 in the region R. (131)
Equation (1.31) is a biharmonic equation involving the biharmonic function U = [J (x,%)

and is known as Airy's stress function.
Now, in terms of the bibarmonic function U, the boundary conditions (1 28) give,

Uy ¥y =Uss v, =Ti(s)

1-31
U v +U, vy = Th(5) ( )
MNoting that
I,
v, = cos (v, v) = cos(x,.s) = 2>
) ds
e,
Vs = cos (¥, V) = —cos(x,,s) = ——L
i elx
we have from (1.31)

J de, o dy
LI | ol b SR R LR
ox, (Vo) oy Wk =T)

'[i{ﬂw)i&"fl(uﬂ )ﬁw =T,(s)

dx, ds  ox, ely
o .
|.ﬂ.E{J-J}ZT|{-5} (1:33)

o .
and *-E[U.,}=?g{.\-)

Integrating the above equations with respect to s along C from some fixed point 5™
C to a variable point 5, we get

Uy (5)==[ ()ds = () +C, (1:34)

14




Uy () =—[ Ti(5)ds = fu($)+C,

il

It is clear from (1.34) that the derivatives of U along C are not determined uniquely
because of the arbitrary constants C, and C,. However, stresses are determined uniquely
as they involve second derivatives in U, Thus we sce that the two dimensional boundary

value problem governed by equations (1.27), (1 28) and (1.29) is related to the boundary
value problem of the type :

vViu=0 inR (1-35)
U,.=fils) on C, (=12)
where f,(v) are certain known functions,

The probleim (1.35) may also be put in a slightly dilferent way as follows :
Since
dll elx, el
S e A e R L
il

= gr(x), a known funetion on C,
and, also

l’.‘
dll =0, dx. = fode, = F %n’.&'
s

=/ :If Eﬂﬂrﬁ' = f(&)+constant.
2 dy

Thus (1.35) be put in a different, but equivalent form as :

V=0 inR

U = fis) + constant on C.
el

e (s) on C

which is more convenient in some investigations.

General solution of biharmonic equation :
Let us consider the biharmonic equation

ViU =VViU=0 inR (1.36)

and suppose that VU = B (x,,x, )




then V;F, =0, and so the function P, is harmonic in R.

We construct a function F(z) = F} +iP, of a complex variable z (= X, +ix,) by

computing from P, its conjugate [, (x,,x,) as following :

We have dP = B, dx, + P, .,
By Cauchy-Riemann equations,
‘n:,l :._ﬂj

PRy=1h,
so that dP, = —F ,dx, + I} ey,
Hence I, = I(—-Pu o, + ﬂ_,dxz]
We define a function ¢(z) by
o(z =%JF(2)&’2 (1.37)
= ﬁpz

Clearly, the function ¢(z)is analytic aﬁd, therefore,

0'(:)= 2Ly 2 i(p i)

T Oy, oy,
Equating real and imaginary parts we pet
I _ Lp, 9P, _ ip
x| ox, :

Also [rom Canchy-Riemann equations
Py~ Hraslha ==y
sothat p = p,, =48
and p,=—py, =10
using these results and noting that p, and p, are harmonic fiinctions in R, we may verify

that

Vi (U= pp,—poxa)=0 in R

‘so that, U = px, + pox, +4, (x,,%,) (1.38)

16




where g, (x,x,) is harmonic in R.

As before we construct another analytic function % (z) = g, +iq,, whose real part is

{jr.
Mow,

70 (z)+ 2(2) = (% =0 ) By i) + 1 H i,

=(px, + poa )+ i{pox = Py +00) (1.39)
Hence from (1.38) and (1.39) we see that
U =Re[20(2)+x(z)] (1.40)

where Re donotes the real part of the [unction.
Again we have |

'[MZ): Py =B
m= i, = 19,

and znl}(z)+;[?} = (-’f: +fx3][p| = fpé}ﬁ-ql — it}

= (P1I| + Xy +‘J’|}+ "‘(Pbxz = % _‘h)

Adding (1.39) and (1.41), we get (1.41)
79(2)+ 20(z)+ % (z)+ x(2)=2U by (1.38)
Henee,

20 =70(z)+ 20(z)+ %(2) + %(2) (1.42)

Hence the solution of the biharmonic equation is given by (1.38) or by (1.42). In

(1.42) it is obtained in terms of two analytic harmonic functions ¢(z) and %(z). The
formula (1.42) is known as Goursai formula.

Formulae for displacements and stresses :

From (1.29) we have the stress components

Ty =Usp T3 = Uy and T, = Uy (1.43)
Also from Coursat formula

2w =7p(2)+20(2)+ x(2)+ % (2) (1.44)
Now,

Tyt T = By =l




=~i(U, +iU, )., (1.45)

and T =it = Uy, +1U, = (U, +':'U|3)J (1.46)
From (1 44), it follows that

U, +ill, = {z)+2¢'(2)+y(2) (1.47)
where \Lr{z}.s x' (2) (1.48)

Then we gel ‘rom (1.46) and (1.47)
Ty HiT = ¢'l3}+g{;}hzm—w'—(3]
Ty T, =¢'{z}+¢'(z}+zq}"(2}+ “'I{z)

From these we have

Ty +tTn = 2[$'[z}+¢'{:—r)]= 4Re[¢'{z}]

and

U
az*
=2[70"(z)~v'(2)] (1.49)

The first equation of (1.49) gives T, + Ty, and second equation, on equating real and

Ty=Ty+ 2ity, = U.u +U,; = 2‘“.12 =

imaginary parts, gives T,, —1,, and 7,, and hence 7,, T,, and 1, are all known in terms

of two harmonic functions §(z) and ¥ (z). The formula (1.49) is known as Kalesou-
Muskhilisivili formulae.

Let us now proceed to derive formula for the dispiacement components 1, and #, in
terms of ¢(z) and y(z). We have

1, =U, =A0+20u, (1.50)
1, = U, =Ad+2pu,,
T, =l = l"'(“i.: + ”z.l]

Since © =, #,,, s0 from he first two equations we get

18



T, + T =2(A+p)0

2
T ¥Ty _ ViU

fe. PZo(h+n) 2(A+p)
and hence
A+2U
_—.uU ——‘v' 3
2y, .il+ (l w) I
h+2u
W, , = ViU,
l'l'H..,I U (l.l-l'l} 1
Also VU = B =4p,=4p,,
Thus,
2 +21
Wy, = E }]FU
2(h+2p)
e s |
2P uy, ant U‘““‘I-'f} Piz
whose integrations lead to
2(A+2p)
T gl et A
2 ==U,+ =5 ptS(x) (1.51)
U +2(h+2|,t)

2nu,=-U, WF:‘*‘E’{-F)

where f{x,) and g(x,) are arbitrary functions of x, and x, respectively.
Then,

A
2“("\2"‘”1:) =Uy,=Uy + 2( = M]( Biat Pz,l)

+f’(x2}+g'(x,].

or, u(u.,_, tuy)=-U,, +3(7 () + &'(x, }](sinca Pia==P2)

So from 3rd equation of (1.50) we find that

fl(xz)“*'gl(?l} =0

19



ot, ['(x,)=~g'(x)= constant = a(say)
i (g ) ==ctes+f
g(-":t} = —ox, +Y

where [} and 7y are constants.

The forms of fand ¢ indicate that they represent rigid body displacements and so far
clastic deformation we must put f= g = 0. Now from (1.51) we get

: 2(A+2 :
2, +inty ) = "[U.: +IU'2]+_[1'T}IH-) (p+ip,)

= 0(2)+20'(z) + w(z) |+ 2{}‘“”“)@( )

Atp
_A+3u PN
G RIORTE
=(3-40)0(z)-20'(z)-v'(z) (1.52)
A+3p AL e AT =l -~
where 5 . . g 2(;,,1. P I-lJ is the Poisson’s ratio of the material.

Thus, the displacement components u, and , are expressed in terms of two harmonic
functions ¢(z) and y(z) in equation (1.52).

1.6 Summary

The two-dimesional boundary value problems have been considered in this unit. Plane
strain, plane stress and generalized plane stress are discussed. The solution of the boundary
value problem in the absence of body forces has been represented in terms of Airy’s stress

function. Filally, the solution of the analogous problem is obtained in terms of analytic
functions.

1.7 Exercises

1. Short Questions :

(a) When will you call an elastic body to be in the state of plane strm:ﬂp]nne
stress/generalized plane siress?,

20



(b) Write down the expressions for stresses in terms ol strain in the case of
plane stress problem. '

(¢) Derive the stress-strain relations given in terms of their mean values.
(d) Obtain the displacement components u, and u, in lerms of two harmonic
functions ¢(z) and y(z).
2. Broad answer fype :

(a) Explain how a plane problem of elasicity can be solved by using Airy’s stress
function.

(b) Obtain Kolosou’s formulac for stresses and displacements of plane pr;nh—
lems of elasticity.

(¢) Obtain a general solution of biharmonic equation in terms of analytic functions.

(d) If & uniform centrifugal force acts on a body, rotating with constant angular
velocity about x,-axis then find stresses and displacement for particular integral.

(¢) Derive the Goursat formula.

21



Unit 2 [[] Extension and Torsion

Structure

2.1 Axial Extension of a Beam

2.2 Beam streteched by its own weight

2.3  Bending of a beam by terminal couples

2.4 Torsion of cylindrical bars of eircular cross-section

2.5  Torsion of a eylindrical bar of any given scetion

2.6 Solution of the torsion problem for certain particular cases
2.7  Summary

2.8 Excerciscs

2.1 Axial Extension of a Beam

Consider an elastic beam of uniform cross-section
bounded by a eylindrical surface and by a pair of planes A
normal to this surface. The cylindrical surface is called
the lateral surface of the beam and the planes are the i

TR
:: . . .i_._. ,_____'P
has::? {l.:;tr end faces). Alj-:ﬂ suppose that the beam is in =
equilibrium under the action of a uniform normal stress N - & —
« L

acting on the bases and no body forces, Qur problem is
to find the stresses, strains and displacements at an
arbitrary point in the beam.

Let us choose the x -axis along the line of centroids of the cross-sections of the beam
of initial length / and take the origin on one of the bases. The bases of the beam are given
by x,=0 and x,=/ before deformation.

The bounding conditions of the problem are
T, =N, 1,=1,=0 forx, =0.{ {(2.1)

and 1,v, =0 on the lateral surface.

22




We note that on the lateral surface v, =0 (since the normal to the lateral surface is
perpendicular to the x -axis). Hence if we take

T =N T =Ty =T =Ty =1, =0 (2.2)

then we see that the boundary conditions (2.1) for the problem are satisticd,

The stress system (2.2) satisfies the equations of equilibrium T, | = 0 (since N is
constant here).

Also the Beltrami-Michell compatibility equations

P S
"1+ o dxox,

=0 s L2,

o being the Poisson’s ratio and © =1, (i =1,2,3), are satisfied by the stress system
(2.2).

Hence we conclude that the stress system given in (2.2) represents the stresses at an
arbitrary point in the beam.

The strain components can be easily oblained from the stress strain relations as

l+ao o o
l?'n' =T1q “}:En Br {h ’ : 1: 2:- 3)5
| N
"'n:F[Tu_G(TH"_'EHI)]:_E
| = —alN
Eu="T[Tzlrg(1ll+'ti3)]=—='€31 (2.3) -
E E
€in =“I“;_UTL3_ =0, e;,=0,¢, =0

where E is the Young's modulus,

Now, we have by using the relation ¢, =% (Hu + ”],

, N _ou

i B o, (2.4)
, o 20N o

= E ox,

2 gy

L
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du,  du, du, du, i, Ou
ety N gt
dx, dx dx,  dx, dy, dx,

Solving first three equations of (2.4) we pet

=0

Nx,
iy =—="+ax, + bhx, +¢

[

]
H, = = N, +a,x,+b o+,

=G
Hy = = M, Hax +box +e;

Using the last three conditions of (2.4) we get
to==h;a;=—ha= e

since there is no rigid body rotation we must have
i, =

These give

' ay=hy, ay =0, a,=b

(2.6) and (2.8) implies that
a=t, =gy =h =bh=5b=0

Since there is no displacement at the origin i.e.
o =u, =u, =0 at (0,0,0)

and so ¢, =¢c,=¢, =0

Therefore, the displacement components are

=Ny

i
£

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Example : In the problem we have considered above find the normal and shearing

streses on oblique section of the beam. Also find their extreme values,

Solution : Let MN be an oblique section of the beam whose normal makes an angle

@ with x -mas,
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Then ¥=(V,,V,,V,) where v, =cosb

Using the relation T =T,V , we get

W
i‘l“=*z”vf =T, V, +TpV, + T3V, = NV, = NcosB

N v
u /'
T=%V, =TV + TV + TyyVy =0 \/ﬁ
) \ "X
ik M

¥ _ —
If T represents the normal stress on the plane whose normal is ¥.then
)

v ¥ ¥ W
Tr= i'l'uj i—.’t']"-.l'2 +It';‘u_\ = Ncos0.cos8 = Ncos’ 0
"

The resultant traction on the oblique plance is

re ) o] o) v

Hence the shearing stress 7' on the plane is obtained from the relation

GECE

as ’} = ((Ncnsﬂ}z = (Ncnsz B)]] = (NI cos’ O sin’ {])ﬁ

.'.iE"s%NisinEElL
Since T = Neos® 0=+ N (1+c0s20), so

¥ will be maximum when 0 and it will be minimum when g =90°, Also T will be

maximum when @ = 45° and it will be minimuwm when B=0.
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2.2 Beam stretched by its Own Weight

Let us consider a beam of length [ in its Xy
undeformed state. Suppose that the beam is supported
at ifs upper base as shown in the figure and the only
external force acting on the beam is the force of
gravily. We take the origin at the lower base x,=0 of 3 f
the beam and x.-axis vertically upwards.

Then the body force component are 0 Xy

Iy =0, F, =0, F, =pg where p is the density of the beam,

The stress system

T =P8%, Ty =T =T, =T, =75 =0 (2.12)
satisfies the stress equations of cquilibrium

T, +F=0 (i,j=12,3)

and compatibility equations
4 ] I e o S
Vgt On = BvE (£,+F,).

Also the system (2.12) satisfies the boundary condition that the lateral surface (where
normal is perpendicular lo x,-axis) is free from traction. The lower base is also free from

traction, since at the lower base , =0, Ty, = 0. But at the upper base 1,, =pgl, which

is dirccted vertically upward. Thus the cylinder is to be supported in such a way as to give
a uniform distribution of stress, To find the displacement components we have

1
a-_’ﬁ:E“ =E[‘r“—c!.(131+131)]:*%ﬂ£x] (4)

du, ! d

G E[T” ~o(t,+ tﬂ)]=—£:pgx3 (b) (2.13)
1 U | 1_ P&
a—r"“ €5 —E[T_u —o(t II+TH)J— ; (e)

du du, du du, ou
S P et S R G T
Or, 0%, Cow dn ow %

3

Integrating [2.13(c)] we get

0 (2.14)

_pex;

iy ity (X,, %)
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where u,, is a function of x, and x, only and from last two equations of (2.14) it
follows that

S _fhi_"_ LT (xh .1':,)
|

HI

dw

0
Uy, = =X, — =+ 1y (X, X,
. 3 ax3 2 ( —)

where u,, u,, are functions of x, and y, only.
Substituting the values of u, and u, in [2.13(9)] and [2.13(b)] we get

dutyy o Dty

EI*-‘]-EE—[’ (2.15)

Oy, _opg Oty . OPE

% E o E (2dd)
Also substituting u, and w, into the first equation of (2.14) we get

0ty a”_m_*,a’ﬁzﬂ @17

dx,dx, Tt By, oy
we see from (2.15) that u, = F(x,), a function of x, alone and u,, =G(x), a

function of x, alone.
From (2.17), we pet

F'(x,)==G'(x,) = constant = a (say)
Sl =dx; +b
Hyg = —t _
From (2.16) and (2.17) we easily find that
Uﬂg(

iy == % +x§)+a‘:’:, +b'x;+¢'

where ', &', ¢" are constants.
Finally, the displacement components are

o
0 == it xx, —a'x, tax, +b
5] :
i, =-—gg-xjx2 = b2 —~ax.+e (2.18)
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_Pg

(xf +ox; +ﬂrxf]-i-r:r’.::J +h'x, +¢'
2FE £

1

To determine the constants in (2.18) we may assume that there is no displacement at

the point (0,0,0),ie #, =, =1, =0 at (0,0,£). This gives

: r (2
ﬁ=ﬂrf,ﬂ:b'f, g’:—p'f" -

(2.19)

Also we can avoid rigid body rotation, by noting that the rotation components are zero
at (0,0,0)

du, _Quy duy, du, du, 9w,

15 dx, ox, Ox, E E dx
Applying these condtions we get
6'=0, a'=0and a=0

so from (2.19) b=c=0
Hence the displacement components associated with the problem are piven by

at (0,0, )

O
= H%ﬁaxh (2.20)
i = —%xlx,
g
u, =§—éE(M +ox; +ox; - (?)

2.3 Bending of a Beam by Terminal Couples

Let us consider an elastic beam of uniform cross-section and of lengith /. Suppose that
a couple of moment Af about a line perpendicular to the beam is applied at one of the

bases and an opposite couple of moment — A7 is applied at the other base so that the beam
is in equilibrium, The lateral surface of the beam is stress free and the body forces are
neglected. The problem is to find the stresses, strains and displacements that oceur at on
arbitrary point of the beam due to the bending it experiences because of the applied end
couples. This kind of bending is known as pure bending,

We take the centroid of the base of the beam on which the couple - 17 acts as the
origin of the co-ordinate system with x,-axis initially directed along the line of the centroids

28




of cross-section of the beam. Also the x -axis is chosen along the axis of the couple M
and (he x -axis is chosen such that the co-ordinate system is right handed.

Due to the bending caused by the applied couples,
the longitudinal elements of the beam experiences

M
elongation or contraction. Consequently, the stress veclor C 0 S

: |,

rx}

v T
—+ s = H v "1,/
T acting at a point on a cross-section of the beam X
. 1
W

produces a moment ¥ x 7 per unit of arca,

5
The total moment on the cross section is _[ [-‘-’ X1 ]M , where A is the area of the
4

cross-section.

On the cross-seclion x, = £, we have

J’[a. x;?]d,:; =t 221)
| .

We note that on the section x; =€, ¥=(x,%, ), 9= (0,0,1), Fo (T3, Ty T, ) ANG

M =(0,M,0) where M =| M|
Hence from (2.21)
I(xivxr[)X(TJHTJ;:T!J)'SM = (0,M,0)
A

This gives, on x; ={.

[ (%73 = 013y ) A =0,
A

[(try =510 )dA=M, (2.22)

I(xl'rﬂ —X,Ty JdA =0
d
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Similarly, on x,=0, we note that al a point with co-ordinates (,%,,0),

v=(0,0,-1), M =(0,-M,0),
50 that

JIETJJ dAd =1,

A

_[:r,'r_13 dd=-M,

A

(2.23)

J(_‘ELTE - xIT“)cM =},
A

The conditions (2.22) and (2.23) are to be satisficd by the stresses at x, = £ and =0
respectively.
We may verify that the stress system

T =Ty =T =1, =Ty =0, 1, = ax, . (2.24)
where a' is @ non-zero constant satisfies all the conditions (2.22) and (2.23), provided
that
[xx,da=0 (2.15)
A
; M
and {x; RS (2.26)

Since [ = J xlla'A is the moment of inertia of a section about X,-axis, so we have from
A

M
(2.26) a= T

Equation (2.25) requires that the product of inertia of a section with respect ot x,x,

axes is zcro, so that the axes of x, and x, are the principal axes of inertia for the section.

M-
Thus the stress system (2.24) with a = - T satisfies all the conditions (2.22) and (2.23).

Again, on the lateral surface, we have v, =0 and hence ;:z g there. So the condition
that the lateral surface is free from traction is satisfies by the stress system (2.24),
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Finally, it is easy to verily that the stress system (2.24) satisfics the equilibrium
equations and Beltrami-Michell compatibility conditions, Hence the stress system in the
body due to pure bending is given by

Ty =Ty =T =Ty =Ty =0
M
Ta= _T‘rl (2.27)
The strain components are obtained from the siress strain relations
l+o %l
e, =—E T =m0
oM M
Al i Sy TR 2.
=€ =T B FTL (2.28)
ey =ty =y =0, -

It can be easily seen that the corresponding displacements are given, by using the

rﬂiﬂ[iﬂﬁs f-"n,- e %(”Mr T H”) » 83

W= ETJ'[I1+G( ;)].

Mo

Uy = Ky (2.29)
El
— M

LI ELI] '

We note from (2.28) that longitudinal elements of the beam extend or confract
depending on whether x,< 0 or x> 0. On x = 0, all the strains are zero : as such the
elements initially lying nn the x,x, plane du not change in length. The x_x, plane is,
therefore, referred to as the natural plance of the beam. Alsow, =0 onx,= ﬂ plane The
plane x,= 0 is referred to as the plane of bending, Again, we Dhscrw: that thc line element
n‘utmdl},r lying along the x -axis lies on the ncutral plane as well as on the plane of bending.
The x-axis 1s called thc Central line of the beam,

2.4 Torsion of Cylindrieal Bars of Circular Cross-section

Consider a circular cylinder of lenpth [ with one of its bases fixed in the x,x-plane,
while the other base x,=1 is acted upon by a couple whose moment lics along the X,-axis.
Under the action of Ihc couple, the beam will be twisted, and the generators of the (:ylmdn:r
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will be deformed into helical curves, On account of symmetry of the cross-section, it is
reasonable to suppose that the section of the cylindrical planes normal to the x_-axis will
remain plane afler deformation and that :
the action of the couple will merely rotate
cach section through some angle g, say. M

The amount of rotation will depend on the ' x
distance of the section from the base x,.=0 l """"

and since the deformation is small, it is
assumed that the amount of rotation g is
proportional to the distance of the section
from the fixed base. Thus

H=qonx,,

where ¢ s the twist per unil length, i.e., the relative angular displacement of a pair of
cross-section that are unit distance apart.

If the cross-seetion of the cylinder remain plane after deformation then the displacement
i, along x,-axis, is vero. The displacements u, and u, are readily calculated as follows,
Consider any point P(x,, x,) in the circular scction, which, before deformation, occuped
the position shown in figure. After deformation, the point P will occupy a new position

P’(.ﬁ:l il s +1.r3]. In terms of angular displacement @ of the point £, we have
i, =rcos(p+8)-rcos0d
=x,(cos0—1)—x,sind
w, = rsin(B+0)—rsinp
= x,5in 0+ x, (cos0—1)’

Where # is the angle between the radius

vector ¢ and the X- axis so that X = reosP, x, =rsinfd. If 0 is small, we can write
u, =—0x,, 1, =6x,

since 0 =1x,, we have the displacement components at any point (x,, x,, x,) in the
cylinder as

= =X, U= OXLK 3 =10, (2.30)
The system of stresses associated with the displacements (2.30) is given by
Tya = PO,y Ty = —HO0G, Ty =Ty =Ty =T, =0 (231)

which abviously satisfy the equations of equilibrium under no body ferces and equations
of compatibility. The boundary conditions on the lateral surface are satisfies the conditions
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T,V + TV =0,
T,V + TV, =0,
T4V, 4 TyyVy = —HO, €08 (), V) + pos, cos (%, V)
=0 -
X,

; ; ; : X
since, for a circle of radius a, cos(x,,v)="Land cos(x,,v)=">
Ll Ll

The only non vanishing component of couple M produced by the distribution of
stresses (2.31) over the end of cylinder is M, given by

M, = [ (572 = 2% by = e[ (o + 3 )i,
= peud,

ma’ e : ; )
where [, = il the polar moment of inertia of the circular section of radius a.

The resultant force acting on the end of the eylinder vanishes, and it follows from Saint
Venant's principle that whatever be the distribution of forces, over the end of the cylinder
that give rise to the couple of magnitude M,, the distribution of stress sulficiently for from
the ends of the cylinder is essentially specified by (2.31)

The stress vector

T=it,+] Ttk 1, =po(-ix, +7v,)
acting at a point (x,, x,) on any cross-section x,-constant lies in the plane of section
and is normal to the radius vector r joining the point (x , x,) with the origin (0,0). The
magnitude of T is

T= T3, + T = RO 425 = pow

The maximum stress is a tangential stress that acting on the boundary of (he cylinder
and has the magnitude poa, Le.,

= pHoa.

141111.

2.5 Torsion of a Cylindrical ﬁar of any Given Section

Consider a cylindrical bar of any cross-section subjected to no body forces and free
from lateral traction. One end of the bar is fixed in the plance x,=0, while the other end

i.e. the plane x, = € is twisted by a couple of magnitude M whose moment is directed
along the axis of the bar, Clearly x,-axis is taken along the axis of the bar,
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By the moment condition on the end x, = (,
M=M,= I[x;ﬁu —x,T,, )ds onx, = 2.32)

Following Saint-Venant semi-inverse method the stress components that do not
contribute to the moment M in (2.32) may be assumcd to be zero throughout the body,

Le.
=T =Ty =1T,=0 (2.33)
. . ! 0, .0
In view of stress-strain relations €; = TT" —1;-5,.!.5‘,
ey =ep =, =¢,=0 (2.34)
The stress equations of equilibrium are
ar, dt d7,, . OT
JZU. 13=ﬂ1 H‘l‘,l‘:ﬂ
dx, ox, dx, dx, (2.35)
The first two equations of (2.35) implies that 7,; and 1,, are independent of x, The

last equation of (2.35) can be replaced by writting

L ual‘b{xl,x]] e db(x,x,)
1 Gy o, (2.36)

where the stress function ®(x,,x,) is a function of x, and x, and @ is an adjustable
non-zero constant taken for future convenience,
Stress-compatibility conditions under no body forces are

7 I
Vi ey ) (e
1 re 0(i,j=123) (2.37)

Since © = 0, (2.37) reduces to
Vr, =0
which gives
1||"_"'||L]:|,‘| s ‘E’f'r._,j =0
. g ot
Vig gt
where Vi a ox
P a 3 'a j
: —(Vd)=0=—x|V'dD
So we have axz( . ) ;32 ( | )
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- ViD= constant =¢, say - (238)
Now

« (1
==k=e (by 238)
s0 that
dw, = Vo, dF ==L e adr,

i.e. m, ==4c oudy, +constant
since x=0 plane is rigidly fixed, so the constant =0 and hence

Wy ==de e, ,
If we identify the twist per unit length about x -axis by ¢, then
o,
= dx, = (2.39)
le.c=-2 (2.40)
and, therefor, w, = o,

-

ot | =

(a0

On the free lateral surface of the rod we have

VT + VT, =0 (2.41)
W | elx, 2 I_ﬁ
_ bl e = cls
So we have

i =

E-_ = j.e., @ = constant on the lateral surface.

Thus the stress function ¢ satisfies the following Dirichlet problem,
Vi = -2 within the cross-section .

ahd ¢ = constant on the boundary L of §. (2.42)
15 known as Prandtl’s stress function :
The resultant end moment M given by (2.32) can be simplified as
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N

= —pl&j[ (x, @) +-—-(. Efl-‘)] ds + ZMHII Dl
= Lot _f (v, +vax, ) Dds+ ELchj'd):iv
N

0+ Zpﬂj @ds [ d=constant =0 on L]
N

(2.43)

e, D= A Ej.Lj Dy
L
D is known as torsional rigidity which gives the measure of the applmd Lorgue to

produce unit angle of twist.

Mow, _
= ~ [ gu, ou
Vo, =iV —21-—=
1 2 [ ax:. axa ]
Gl i
F 5[’ Py ':D,iz]
do, = Vo,.di

E %[(I)zzd'ﬁ = d}.wdxl]

= %[(—1 @, )y, ~ P, | (using (2.42))

(o
or, dm, = -fItf,‘a"l —E:f (‘I’t)
Similarly
dw, =—tilx, — Ed[d},)
2 175 2
Integrating and neglecting the constant terms for rigid rotation
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oLx %o o, + ¢ (2.44)
w == 'L_“z’ =N Ty :

e
M, = =0, —-EII}J =0, + ¢, (2.45)

The displacement components i, (i=1,2,3) can be obtained as follows
du, =1, dv =(e, +w,)dx, (i.7,=12.3)
coduy = eyl +{egy + wy )dy + (e + i, )dx,
= (g = wy Jelx, + (e + 0y )
=—oydy, —o,dy,  (using (2.40) and (2.45))
' =—ot d(x:x,).
dit, = (2, + 105, ), +ey,dx, + (et )dx;
= wrely; +(ey = w, ) ey,
=0 d (J:l_ﬂ;j).
ity = (5, + vy, ), + (4, + w0y, b, + 2,0,
= (g = ws )y, + (e, + ) ddx,

= ol(x, + D, )dx, - ot(x, + D, )dx,

provided
2 d
‘a?(x] +{I]‘2}=a_t(_xl _(T}?E)
2 hi

or V;®=-2 which is true.
Then intﬂgrgting and neglecting rigid body rotation, we get

i, = =0X,X,, Ny =0XX, Iy = G{ii:-(x,,:-:z) (2.46)
¢(x,,x,) is known as Saint-Venant torsion function, where

h,=x+D, (2.47)
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Dy =3 —P, :
Hence, 7, = pah,, = —par(y, -9, ) (2.48)
Ty, = —Had| = prx(_x-j +¢_1]
To find the equation satisfied by ¢(x,,x,), we eliminate- ®, and get

Vio=0 (2.49)
The boundary condition (2.41) is given in terms of ¢ as
VT, +vT,,=0 onl

ie. fff(-xI +¢,.)+[—%](+x1 +0,)=0onZ

or ¢.I%+¢.J(-£)=xlﬁ+xﬁ onZ
s

ds ds " dys
%: %{ ’E] on L (2.50)
Thus the torsion function ¢ satisfies the following Neumann problem
Vid=0 inS (2.51)
o0 rdr
5 II on L

Let W be a harmonic function conjugate to ©:then ¢ and W must satisfy Canchy-
Riemann differential equations

¢,I =V,
5=, @)
s0 that
rdr
E= %2".= 'v'lii}. + V2¢l,
tlx
=Wy a_d_l“'( W,l](_;{l’}
dy
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¥

R =:—2~ +constant on L (2.53)

Hence, the conjugate torsion function W satisfies the following Dirichlet type problem

Viy=0 in §

3

W= %+ constant on L (2.54)

Stress components in terms of
Ty = ;,LD'.('III_Z - :r_,_)
(2.55)
T, = pa-y, +x)
Relation between ¢ and @
dy = e, 5l
== v, + b b,
= (3, + @, Jebx, +(x, + D, )dx,

i 2
=¢f¢+d["" ;”"1]

2
Ly =B (2.56)

2
Torque M in terms of ¢:

M= j{x,tﬂ - x!'c”)d.s'
b

= uuf (—xld{t = x_,_‘I“a)d.i'
N

= ;_L{t‘[ (xf +xi ]dx + w.l_[ (xltb_: = ] ds
5 S
= uaIrlds + pu:xf —-i(.t ¢}+—a—{x ¢] dy
- 5 e ox, 4 o, :
= ;-.I.D‘,I rldds — p{xj IIJ'{IZHTI! + x,dk'l} lusing Green’s theorem]
8 I
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3 L}‘b‘

5

=pr,t_f s + B
X 2 l.
Circulation of Stress along the boundary :

(2.57)

Circulation of stress vector £, along the boundary L

3 _[(":13"{1'_1 = P ]
I

= puj-(f-bl:drl = dﬁ_lffx:)

ol o )

= —}la'J- V Duirels = —uﬂj Vidaely
! 3

c=2no.8 [ Vi = —2) (2.58)
Lines of shear stress :
The stress veetor on the area x = constant of a rod in torsion is equal to

]'_" - !"[ jF ;1: 2
= Hn:[:lii_l —J-.hll]
Therefore
LV®=0,
That is ?_1 at any point of cross-section is direcled tangentially to the curve
tb(xl X }: constant passing through that point, i.c.
I=[n|7

The family of the closed curves, defined in the plane of cross-seetion, are for this
region, called the lines of shear stress.

2.6  Solution of the Torsion Problem for Certain Particular Cases

(i) Rod of elliptic cross-seetion :
Let us choose x| and x, axes along the axes of the elliptic cross-section. The profile
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of the cross-section of the rod in torsion is given by the equation o

The Prandlt stress (unction ¢ satisfies the boundary

valug problem: - \U_z/

Vid=-2in § (2.62)

$d=0 onl _ (2.63)
Satisfying the boundary condition (2.63), we get,

1 1
q}:A(fﬁ_,*.iz,“ }
a b

where 4 is a suitable constant and is delermined by equation (2.62) as

o Gl
al +b’
therefore
ah ([ x
B= | = 2}

The stress components are
Ty =Ty =Ty =T, =0

£y
Ty = po®, = Z“MF (2.63)

T,, = —posh, =-2pad %

The resultant shearing stress is

T=T;, + 15, = 2104

On the boundary L,

1 1
T=2|.1{1A‘jx—',‘+$[l—x'—'!]
a a

To find t,,, in the range —q < x <a, we have
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1

¢’xd |
b

£ |
]I:1|.urf. g 2”“]4 = *

]

) ") "
where ¢” =1 ——. Thus the maximum value occurs at x, = +e. Therefore,
= 2

L &

i%-‘luui = 2'-1'[1 L A 1 (‘“_i‘i_h_l]
[ 4]
= 2li—
M i

The torsional rigidity D = e Zj.LJ. Dy
(4.4

—zmj[ﬂ +——1]¢n

S =5
=2udwab| —=——+——-1
e [ 4 b 4 }
oA d
=T ST (using the value of 4)

To find ¢ we use the relation

b -a’

X
a bt

O =%+D, =

(2.66)

(2.68)




As a particular case, we may obtain the torsion problem of a rod of circular cross-
section from the above by putting h=a :
Then
d=-L(xl+x-d) (2.69)
- The displacement component are
0, = =0, Xy, My = O, ty=0h=0
since from (2.67) for a=5b,¢=0.

S 241 [ dals

The torsional rigidity o

R
g’
i
The resultant shearing stress at an arbitrary point
in the rod is given by

|7, = powr

. :
where r= {rr +-x5]' i1s the distance from the

axis of the rod. This stress acts in the direction of the
 tangent to the circle of radius » and is constant on this
purve

IE] L‘HI‘H= p.ﬂﬂ 4 [-— :

(2) Rod of Equilateral Triangular Cross-
section :
Consider the cross-section of a bar bounded by the straight lines

x,=0and x_, =%mx, +c. Prandt] stress function ¢ satisfies the boundary value problem,

V;® =—2 within the cross-section (2.70)
and =0 on the boundary L:%| (v, ~¢)' - wxt|=0 2.71)
Satisfying the boundary condition (6.71), let us take

® = Ax, [{Jc3 ~c) vrmle] within § (2.72)
MNow,

Vid = -2 demand that

43



A[(ﬁ—lﬂn:}x] -4c‘:]= -2 (2.73)
Since (2.73) holds for any point within S, so
A(6~2m")=0 and 44C =2

) 1
sam=143, and A=—
2e

] 3 ¥ ;
Hence, ® = -, (v, ~c)’ ~3x | (2.74)

Mow,

- L iRl
T,; = pah, = = [I':aIJPI dxe+e —3x ]

T,y = —poh, = —2—?(—5:13:!]

The resultant shearing stress has a maximum value at the mid points of the sides of the

c C

—-¢ ¢
trinngle, i.e. at (0,0), [mn 5]: [EEJ and it is

_ pae

as -

1%

-~

where ¢ is the altitude of the cqulateral triangle.

On x,=0,
HELr 5 2 ¢
T.=—| ¢ =3x |=0 when x, =+—
I3 2E[ J] i J.J—,
Ty =0
and at (0, e)
1, =22 %0=0
7
Ty, =0

The stress components vanishes at the vertices and at the centre of the section
Torsional rigidity is
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D= i = Zu.[ii!fiﬂ'
L Y

9 v = -.Ir.'"'..r|+r'
L EJ dy,
2

Lt

_ b
1543

and

§=ux [3::; —.\f teT— 2ex, J = X {2:{; = 1; + {.\;: -~ c}z—l

5
3 -

_'cl“ + X3

2

y==2

[ w{tn—c)

X
= } dx,

{3) A rod of rectangular Cross-seclion :

We take the origin at the cenlre of the rectangular section of sides a and b (= g) and

the coordinate axes parallel to the sides as shown in the figure. We solve the problem in
terms of conjugate torsion function W satisfying

Vig=0in8

Let us set
R
vt 4 5y (1)
where
Viw,=0in§

b

(b=a)

a

Now W and so \, must be an even function in both the variables x, and x, and

ml(ig,x1]=ﬂ on L

Therelore, we have the solution,
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Zu cnsh(a 1y Joos (o, x, ), where L L= (20 +1}2

n-

b =R~
Now, W, [1,._5J =xt-L = Y. a, cosh %ﬂms QL X,

u=lt

D

. ]
aot coshot, —

=g

= o
s o ::tzush(L

cosh (o, x, Jeos(er,x,)
] :

Therefore,
i, P
W= —E—+ - 2' Ly, (x,8,)
and so
- .\‘,"7-1-:!.‘?
i

P [ 0§
) (DE b
a, cosh| 2

cosh(ce, ¥, )cos(ar, x,)
T]

Thus,
dd =y ey, —y,dx,

= of (-‘ﬁ-‘f: )+ i =B ‘ffﬂinl'l(tl,,x}_ ysin(er, x, ])

- b
= u o, cosh [D‘.” -

Thercfore, neglecting a non-essential constant

b 8;: i (~1)' sinh (e, x,)sin[:,, %)
=0 (2 41) cush[“z ]
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The shearing stresses are

% =D, = MIIEE{ 1)" sinh (o, x, Jeos(at, x, )
o ., b
(2n+1)’ cmsh[ 2--]

B 5 (1) cosh (a0 )snctx)
ﬂ}. = 2 u‘nb
{2.{:+I) cosh =5

T,; = —pad, = pof 2y, -

The torsional rigidity is

p=_ 21 [ s
o ’

tanh [ a,p ]
whea 192a & 2
= B E

3 ES'I-L" =l| E2n+l]‘ allf B

2.7 Summary

In this unit, some problems of extension and torsion of a beam of uniform cross-section
have been considered. Axial extension, stretching of beam by its own weight and bending
of beam by terminal couples have been discussed. The torsion of eylindrical having different
cross-sections have also been studied,

2.8 Excercises

L. Short Questions :
(a) Define central line of the beam.
(b) Obtain the displacement components given in (equation number 2.29).

(c) Define torsional rigidity and obtain the expression in terms of Prandt] stress
function.

(d) Find the circulation of stress along the boundary of the prismatic bar.
(c) What is meant by the line of shear stress?
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2. Broad wnswer type :

(a) Find the displacement component in an elastic beam when it is under axial
extension.

(b) Obtain the stress, strain components in an elastic beam when it is under
bending by terminal couples,

(¢) Show that the problem of torsion of a long prismatic rod of eross-sections
of isotropic material twisted by end is equivalent o the boundary value

Fi Fi

i : 3
problem Vid =-2, ('YH""‘!) €S,V = E}_t'l’+a_-1tf_?

boundary L, S + L is a normal cross-section of the rod and ¢ is the
Prandll's stress function.

and &= const. on the

(d) Show that the maximum resultant shearing stress which arises in the torsion
problem occurs on the lateral surface of the rod.

(e) Solve the torsion problem of a long prismatic bar of elliptic cross-section
twisted by end couples, Also find the maximum resullant shearing stress of
the bar.

(f) Show that in the torsion problem of long prismatic bar of equilateral triangular

. . e
cross-scetion twisted by end couple the torsional rigidity is given by ﬁ ;

(2) Find the shearing stresses in the torsion problem of long prismatic bar of
rectanpular cross-section twisted by end couples.
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Unit-3 [] Semi-Infinite Solids With Prescribed

Displacements or Stresses on The Boundary

Structure

3.1 Semi-infinite solid with prescribed displacements on the plane boundary
3.2 Semi-infinite solid with prescribed surface traction on the plane boundary
33  Simple solutions

34  Summary

35  Exerciscs

(In this unit we shall use unabridged notation instead of tensor notations)

3.Il Semi-infinite Solid with Prescribed Displacements on the
Plane Boundary

Suppose the bounding surface z = 0 of the semi-infinite solid occupying the space
2> () has prescribed displacements
1= U(.x"._v'),v = V(x‘,y'), W= (x',y' ]
The Navier equations of equilibrium in the absence of body forces are of the type

di

(A+p)—+pViu=0
dx
e VU :—l+ll?—?=— Lol
oody 1-20 dx *
where o = is the Poisson’s ratio. Now, in the absence of body force, §
2(A+p)
is a harmonic function and so we can take
f ==2(1 ~2a)§£
oz

wheré¢ F is a harmonic function. Then
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z
dy oz
Hence we have
oF ar oF
= g¥+ ¢'1_: V= za—y+¢1, W= zg+ b,
where §,,$,, 0, are harmonic functions whose values on the plane z =0 are UV, W

respectively.

5.2 Semi-infinite Solid with Prescribe Surface Tractions on
the Plane Boundary

Supfms_e the plane boundary z = 0 of the semi-infinite solid occupying the space z >0
be subjected to prescribed stresses

v, ==X (<)), T =¥ () 5. =-Z(+').
Now, in the absence of body forces, Beltrami-Michell compatibility relations are of the
type

1 d'®
Vi_+———=0
® 140 dxoz
where ©® =T, +1,, +T.. is harmonic function. Noting that

2
2———a O_ v [z@]
dx )’

we have from the above equation

: 1 da
.‘ijl'I SR ={}
[T-“‘+2[1+cs) zﬂ'x]

1 de
so that Te =57 v Za. TV
2(1+c) ox

‘_ N 1 _0@
similarly, Tz = —m- aéj—lﬂlfz (3.1
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| 08

-

A s
2(1+0) 0z ¥,

T.=-—

where ., W., Y/, are harmonic functions such that on the surface z=0
wl B T.'.': =_'J{‘w1 = T.I.:' 3 —Y,'lif] 2 t:: ==Z L
Now, using (3.1), the equation of equilibrium

o7, -~ E'f_,. or..
&J. az

1 . 08 oy, oy :"J'l|r
: —_—| 2| V8 )+ +| =4 0
S0 2(I+U][z( ) dz ] ( dx E’f_}r dz ]

=0

- 1 d@ (o, o, W, | o o _
" "2tv0) 0z [a.r'+ ay E}z\]ﬁﬂ G P
i
Let L= I:E—(-—] dr'dy', M = _U ( )drc{v'.
{x:}”:_zl}
N= ” dxldy
0 0
¥ g A

where =|:x-x])1 +(_1r—y') +z°

' / (x'y'\0)
[a_ﬁ] - omx=omly).

dz ) (x.y.z) (x.y\z)
1 dL
so that we can take W, _EEI Z
| oM 1 N
m— S e
Similarly, ¥, = 5= =— and y, == ==,

So from (3.2) we have

AlE) ]+GB(HL aM EIN]

—m ——r b | e —— ——

dz m odz\ldx dy 0z
AP L (O (33)
_ m \dx dy z
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Thus the distribution of stress in the interior of the body is known in terms of L MN.
Distributed normal pressure on the plane z = 0. '
Suppose, on the plane z =0,

1, =0t .=0,1_=-Z (xl,y') :

1 dN 1+ dN
Then w, =W, =0 and W, TNy e and by (3.3), =

Z I (]
Lel };.=_|-.|‘Zlug(:+.-*}dx'c{].f', so that %i:'=ﬁ?dx dy' on z = 0 and hence

_ 0%
oz

Now. T.. =A8+2 j.l.'a—l

=

] aa_B.L. = A@ + 21 dl (-
oL 2(1+o) 0z b 3+ 21 gz

© =(3h+2u)0)

1 ’_E]_('1+UE]N]+IJN 6 l+a dN au( (3.1)
O a(l4o) 8:z\ m dz) 2m ooz 140 m El_ dz by (3.

E}n 1 &N (- ’3‘5}3}'\"

——+t
O . In 0F w2m O
e L @V 1 W
Y0z amp 9t dm(g+p)adz (3.4)
Let us introduce a function £2 by
W SO %
dun  dm(h+p)
Then
ag_ N Y o 1 ap  NCTE e R
9= aun dpn 9z An(h+p)dz  dum dpn oz dm(A+p)
Co0Q AR 1 oN
M 0e (A4 p) 4 0z (3.5)
Also '
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9Q_  A+p ON 1 N 1 &N 2h+34 ON
dz*  4mp(A+p) 0z 4mp oz a0z - dmp(h+p) 0z

1 a N _ o EE+ 2h+30 aN
PrTR P 4np (A +p) dz
Hence from (3.4) we get

e

o Hzﬂ 2A+3R HN 1 N _9°Q A+20 AN

9z ar 4n(.’&+u}p, oz 4n{l+p.) 0z 9z +2n{l+u)uﬁzu

so that on integration
00 A+21 i
dz +2n(l+p]pw (3.6)
e dit du E}w] ,
Again, T.. =} 3z Ox.) Bives
du —l"r: = B - aN
d u° ox 2u{l+o) or  dxdz 2m(A+p)p ov

W=

dw _ | Jde R A+2n IN

(using (3.1) with W, =0)

i I J[HUHNJ Q. A+2p aN
1+n)- dx\ m 9z ) dxdz 2m(A+p)p dx

_ (using (3.3) with L = M = 0)
al 1 aN  A+2n N} 20

=2—— ——— T — _—_—
dr| 4mp e 21 A+ p)p dxdz
=2_a_fag] d'Q
dx\ dz | Oxdz fd s
'R
Aoz

"_E}_ﬂ Siumilar] v—a—n
so that ST ¥s 3

y
Thus, the displacement components for the present problem are
18] dQ aQ A2

H=—-1 V===

P i
dx dy dz 21:(},‘ ‘H-l)l-l : (3.7)
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Normal pressure at a point on the plane boundary z = 0.
Suppose that on the plane z.= 0,

b 0.1 —Z at the origin
T.=0,1,.=0,1..= ;
¥ i B 0 elsewhere,

where Zis constant, Then from (3.1), the distribution
of stresses in the interior of the medium is given by %

18@ 1 98 1 doe

Ty (1+u} ox T-=""mz}}_"c‘:_umz_§;—+% (3.8)
where (_WJ }:=n = (T:: ),-:u

Let N= HM dx'dy' = =

(.- for a concentrated force at the origin * = ¥? + y* + 2*)

(E;f:] =~(2).c0 = (t).cg = (W)

ldv Z 9
so that V1 = ZHE_EE = (3.9)
The equation of equilibrium
9y 9 Fag
dx dy 0Oz
then gives with W, =1, = 0 from (3.1)
1 98 dy
L e o A +—1=0
2(1+n:i')z s 2(140) 9z 9z
e .aéi_z(lm)a“’* («Vv'e =0
z
{I+U]Z a
s0 that © =2(1+0)w, = {h (3.9) (3.10)
Mow we have
dw A dw
1. =204 2p— — |8 ={3
.= 204 uﬂz mz—a +2]la { =] {}L-"f-Z].l)_ﬁ)
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] 08 A dw
or, ‘_2(14—“}2 az +11i_1 = A+ 2Hr2(1+ﬁ')w3+2u‘é— (b}" 3+“})
dw 1

e 2(ivo0) oz

[2 (1+0) 1;:1]———2(1+n}~qr F,

e A L e
C 2(A+p) 140 3R+2p

w_ 1 o 1-% _ 1y
oz 2|.L il Eu =V, e S I:;L-i-p,}w

5 )| T )
T ‘ozl 2moz\r 2(h+p) 2w oz\r

] =yt 4t mﬁzi
=_§_zi[i]__z_.i oz r
dun dz\r' ) An(h+p)’ | (1) l1or_ =z

: Hz[r.] 2oz P

e T e
dpn\rt ' ) An(A4p) P

koAl W B s
“dum|dz\r' ) | dn(hap) s

Lz 0 (A+21)Z 2
Taumaz\r ) Amu(hep)

——[ 7)oy o)

so that, on integratiﬂn, we have
5 £y (h+21)Z 1
4|J.1t P dmu(h+p) ¥

SRS
Again, T = H 0y

1 08 _ (du odw |
or, _2{I+n]z 3 M3 o) by (38
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du 1 _d
P e —|[21+c g
Jz  2u(l+o) El:r: 2( Wﬂ dx (by (3.10)

~ A0 ii[l] otz 2 (e2mZ 1

o ax|2n 0z\r )| Ox|dnp ' dmp(Rp) e
Lo i)_i"_i(l] (A+2n)Z i(lj

T2mp o\ A dmpoax P ) dmu(A+p) dx\r

_Z= i[L]_f{"i E(L} (A+2)2 .a( J
e dx\ ) dmp dx\ ') dmp (A +p) Ox

f"‘_"‘x

dmp dmp(h+p)\ et
D
dmp | oz\ ') | dmp(hp) o

=ii[_]+_2"__i
drp 0z\ #' ) dm(h+p) P

Noting that
et (1]
9z |r(z+r) reoroztr o o(z+r) r
o B 1 _L
Mz4r) rzer) :
so that

dv _ z Oz 2 d X
Jz  4mp ﬂz[ ] 4n{l+p]E{r{z+r}]
Integrating, we have
z £ x

- A dm(A+p) r(z+r)

£h



£, 5 bt ¥
Similarly, V'™ 475}11-"-3._ an(Arp) r(z1r)
Hence the digplacements an any point in the region 2 > 0 when a constant normal load
z acts at the origin are given by
A 74 X

= B

dmp’ ¢ dm(AHp) r(z+0)

d g L y
471:].1' r 4?[(."'-.+;l_}|-r(:+r} (3.11)

¥

=2 Fh+2
ooz 2 z0+w) 1

drp ' dmp(A4p) r

3.3 Simple Solutions

I. First Type :

Navier equations of equilibrium in the absence of body forces are

d d d z .
{J., | '_L:ﬁta—x, -a—; E}ﬂﬂﬁ? {H.l'.n'): 0 (3.12)
It can easily be verified that the displacement given by
O s R (- 1
I.F—A.r—:” 'Lf—rA.;;.W—A,(F-I- 1+|,l.:)= (3.13)

where 4 is constant and r* = x* + y* + 27, satisly the equations (3.12) except at the
ongin. Let us enclose the origin within a cavity of the body and calculate the traction across
the surface of the cavity. The tractions corresponding with the displacements (3.13) over
any surface are a system of forces in statical equilibrium by exclusion of the ongin. Thus,
in the case of the body with the cavity, the resultant force and the resultant moment of these
tractions at the outer boundary are equal and opposite to those at the surface of the cavily.
Now these tractions at the outerboundary do not depend on the shape or size of the cavity,
so they may be calculated by taking the cavity to be spherical and taking the limit as the
radius of the sphere diminishes indefinitely. We show that the displacements given by (3.13)
is produced by a force 8mu(A +2p) A/ (A +p) applied at the origin alcug the direction
of the z-axis.
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We rewrite (3.13) in the form

a’r &'r 'r A+21_,
=—4A J ’=—A'___, | (e v
e e [ 9z A+p ”J (3.14)
Then the cubical dilatation is
- - 1, 3 i
ﬁ:di+ﬂ+a—14=—,4 51: & azr . az_'_AFu,-i-Zui ?3;-]
dx dy oz dx'dz  dydz 0z A+p dz
C 1 2 it 3
:—A}l—i(?'r):ia,_ [‘.' "F"r=.2_]
A+ oz Atp dz r
du  2A4Ahp or”! a'r
Hence Ty =A8#2poe=22200 oy

% hin 2 i

2Ahp ar™' o™ _ar! (Hr T
kP W Lt
A+p oz p.[ oz dz \ dx

ar". a;-T e
¥ =3 — | | =
e, Ty = apd dz { (ﬂx Atpl|e

' L farY n
Similarly Ty = 2MA — i3 ] "m}, (3.15)

€

-] ' 1\12
z:=z|ma’”—[3 A 5 ]

;-...l'
= =
=

A
Il
£
"-‘%“
L
ety
L
Fs ™
oL
¥
% iy
]
+
e
4
e
el L

=
=
‘Q.-‘
-1|
—t—,
L
- ~,
¥ ¥
= 2
+
?—'
+ | =
7 =
Ry L

The tractions across any plane with normal 3 are given by
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W

T. =1, cos(x.v)+1, cos(y,v)+T,.cos(z.V)

- - 2
:?.LU]——{E[E{—J e B lcﬂb(f v]+ﬁj.LA-g—;?‘— aé cos(y, V)

dz) A+p

=] 2
+2].L-4&5—[ [%J +;1H]cusfz.v}

=y =1

3% %{— :2 g os(x,V)—— Lm{y U}-,—l-i—jcm{z v}H
S f o 7|, q0rdrar
s 'Zm[lw[““m Ve R R

e = e
{cns{zﬁ v]d;—— cos( ¥, v}%.i_}+3£'-'_16‘_1§i__ (3.16)
x

Si IIl iu v'r: :
imilarly, T, 2M[l+u A= dx dz dv

dr i
T‘"M_[ &) i—u]

where v is the inward drawn unit normal to a sphericai surface with centre at the
origin so that

5

cos(x,v)= —'::-., cos[y,v}=—%, cos(z,v)= —?;:—#
Hence [rom {3.16) we have

f = zm[z.i.i.iz]

rror
oy bpdax
1.2 4y 4
r
and similarly, 7 = SE4%2 ¢ _ 204 (3,§+ L) (3:17)
" S AR




Now let X, ¥, Z be the resultant traction on the surface of the spherical cayity.
Then, we have

N m {] 5
I;qm nuldw“bﬁ; sin 00 Bclp = 0

¥ = [[ 7, ds = 6

o=N=i)

% noa PR . iay
=[[Tas=6pa [ [ 2 o HDRCOSY. 2 i Bl =0
@=liiu ff

= HT m_zmj j [ I” cos’ ”+liu].;-lsinﬂﬁu¢r¢

weth iy !

.
—411;1.»1[3 Z4 -“—,1]
a2

 SmeA (A +2p
A+
ITL. M, N are the moments of (he resultant forces about the coordinate axes, then

L #”[_wi—zﬁ ]ﬁ’x =_U[2tlfy[3;i: + ?q.:l:j.l]_ z.ﬁ!':ﬂ}zj|ds

ol 'l er v 24 I smﬂsmlb
—mnu l+p.f J' = 27 sinBed@dd =0

g=tl G=n

Similarly, M =H[z?&—x?€ ]cf.s- =0, N =H[x?i,—yﬁ)ﬂ’:;: (.

Thus, whatever be the radius of the catity, the system of tractions (3.17) is statically
SmpA(h + 20)

equivalent to a single force of magnitude
i

applied at the origin along the
positive z-axis. -

The solutions of equations (3.12) in the form (3.13) are called first type of simple
solutions,

i)




IT, Sccond Type :
Consider the displacements

¥ B
=

st

= B,—'T—. ve B,

riz+r) rlz+r)

« d d
e U= B.Elug{zh*], y= B.a—ylug{:+ Plo= H.ﬁ_—lng{:ﬂ'}! (3.18)

A=ty 4 ::3)

5 ]

being a constant. It may be readily verified that these displacements are the solutions
of the equations (3.12) at all points except the origin and the points on the negative z-axis.
Now

du  dv  dw 1 X n X ¥
ﬁ' = —t—t = B . e e
dx dv 0z Hz+r) r(z+r) ¢ riz+r)y r

5 aex o kSl Wk
plz4r) P+ rEeeY e R
=(),

The siress components arc

T =lﬂ+2pt_}1=2u3 : = 1,1-* - e :
i dx fz4e) EAer) atlztry

! 2ot o2
i.ﬂ. T-a.'l.' = EHB :; . =) [
' ritetr) riEtr)

4 x yz
imi T.,=2UB - -
Similarly, T, = <K [;-"(zﬂ'] i'lizﬂ'}‘]' (3.19)

T, =-2uB—,
<

W2+ 2
== IJEM
1 izEr)Y
At the surface of a hemisphere, for which r is constant and z positive.

cos(x, V)= —in cos(y. V)= —-Ji. cos(z, V)= —f:,
r " I

¥V .y
T = —EuB.F. 1., = —ZpB.r—J, Ty

and the tractions are
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W

T, =1, cos(x,v)+ 1, cos(y,v)+1,_cos(z,v)

a4 BH:T-)F (w}[ +F E‘H"P_E:_;‘}H]-M%HJ

n By 5 2uB

Similarly, 1= e (z+r}* S

In the above, the unit normal vector ¥ is taken towards the centre.

Let X Y Z be resultant traction over the hcmispheﬂcal'surfﬂcé.
Then -

X= HT s = m._z Bjj c3infcost # sin0d0dh = 0
z+7) Somal” (reosB+ 1)

Similarly, ¥ = J’j'r ds=0.7 = [ T. ds = mp.

It can also be seen that the moments of the resultant forces about the coordinate axes
are zero.

The displacement expressed by (3. 18) are called second type of simple solutions.

I1I. Superposition of two su[utmnv—I‘omt source of the origin of a semi-infinite
medium.

Consider an elastic body subjected to forces ap-
plicd in the neighbourhood of a single point on the
surface. If we suppose that all the linear dimensions of
the body are large in comparisor with the area subjected
to the load, then the body may be regarded to be
bounded by an infinite plane.

Let the force be applied at the origin on the plane
z =10 of the semi-infinite medium > > (. We exclude the
origin by a hemispherical surface as the logal effect of 3
the applied force is very preat.
Now we have already seen in the first type that the displacement expressed by

2 Ayz T o | o5
Hz_:‘i oA _ﬁ( A3 J

(3.20)



could be maintained in the body by tractions over the plane boudary z = 0 given by

_2}1114 2 "_Eulfti h
AR AT Awp T
and by tractions over the hemispherical boundary given by
4 zx ya v Al m
T =6pd.—., T =6pd.—, T, =——| J—5+——
X I'LA rd I' r-l- PZ ( o }l.+ “},

1 being the inward drawn normal to the hemispherical surface. The resultant of the
latter for the hemispherical surface is a force or magnitude 4mpd (A + 21 ) /(A + ) atthe

origin in the positive direction of the z-axis.
Also from the second type, the displacements given by

= 7 s et
J"i,:z+r}1 'r[:-:+r}' e (3.21)

could be maintained in the body tractions over the plane boundary z = 0 as

w=21h. v=2>

T -_-—'J",u.ﬂ ,, - —2}13 ,T..=0
and by tractions over the ht:mxsphcrical surface as
T T S
r {z+.ﬂ]| relz+r) gt

The resultant of these tractions is a force of magnitude 4npd at the origin in the
positive direction of the z-axis.

Let H:-flf—. Then the state of displacement expressed by the sum of the
+ 1
displacements (3.20) and (3.21) will be maintained by forces applied to the hemispherical

surface only. If the resuliant of these forces is P, then

= ; ?
= LAl A + 21L) e dmpd(A+20)  Anp'A
AtH AL A+

= 44

S e
A T 4(h+ Q)
Hence the displacements are given by

P &t P X
4 An(AHp) r(z+r)

so that 4=

=

i3




e F ¥ .
dmp ot dr(A ) r(z4r) (3.22)
P :"+ P(A+2p) 1
dap A (Aep) e

"=

3.4 Summary

Some problems of deformation of semi-infinite elastic solid with given displacements
or stresses on the plane boundary are considered. As-particular cases, the deformation of
the body subject to distributed normal pressure on the plane boundary or at a point there

has been obtained. Moreover, the types of forces for given dlsplaccmcnts 1 various forms
arc also considered.

3.5 Exerciscs

1. Short Answer Type :

(a) State first type (scecond lype) of simple solutions.

(b) State the poimts of discontinuity in the displacements of first (second type)
of simple solutions,

(¢) Find out the displacements at interior points of a semi-infinite solid 220
when v=0,v=0, w= Af(:f'! + y”) on the boundary »=(), where 4 is
constant and (x', 3',0) is a point on z = (),

(d) Solve the problem of deformation of a semi-infinite solid - > o with given
displacements on the plane boundary.

2. Broad Answer Type ;

{a) Find out the displacements and stresses within a semi-infinite solid = >0

subject to given surface tractions on the plane boundary z = 0.

| (b) Solve the problem of deformation of a semi-infinite solid subject to distributed
normal pressure on the plane boundary.

(¢) Solve the problem of deformation of a semi-infinite solid subject to a normal
constant pressure at a point on the plane boundary.
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(d) Show that the displacements expressed by

u-zl—,“v AJ u-—A(i A+ 3u 1]
r o A+ r

can be produced in an elastic body by a single force of magnitude
8mpt (A + 20 ) A/ (A + 1) applied at the origin in the direction of z-axis, where
4 is constant and ,* =y + y* + 27,

(¢) Determine the magnitude of the force which gives rise to the displacements

1= 5. v= 18, Y !]].l:H‘E-
I3

Hedr) Fz+1)

or, U= H%EUL‘,(Z-PI‘J, p= B%lng[zﬂ-]. W= B%iug{: +r),

where B is constant and »* = x*+ '+ 2%, in a hemisphere at the origin along
the direction of the positive z-nxis, the origin being at the centre of the
hemisphere on the plane area.

(f) Find the displacement in a hemisphere if a constant force of mapnitde P is
applied to the hemispherical surface along the direction of the positive z-axis.
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Unit-4 [[] Variational Methods

Structure

4.1 Introduction

4.2  Euler’s Equation

4.3  Theorem of minimum potential energy

44  Theorem of minimum complementary encrgy
45  Reciprocal theorem of bethi and rayleigh

4.6  Examples

4.7 Summary

4.8 Excercises

4.1 Introduction

Variational method is based on the fact thal the governing partial differential equation
of an elastic problem can be obtained as a direct consequence of minimization of a certain
energy experiment. Instead of solving the differential equation we may therefore seek a
solution which minimizes the energy experiment and may therefore avoid the mathematical
difficulty in obtaining solution of such differential equation. In the development of this
method we shall make use of the caleulus of variation.

4.2 Euler’s Equation

We use the term ‘functional’ to describe function defined by integrals where argument
themselves are

X

I{y)= ff'(x~y+y')fif (4.1)

Ay

i
. where J(x,y,»") is a known real function of the real arguments %) (= Ey) and
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y= p(x). We consider the functions y(x) € C*(x,,%, ) and assume

y(xujtym o
J’(II):J’H S

y, and y, being preseribed in advance. The entire set {y(x)} of admissible argument
(x) can thus be viewed as a fuumily of smooth curves passing through (x,, y,) and (x3).
We assume further that F(x, y, y’} has its first and second order der_ivutiv&s continuous
for all values of y' is some specificd region of xy-plane containing the curves { y( x]} I
1(y) be definite numerical value of integral (4.1) for the curve y = 3(x) of the set

{y(x)} . We now proceed to seek the particular curve of the set {y(x)} which makes
(4.1) a minimum,
Let y(x) minimizes the integral (4.1), then we can represent every [unction J(x) as
F(x) = y(x) + en(x) (4.3)
where £ is a small real parameter and y(x) is determined with €=0, Then the
variation of ¥(x) 1s
By = J(x) = y(x) = en(x)
by (4.2). Since every functions in the set {y(x)} satisfies the end condition (4.2), so

F(x,) = (%), ¥x)=p(x)

and hence n(x,) = 11(11} = (4.4)
Since y(x) minimizes (4.1), therefore

1(7)=1(y)
ie. I(y+en)zi(y) (4.5)

As the L.ILS. of (4.5) is continuously differentiable of ¢, so the necessary condition
that p(x) minimizes (4.1) is

e _
ng(y+an) B (4.6)

=0

MNow,

I(y+en)= jF(.‘i‘,}'.'i‘E’!’L y'+en')de

My
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and on differentiating under the integral sign we oblain

el
EIII:1+FI'| j(l]f +1LE }ch 4.7)

Tes

Integrating by parts the sccond term on the R H.5. of (4.7) we get

erw: Fml j et
) e = A o —
R ; .! 4 Tl.'r,, ‘Fl il

T

e ]I] ﬂrﬁ

Thus (4.7) stands as,

j[F _%]n( =0 “8)

Sinee the function 1(x) 15 such that its first and sccond derivatives are continuous and
N(x, ) =nlx) =0,

idr.,
== (4.9)

fihs

Fquation (4.9) is a necessary condition that y(x) makes (4.1) minimum and is called
Euler’s equation associated with the variational problem I{y)=min.

4.3 Theorem of Minimum Potential Encrgy

Theorem -1 : Of all displacements which satisty the given boundary conditions, those
satisfying the equilibrium equations, make the potential energy minimum.

Proof : Let us consider a body ¢ bounded by a surface § action of specified body
forces I, and surface forces T,

The surlace S may be divided into two parts. In one T
part S, the surface rorces T are prescribed while on the
remaining part §, . the displacements are prescribed. In
consideration of virtual displacements, 8u , consistent with

constraints imposed on the body, the portion § will have
no contribution. So in our due caleulations without any loss
of generality, we denote the surface S, insicad of 5.
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Let, u, be stresses and displacements within the body and the system be given a virtual

displacements Sy, consistent with the constraints. Then the virtual work done by the force
F and T is
SU = [ F,8u, dt+ [T, 8u, ds (4.10)

where the strain energy [/ is given by

U= j W, where i/ =1 AR+ He, ¢, 4.1

The strain energy U 1s cqual to the work done by the external forces on the body in
bringing it from the natural state o the slate of equilibrium characterized by the displace-
ments u .

Now, let du, be the arbitrary variations of the displacements i and the volume 1 is

fixed. Then F and ﬁ do not vary so that we can write (4,10) in the form

EJ Wdt=8U = 5[] oo dt+ _[ ‘:. :.-rd"rJ
. - ¥

ie. E[IWJTHJEH, d’t—ffuﬁﬁ: 0
T L3 o

This shows that the expression within the square bracket has a stationary value for

admissible variations &u, of i, of the equilibrium state.
Defining the potential cnergy ¥ by the formula

v = [Wav~ [ Fu,dv—[T.nds (4.12)
T T i

we see from the above formula that §1-=0.

We now show that the increment AV of ¥ by replacing the equilibrium displacements

u, by u,+du, is positive for all nonvanishing variations Sy, .

Noting that W =L149° + e e, , it follows that

i

AV = (‘H‘-ﬁ] + uﬂwgu_)l —(glﬁl +hee, )1,,

G

where ¢, =-§(uu +HL,). Since
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& b= (nrr s ] %[(Em‘.)” +(Eur)..:|=eff +3'~—(5u, )d +J1-(5uj)d
s0 that © .5, =€, +(8,) =0+(84,), and therefore,
AW = :l,_-;'n,[ﬂ + {EH; }J[ﬂ + [SH; ).«]

‘Hl[ﬁ‘., +4(8u,), -'1-(5!&) .][‘3,, +3(0u;), +‘%|(EHJ ).1

~1A8% - pee,

4 H

=0 (ajﬁ L + 2].1&5'#. (51-‘, ).; +F (4, 13)
where P = %?‘-[{ﬁ". L :r + %[(E'”s) (E'” ) } =0.

It is to be noted that P = 0 only when ¢, = J;[[E:f,) f_'I-(?:'li.fj)J:| =

Now, since T, = Ad, 0 +2pe, , we can rewrite (4.13) as

AW =108, (8u,) +2ue, (8u,) +P
= (W08, +2ue, )(8,) +P

=1, (8, )f +P, (4.14)
Thus the increment A{7 in the strain energy U is given by the use of (4.11) and (4.14)

AU = [ AWdv = j—c (8y,)  dv +j Pdx

—_['rﬁu dt j"l:

ifuf

du,de+ [ Pdv

_Irvﬁuds J' Jﬁl‘.t‘-d‘t*i'JPﬂ"t

= [ Buds — [, dudt+Q 4.15)
& T

where 0 = j Pdt = 0. Now, if the body is in equilibrium, then
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(1]
IT” =-F intand T,v, =T on §.

r

Hence from (4.15), we have
Al= Ii O ds +I Féudi+0
so that by the definition n} potential -;nc:rgj.r given in (4.12), we get
AV =AU - I}j azr,d.\'—J-EBude = (4.16)
¥ T

Henee the theorem.

4.4 Theorem of Minimum Complementary Energy

Theorem - 2 ; The complementary energy attains its absolute minimum for the

equilibrium state of the stress tensor T, and varied states of stress satisfy the conditions

(ET").r = Oint

(6t,)v,=0on &, : (4.17)
o1, we arbitrary on §,.
Proof : Leta body ¢ be in equilibrium under the action of body forces ¥, and surface
forces ;1;' : i is assigned over the portion 8, of the surface §'and on the remaining portion
8, the displacement u, are preseribed.

Since T, are the solutions of the equilibrium problem, therefore T, satisfy the
relations.

@ T, +HE=0inT (4.18)

(i) B (1:” ) =0 where B(T”) = 0 implies that T,, satisfies Beltrami-Michell Compat-
ihility equations. (4.19)

@iy T,v,=T on §;, v, inthe normal measure positive inward,  (4.20)

Corresponding to these T, , the strain energy is
Ulr,)= [ (z,)a (421)
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Let us now consider virtual variation T, +81, of the stress T, where ﬁT-H. satisfies the
given condition (4.17), Since
T, +0%, are not associated with the cquilibrium state of the body, so
B(t, +8t,)#0

Since B is linear, we have

B(z, )+ B(st,)=0
B(8t,)#0.
Now,
U'= U('crJ - ET”.]
:_IW[':# :J-E‘Ef:]cf’t
=f(H’ (Tr, )+ W(ﬁtﬂ )+-51-F’)d‘r
= [w(x, )dz+ [w(se, )ar+ | %fiarﬂ dt
therefore o

U'-U = [W(5t,)du+[e,8t, dr
‘ '
= Q"’j”a.; ot, dt
=0+ [ (wpr,), dv—[8t, u de
=0+ I[Hrb"rﬂ ), dt,  since 81, =0on7 (using the cond, of (4.17))
= Q+J'n; (87, ) v, ds
X

= Q+J-ﬁ}. U oo
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Sbll= Q+IB?T“. u, s

or, E[U = I T u, ﬂ’&] @20 gince W is + ve definite (4.22)
A,

i J Tau,ds is defined as Complementary encrgy.

Hence the theorem follows.

4.5 Reciprocal Theorem of Bethi and Rayleigh

Theorem : If an elastic body is subjected Lo two systems of body and surface forces

then the work done by the first system F, T in acting through displacements 1] due to

the séeond system of forces is equal to the work done by the second system £° 7" in
acting through the displacement 1, due to the first system of forces.

Proof : Consider two states of an elastic elastic body-one with displacement u_ body

. ¥ . v ¥
forces F, and surface forces /i and the other with displacement u/, body forces F' and

L)
&
surface forces 77

Now the work done W, by the forces £, and f of the first state in acting through

displacements » of the second state is given by

W, = J- Fu! dt +Ii u'els
; .
= —-J."EJH u'dt +‘[1:q v, 1 ds
since T,  + 15 =0in T (from equations of equlibrium and TV, =% on S
So M= J g AT+ J(Tu ”s) dt (by divergence theorem)

f'r,“ng dT+I( T, Uy T, )d*r
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=J-*|:Jf r::d dt
=j[‘1‘ﬂ5ﬁ +p.(1:‘.l Ty, )] u;, dT, [ﬂ: "u]
T

= _I.(;h"ﬁ I+ "I'”J.j “:...' v I"'”;'J ”:.j )ddrl ’ [ﬁ '= HII.J } (4 23}
t + e

Proceeding similarly, the workdone by forces E' and }‘]' in acting through the
displacement u, is

(Y R

Wy, = .I' (}Lﬂﬂ e, + !‘w.l.u ) ).dT et
L

Compairing W, and W, we find that except for the last term in the integrand the two
expressions are the same. Now we observe that

Wi, 0, =W, W, =, u, , (interchanging dummy suffixes iand j)
s0 that from (4.23) and (4.24) we find that
Wy =Wy

i J;I, 1;:. oy +_!- I E.l':. dt= :[T"I u, ds +J; F:I u; dv (4.25)

Hence the theorem,

4.6 Examples

(1) Deflection of an elastic string

Let a'stretched string of lenght [ with its ends fixed al (0,0) and (1,0) be deflected by
a distributed transverse load f{x) per unit length of the string. Also we suppose that the
transverse deflection y(x) is small and that the chanpe in the stretching force T produced
by the deflection be negligible.

The potential energy V is given by

V=U-{ f(x)ydx (using 4.14)

where U is the strain energy and is equal to the product of the tensile force T and the
total stretch e of the string,

Now
e = total stretch = J': [ds - afx)
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- [ (\[ —1);1&

But for linear theory, y" <<1 and so we can write

= |, 3 dx.
Consequently,
o i
) =Ej-u (') dx

and hence

= j- ( - f(x) y]dx
Then from (4.9) the appropriate Eulcr's equation is
Ty'+ f(x)=0
This is the equation for the transverse deflection of the string under the load fx).
(2) Deflection of the central line of a beam @
Let the cross-section of the beam is constant and the x-axis lics along the axis of the

beam. It is bent by transverse loading p = f{x) estimated per unit length of the beam. We
assume that shearing stresses are negligible in comparision with the tensible stress.

i M,
XX _ll-
The strain e__ is then given by
t, M,
[ — £
K
The strain encrgy density is
-G
W= %T“_E“. = :I}{—};
1Tl T S

The strain energy per unit length of the beamn is found by integrating over the cross-
section (area A) of the beam, and we gﬂt

Wiler =
i ‘ J 1 z.n:.f
By Bemoulli Euler law we have,
M= Efy" .
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thus

3 3

JIMU = E{{v i
A

I'he total strain energy U is obtioned by integrating this expression over the Je
the beam, and we [ind

!
U= [LEI(y") d
1
Now we suppose that the ends of the heam are clamped, hinged, or free so the
supporting forces do nol work and hence contribute nothing to potential energy v,
If we neglect the weight of the beam, the only externel load is =
get

1x) and so we

| !
V= [LEI(") dv [ f(x)pdx.
il

1

!

- {8107 = )

1k

The Euler equation is

iﬂfhﬂhﬂﬂ=ﬂ
¢ A

4.7 Summary

In this unit the Euler’s equation, the theorem of minimum potential energy, theorem of

minimum of complementary energy, Reciprocal theorem and some related problems are
studied,

4.8 Exerciscs

1. Short Answer Type :

(a) Based on which prineiple the variational method is applicable?
(b) Write down the Euler's equation.

(c) State the theorem of minimum potential energy,
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2. Broad Answer Type :
(2) Derive Euler’s equation using variational method.

(b) Prove that of all displacements satisfying the given boundary conditions those
which satisfy the equilibrium equations make the potential enerpy minimum,

(c) State and prove the reciprocal theorem of Betti and Rayleigh.

(d) In the reciprocal theorem, take £' =0, 1, =8, , showthat T, =7, v, =v,,

i i i 8 I = 25 5 (S I T EU
&=z =1, (?”——E' i and u, = 3
(4.25) and derive the following expression for the change in volume A7 in

an elastic body under the action of surface forces T and body forces ¢ :

%, , Insert these expressions in

AV, = j fdt=" _E?“ U Txds+ {F,xm]

() Obtain the equation for the transverse deflection of the string under the load
flx) per unit length using principle of minimum potential encrgy.

(0) Show that the differential equation

ﬂr]
T;[Efy ") = 7 (x) =0 represents the deflection of the central line of the
dx

bean,
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Unit-5 [] Elastic Waves

Structure

5.1 [ntroduction
5.2 Body waves
53  Surface waves
54  Summary

5.5 Exercises

5.1 Introduction

In an elastic medium, the action of a sudden disturbance is transmitted at once to other
part of the body. At the beginning, the remote parts of the medium arc not disturbed and
the deformations produced at a point are propagated through the medium in the form of

waves, known as elastic waves. In this unit we shall discuss various types of elastic waves
and their characteristics.

5.2 Body Waves

1. Waves of dilatation and waves of distortion

The equation of motion for a homogeneous, isotropic and perfectly elastic mediun in
the absence of body forces, in vector form is

4

S 4 0
(A+u) grad div g +uV'g =pa—lr;‘1, (5.1)

where g = (w.,v,w) in the displacement vector measured relative to the reference
state.

Taking divergence on both sides of (5.1) we have (noting that 8 = divi )

(A+p) VI(0)+uv?(6)= p%r?l _
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e

ie. V}(8)=—755(8) (5.2)
A+21 ?

where O.= 0 (5.3)

Again taking the curl on both sides of (5.1) and noting that curl grad ( a scalar) =

and that w=1 curl ¢ is the rotation vector, we get

; 9° ()
Vii=p—ar
W= P
ol ] A
ie. V ":E ¥ (5.4)

where I3=(%); : (5.5)

Equation (5.2) and (5.4) are both wave equations. From (5.2), it follows that a
dilatational disturbance can be transmitted through the medium with a velocity a | given by
(5.3), while from (5.4} it follows that a rotational disturbance can be propageted through
the medium with a velocity f given by (5.5). The possibility of propagation of dilational
wave and distortions wave through the interior of a honogeneous, isotropic elastic solid
was first established theoretically by Poisson in 1835.

The dialatational and distortional (rotational) waves propagating through the interior of
the elastic body are known as P-wave (stands for primary ar “push’ wave) and the S-wave
(representing the secondary or ‘shake’ wave).

I Plane Waves :

If a disturbance is produced at a point in an elastic medium then the waves radiate
from this point in all directions. At a great distance from the centre of disturbance, however,
such waves can be considered as plane wave. The most general form of a planc wave
type disturbance propagating through the medium, can be represented as

(e, v, w) = (U, V W) {(lx 4 my+ nz—ct), (5.6)

where [ m, i are the d.c’s of the direction of propagation of plane waves (i.e. normal
to the wave front) and ¢ is velocity of propagation. Now from (5.6)
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E_j—I-"-= AN ﬁi= ml", EE = pl/l",

oy i 0z

i chr chy

LA i e SRR
Batig ot ot i

where primes denote differentiation w.r.t. the arguments.
Then the equation of motion in (5.1) reduces to

(A4 u}a—ﬂ-+ uV = pii
o
e (A+p)(IU"+mV "+ ni ")+ 1.1[1’1 +m’ + nl)U“ =pe’lU",
or, {(u—pf)ﬂk + p}FI}U'# (A+p)imV "+(A+p) nl¥" =0

( Pam+n = 1)
Similarly, we have, from the other two equations of (5.1)

(A4 p)miU "+ ((u - pcl]+{l +u}r:13) VA (R )l " =0
and (A +0)alU " (A +pu)nmp "+ ((}.L r-pcl]+(}'u. + p‘}nz)ﬁ’ "=
Eliminating U, ¥, W"' from (5.7)—(5.9)
and writing (A+p)=4 and p-pc’ = B, we get

PA+B  Imd I nd

mid  mrA+B  nmd |[=0
A A nA+B

Now applying the operations [e, — me,. le, = ne,, we obtain

(I'TEI‘H‘B) ~mB —nB PA+B —m -
lmd B 0 [=0ie B°| ImA AR =}
InA 0 i [ nAd i

Lo, PB[A(P 407 +07)+ B]=0.ic. P8 (4+B)=0

Therefore, cither 4 + B = 0 or B = (0, so that either

y A2

f_'_ = =E|'_
P

O P E
or, ' ‘—‘_':W.
p
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Thus, a plane wave type disturbance can propagate through the material of a perfect
elastic, homogeneous, 1sotropic medium, with only two possible distinct velocily—(hose of
the P-and S-waves. :

5.3 Surface Waves

In an unbounded elastic matirial, energy is transmitted by waves of dilatation, often
referred to as primary or compressed waves, which propagate with wvelocity

u___[l+2|.1

: ] , or by waves of distortion, often referred to as secondary or shear
p

Y
waves propagating with velocity P = (%] . When there is a boundary, as in a half-spuce

problem, a third type of wave may exist whose effect are confined closely to the surface,
These waves were first investigated by Lord Rayleigh, who showed that their effect
decreases rapidly with depth and their velocity of propagation is smaller than that of body
waves, Here we consider two types of surface waves, namely Rayleigh wave and Love
wave.

I. Rayleigh Wave : On the surface of an elastic solid it is possible to have waves
of the type which are propagated over the surface and which penetrate but a little distance
into the interior of the body. These are known as Rayleigh waves, We assume that the
body is bounded by the plane z=0 and take the positive sense of the z-axis'in the direction
towards the interior of the body, the positive direction of x-axis in the direction of wave
propagation, there being no displacements in the surface perpendicular the direction of
propagation. The displacement components at any point are (1,0, w). The equations of
motion are,

1+ua—ﬂ +uVu = pii
(A+n)=
X
{h+p}%¥g =0 s
(5-13)
(l+u]z—f +u Vi =pip

Case-1: Let §§ =0, then the rotation is zero and
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du oy

therefore — =—=~0since v=10 5.1
eretore 5 0 (5.14)
&—w-=a—v=ﬂsincev=ﬂ
dy oz
an_ﬁ‘.
5 B (5.15)

Conditions (5.14) show that ¥ and w are independent of y and condition (5.15)
enables us 1o write

_o%  _9%
dx’ oz

where ¢ is a scalar function

ou  dw
that B =—+4—=V"
s0 thal oz (1]

i

Noting that
db
o < dx
dt

and oste Vo,

the equations of motion (5.13) reduce to
(A+21)Viu=pii
(A+21) Vi =pii

For the solution of (5.16) we assume values of the displacement consistent with the
relations (5.14) and (5.15), as

(5.16)

u=yse " sin(sx— pt)
w=re - cos(sx— pf), R,

in which, 5, p, r are constants. The amplitude of the wave dimnishes rapidly with '
increase of depth, r being positive. The velocity of propagation of wave is

¢ =

ik
r (5.18)

Using (5.17) in (5.16) we have
=5 =h (5.19)
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2

)
where #’ =‘f—;-
o

Case-11

Let § = 0. Then we have from (5.13)
UV = pii
UV = pig

To satisfy these ¢quations we have
1t = Abe™ sin(sx— pt)

w= Ase™™ cos(sx— pt)

5 du s f}_".t s
51 _.]ect to T
putting (5.22) in (5.21). We get
b! i .\"2 = k.’:
where & he B:

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

Thus the solution of (5.13) can be written as a linear combination of (5.17) and (5.22)

in the form

= (.s'e"* + Abe""']sin(sx - ;ﬁ:}
W= (r e "+ Ase™ )-.:ns(sx -pt)

The boundary conditions are

(5.25)

T.=T.=1.=0 whenz= 0 i.e., on the surface.

Now,
S (ﬁ H_w] ={)
.rf"l"l.t_'l‘_l' a.z ax
- du d
T = HE,: =#[E+ -a“:-“}‘—‘ 0

T:: N ‘lﬁ +2"I'E; = —l[_‘"‘"}‘_

dx oz

du ﬂw] i
0z

The first and the 3rd conditions give
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s+ A(2p*-k)=0 (5.26)

(25° — &%)+ 24bs =0 (5:27)
Eliminating 4 for (5.26) and (5.27), we get

(] -1

using (5.18), (5.19), (5.23) and (5.24) we have

[Q—E—j = 16[1-%}[1—%—;] ' (5.28)

This is known s the frequency equation for Rayleigh wave,

1

Substituting £ = % and ¢= [%) in (5.28) it follows that (5.29)

(2-8)' =16(1-Eg)(1-E)
Or, E(E' 88" +8(3-29)E+16(g~1))=0 (5.30)
Discarding the solution £ =0, (as then ¢ = 0, i.c., the velocity is zero which is

impossible) we obtain a cubic equation for &as

f(E)y=8"—8E' +8(3-2¢)E +16(g-1)=0 (5.31)
f(0)y=16(g-1)=—ve ifg <1
fy=1=+ve.

Hence there must be at least one real between 0 and 1. This proves the existence of
a real value of ¢ and hence existence of Rayleigh wave.

A special case is that when the Lamé constants are equal, ie. A =y and then the

1 ]
Passion ratio © = 7 and g = 3 The equation (5.31), therefore, reduces to

3 a §£ _E:
g 8‘@+3‘é T (5.32)

The roots of this equation are 4, 2+ :% 2 5;3- The first two (e > ) corresponds

1o the case of wave reflection for which ¢ > o> 3.
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The value fﬁ =2-7 gives = 0.9194B(<B), (5.33)

which gives the velocity of propagation of Rayleigh wave.

11. Love Waves : The characteristics of Rayleigh
waves on the {ree surface of a half space do not
agree with those of the surface waves observed on
the earth, Love in 1911 found that, in an elastic layer
over a half space, dispersed surface waves are z=H
produced with transverse component of displace- plp'p
ment v, which propagate in the direction x with
velocity ¢, in a medium of different elastic properties 0

consisting of a layer of thickness H, density p' and

shear velocity ', over a half space of density p and velocity . We can write the

displacement (v,v'), which satisfy the wave equations.

y il dw 2,1 | %y =t
Y= e
B o and B” o (5.34)

The wave propagated parallel to the axis of x in both the medium, (x, ") and (w,w")
are zero where v and v’ are given by the relations in the form.
v=h(z)e*t (5.35)
and v'=h(z)e™ "
sbubstituting (5.35) in (5.34) we have
vz gttt g gotitberr-d) (5.36)

and 'r"|=A'E‘M-xlzﬂ-”]+B'f""[xl""r""'}

r B 3 R
where ﬁf[E—z—]J and &"=[ﬁ—|)

Since the solution (5.36) must be bounded at infinity we most put B=0 and then we
have

= A E1k[—.ﬂ:+.l'—ml:| (5-'3 .?) r
Again, the amplitude decreases with depth so that
c<p (5.38)

The boundary conditions at the free surface, associated with v', is
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T.=08tz=H (5.39)

-
and at z = 0 i.e., at the interface

v=y atz=10 (5.40)
and T, . =1' atz=0 (3.41)

For (5.39), (5.40) and (5.41) we get by using (5,36) and (3.37)
— Al Bl =0
A+ B-A=0
A'p's—B'n's'+ Aps =0

A solution of this system (apart from trivial are 4" = B'=4 = 0) requires that determi-
nant is zero, ie

"-E_HI'I'IH +Eih"” 0

1 ! =0

o R ¢ R

¥ H1 |'11

or, Wwis +p's"tan(ks' [) =0 - (5.42)

This is the frequency equation for Love wave for the possibility of propagation of Love
wave (5.42) must be satisfied by a value of ¢ such that f'<¢ < which imples that
f'<f. [sis+ ve imaginary -, 1 isareal —ve no. so, p's'tan(ks' H) should be real +ve,
This requiers that s is real +ve, Hence we must have (¢ > p'). The Loye wave is of
dispersive nature since for (5.42) we sce that the velocily ¢ depends on the value of the

2n

wave length i.e., A= T

5.4 Sumﬁiﬂry

In this unit body waves, surface waves, Rayligh waves and Love waves are discussed.

5.5 FExcercises

1. Short Answer Type @

(a) What are P-wave and S-wave?

Bo




(b) Define plane wave.
(¢) Is Love wave despersive in nature? Verify.

(d) What is the velocity of propagation of Raylei gh wave when the Lame's
constants are equal?

2, Broad Answer Type :

(a) What are Love waves? Discuss the propagation of Love type wave in a
uniform elastic surface layer.

(b) Show that in absence of body forces the dilatational waves and wave of

I ) | \ _;.I'+2I_l 14 u g
distartion propagate with velocity _F'— and E respectively.

(c) Show that the plane wave propagate through the elastic material having the
~ velocities of P-wave and S-wave respectively.

(d) What are Rayleigh waves? Show that the velocity C with which Rayleigh
waves propagate satisfies the equation

3

RGN

where the constants o and §§ are to be defined by you.
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Unit-6 [[1 Transverse Vibration of Thin Elastic Plates

(In this Unit we shall use unabridgod notations in place of tensor notations)
Structure
6.1 Basic Preliminaries
6.2  Differential equation of transverse vibration of thin plate
6.3 Vibration of a rectangular plate with simply supported edge
6.4 Free vibration of a circular plate
6.5  Symmetrical vibration of a thin circular plate
6.6  Summary

6.7 Excrciscs

6.1 Basic Preliminaries

For small deflections of thin elastic plates, the following assumptions are made

(a) The normals to the middle plane before bending are deformed into normals of the
middle surface afler bending,

(b) The normal component T__across each thin layer parallel (o the xy-plane is small

in comparison to other components of stress and can be neglected.

(c) The slope of the deflected
middle surface, called the neutral +

ok
; : | B
surface, of (he plate in any it
direction is small. |
: . . 10 [xow 2)
Also, the plate being thin, its 3 i
thickness is small compared to its other L E;“E.JP
dimensions, Morcover, assumptions (a) __“";_-_a,.;_.;‘__'___
and (h) lead to 1,--“ 7]
i 0 M
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so that each thin layer of the plate parallel to the planc z = 0 is in a state of plane siréss.

Consider a point (x.a,0) on the middle plane of a section y = a (constant) and
another point Q (x.a.z) downwards of this scetion so that PQ is parallel (o z-axis and
perpendicular to x-axis. Suppose P"and ()’ are the new positions of /” and O respectively
afler deformation. Then PP{=w) is the deflection and P'Q’, under assumption (a), remains
normal to the deflected curve LM so that the displacement of the point O parallel to the

dii

x-axis is 4 = -za. But, aceording to assumption (c¢), &= tanc = T Hence
¥

dw

e e

v (6.1a).
Similarly, the displacement of @ parallel (o the g-axis is

g

1 Im e F —

% (6.1b)

Thus the strain components are

F o zﬂlw - dv i = ﬂu+ﬂu e
P R T == T B = —he— | = —F —,
T Ca T e A ey O
The stress-strain relations are
E Ez (9w  Pw
Tu‘= j(a.':r-!'ﬁ'ﬁn'):_ o [ e t0 2 P
-0 ) 1-o°\ dx dy
- {e ) )___ Ez [d*w  @'w
e LN T T
S B e Ez &'w
Yo ¥ 1+0 oy (6.3)

where £ is the Young's modulus and ¢ is the Poisson’s ratio,

Now let / be the thickness of the plate and M, and M, are the bending moments per
unit length of sections of the plate perpendicular to the x and y axes respectively. Then

fiz ks
M. = _[ 2t dz, M = j 2T, dz | ' (6.4)
eIk -2
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Also, if M and M be the twisting moments per unit length of section of the plate
perpendicular to the x-and y-axis respectively, then

T g

M = I 2T, dz= I T, dz=M ©(6.5)

1
-fal =2

Substitutng (11.3) into (6.4) and (6.5) and performing the integrations (noting that w is
independent of z . we get

w  Fw dw  Fw
M, =-D M| T S
[ﬂx af} , (By' P arJ

d*w (6.6)
dxdy

M, =M,=-(1-0)D

X i~

D= ER'
where = 12([—013 (6.7)

is called the flexural rigidity or bending rigidity of the plate.

6.2 Differential Equation of Transverse Vibration of Thin Plate

Let @ and O be the normal shear forces the plate sustains per unit length parallel to
y- and x-axis respectively. Then

I G

0= [ t,d,0,= | .z (6.8)

—fif2 =2
During vibration, suppose w(x, y,f) be the deflection of the plate and g(x, y.1) be

the intensity of the load on the surface - = /2 at time r. Then vertical resolution of the
forces gives the equation of motion as

'] 2
9, it dydy+q dsdy = phdxdyi‘i
dx Ay ar’
E.IQ d0, d*w
; — L g=p}
1.e. Bx oy F‘"ar, - (6.9)

p being the density of the plate. Now the D’Alembert’s force (reversed effective
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a’z'l-l.'
force) .rphd.n{pa—ﬁr _ the external forces and internal forces acting on the plate are in

equilibrium, Taking moments of all these forces acting on the element w.r.t the x-axis, we
have for equilibrium

M,
aM“m@+} dvdy — Q) dxdy =0
X
_ &ﬂf LM,
1.E. _1' - ay {6 1 UH}

Tn which the moments of D’A lembert’s force, load and the change in @, are neglected
as being small quantitics of higher order. Similarly, taking moments about the y-axis, we
have

_aM, s oM, :
QJ.' 5 ax ay . (ﬁlﬂb)

Substituting (6.10) into (6.9), we get

oO'M, § EBIMJ._, i BEM_‘ b Qiﬂ
ox’ dxdy 9 i ar
which with the help of (6.6) reduces to
2w
a 2 q (ﬁ.l 1)

where the flexural rigidity D is assumed to be constant.

DV'w 4 ph—5

Boundary Conditions :

dw

alw
(b) Simply supported edge : |V (v )-.-ur Sl =0

a'w ahw
(c) Free edge : [ﬁ*‘(i "3] iy jLJ =
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Initial Conditions :

These conditions gwe the initial deflection of the plate and its initial velocity so lhat

w= f(x, J*}, —¢-{1' y) att=0

6.3 Vibration of a Rectangular Plate with Simply Supported
Edge

Consider a rectangular plate of length a and breadth 6 with no streching of the middle
surface plane. The equation of transverse vibration of the plate is given by (6.11) viz,

al X, W1
D'\?’4w[x,y,r}+p—% =q(x,y,1). (6.12)

For simply supported edge, the boundary conditions are
i) w=0 a—z‘t—[}atx—ﬂa 6.13
(l. # axz L4 ' { A }

oy =0 @"Dal =0, b
and (ii) Y v = i
To solve the equation (6.12), we assume

wix, »,0) = wix, e™, qglx, y.0) = G(x, y)e™ (6.14)
which when substituted in (6.12) give

Vhi— ' =% (6.15)
where
_P a_Db .
Al = CJ-B};. : (6.16)

Let us represent w(x, y) and G(x, ) in the form of double trigonometric series as

wix, y)= -——2 ZAM sm[ J Siﬂ(?] | (6.17a)

m=l n=|

and th }"] _Q—EE umsul[ ;m:J SIH(‘?] (ﬁ.]?b}

w=l ii=l
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whose finite sine transforms, by inversion theorem, are

A, '.E .I[w{.x V}sm[mf:].sin[%}i]@- (6.18a)
Q.. Idx‘[q{rjr]sm[ :LT) 3'1[%)0’}‘- (6.18b)

It can be easily verified that all the boundary conditions in (6.13) are satisfied by the
assumptions (6.17).
We now introduce the eigen lunction

- imx Y . nmy )
Wmix,yizﬁsm(”ﬂ ]-51“[ ;] (6.19)

Note that the boundary conditions in (6.13) are all satisfied by this function, Now if
(6.19) represents m, n mode of free vibration of the plate wilh the corresponding

eigenvalue A=A

then it must satisfy the differential equation

I

";"'II.I—';"" }l':mIVmM {'} {6'2{]-}
with the corresponding frequency p, _given by
D
5 }Lal L e ;
Aa=Chy, P (6.21)

It is to be noted that the eigen functions introduced in (6.19) form a normalised
othogonal set and satis{y the following orthogonal properties :

o h

IJ'”):J-[I,P}W*.I{I,J?}«C*(&}‘ =0, lf’li} % }I"“

u

and [ [W; (v, )dedy =1. (6.22)
o

In terms of W (x, ¥}, equations (6.17) lead to

Anr

Tz, )= J—ZEAW.W,H.(::J) ' (6.23)

niel =l

I}{x, ,1"} = ‘Ji_ﬁii Qm.uillf:;m(x‘ }-':I,

m=l n=|
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where

e 1’;_[ Iw{ X W, (%, )y,

(6.24)

To obtain 4 in terms of O, we multiply both sides of the equation (6.15) by

W (x,y) and mtﬂgrate aver the area of the plate to obtain

iwn

iy

[TV 2= A0, ) |, (x, y)eledy
(L]

wh

£ -—IIﬂx WIW, (x, y)dxdy.

i h

Now _”"3" Wi, )W, (x, y)edxdy

L]

ge s T ity
"—E%%A« J[(V%,,) 7,5y by (6.23))
E.E.‘ ” 2 W ddy (by (6:20))

T
2
=y Tr A oA (by (6.22)).
Wb

Also [ [5G )W, (x, y)dx dy

L]

irh

EZi‘A ”Ww.(w)dy

"f‘fﬂ—l [T}
:il4dﬂll!
cth
l o 2 Q
imilarly, == | | §(x )W,,, (%, ¥)dx dy = (=
and similarly, D;[-!j YW, (%, p)dx dy 3;-5 D

04

(6.25)




chc.a from (6.25) we get
3 i Q
Al —A 4 = e :
f_ ( iy } e I|I D LE. A, (}L-:,m ;‘h ]

Substituting this in (6.23) and using the relation (6.24) we have

e G 6

r.u-l =l 3

fieas( el e

Now from (6.19) and (6.20) we obtain

2.3 7.3 A 2
m I ,_l-ﬂ oy E i
__2._.|__1_ =A, =—4

¢ b ol

Noting that (A m,,-:a“)n = p’, - p, it follows from (6.26)

ﬁ'(i‘,_}f}— 22—— v 5111(mm].sin(?)_x

D R P a
e . (mmE . [ nmn
xg!q(@n}sm[T}sm{T]d& dn 627)
and finally, the deflection w(x,),{) is given by
wix, p,1) = w(x, y)e. (6.28)

6.4 Free Vibration of a Circular Plate

In two-dimensional polar coordinates (r,0), the differential equation of transverse
vibration of a plate given by (6.11) reduces to

o e & ’w+aw q(r.0.1)
ot ror r'ad? ar’ ph

(6.29)

where w=w(r,0,r) is the deflection of the plate, ¢* = D/ph, p is the uniform
density, # is the plate thickness and D is the constant flexural rigidity of the plate.
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The bending and twisting moments are given from (6.6) as

v [P, 10w, 1 B
AT dr’ roor oot |

voop 130, 1w ]
i i g T Seent (6.30)
1 &w 1 dw)
==-D(l-a)|— e
M. ( ]L ordd  r* 0o
Assuming
wir,0,0) =w(r,0)e", (6.31)
and noting that for free vibration ¢(r,0,) =0, we get from (6.29)
Vhe—Ahe=0 _ (6.32)
PO S I " . :
where V¥ SE—+——+— —and A" = p/c. The general solution of the equation
ar:  rdr A

(6.32) finite at all points of the plate is
» cos
Wwir,B) = sin (mB)) lA J (A + BI, I:}‘l.r]] (6.33)

where J is Bessel function and I is modified Bessel function of first kind of order
m and A, B are constants.

We now consider the following cases :

Case - 1 : Clamped edge

: " dw
In this case =0, Y= Oatr=g.
7

The condition 7= 0 at r=a gives from (6.33)

- J, (Aa)
8= A.'m- (6.34)

Also, use of the recurrence relations for Bessel functions

Jo W) =4[d, ()=, (Ar )]s

LR =41, () +1,,00], (6.35)
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the second boundary condtion r;l =0atr=a gives from (6.33)
2

A[J, . (Aa) =, () |+ B[ 1, (Aa)+ 1., (Aa)| =
which with the help of (6.34) gives the frequency equation as
1,Aa)[ ], (ha)= T, s (Aa)| = T (Aa) [ L,,., (At} + 1., (Aa)]  (6.36)
‘This equation can be expressed as a power series in )\ involving m. If only the first
lerm is retained, we get a value of )g which we denote by A, a | if first two terms are

Ir.u
retained, we get A, a and so on. In this way consecutive values of A, are obtained,
Noting that

P = ;ll-(}bmg]a : r‘ﬂfph, [',* p= }u,jt.’.‘ i :"-.,1 -}Dﬂf{}h} (6_3?}

we see that p_ is known and so are the frequencies of the various modes of free
vibrations given by

J (A f:)

h’.llr{r ﬂ} A (ma}{‘f {}"mlr ] {l‘”-" (}I'”"-" :| (538}

#i

Case - II : Simply supported edge
In this case, the boundary conditions at r=a are
=0 and M, = ﬂ[az“’ [l@+ iﬁﬂ =0
: ar’ -
Assuming
w(r,0,1) = ﬁf{r.ﬂ}e””;
the above boundary conditions give

o'W 1o 1 o4
= * —= =0 ;
U e ”[r ar P aﬂ-‘-] {635

Proceeding exactly along the same lines as in Case - I, we find that the frequency.
equation 15

1,0 (Aa) {1, ,(a) - 2], Q@)+, »(ha)}

+20(ha){J, . (Aa) - J,,, ()}~ 4om’J, (Aa) |

il
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J,0a)] (Aa) {1, (ha)+21, (ha) +1,.,,(Aa)]

+20 (k) {1, (Aa) = I, (ha)} — donr* L, (Aa) | (6.40)

From this, we can evaluate consecutive values of M, and hence frequencies of various
modes of vibration given by

"’Fm [-?I“ tl

o 10V = Ay {mﬂ][ J R )= {J»,:,:Tlcr)’;”’(l‘”"'}}- (6.41)

)

6.5 Symmetrical Vibrations of a Thin Circular Plate

For axisymmetric modes of vibration of a thin circular plate of radius a, the deflection’
i is independent of (. We suppose that the external force on the plate is symmetrically
placed. Then the equation of vibration (6.11) takes the form

LIJ[EJ'E 13] i ﬁw _atr

ar o 20 ph (6.42)

where ¢* = D/ph and w=1w(r.r). If the plate be simply supported on the boundary
r=a, then the boundary conditions are

oW o dw '
w=0 M = -—D{E— TE] _I) atr=a (6.43)
Sneddon has slightly modified the second condition as
fF'.r+ | aw-‘ﬂan .y \ (643
o rdr )

and noted that this modification has no appreciable elTe-::t on the final solutions.
To solve the equation (6.42), we put

wirdy=w(r)e™. glr.ty=g(pe” . (6.44)
Then the equation (6.42) reduces to
d 1d q
o e
[_m-r*, f:,.J YENNE (6.45)

where L' = p* /¢’
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Now

t(dw 1 dv d( o
{ [T TEJ” j;m-{ dr J”““md’
L cuw!(w}f J‘ I (el
=|r==Js | ran(r) S, (o )d (6.46)

The expression within the bracket on the R.H.S. vanishes if J, (o) = 0, if o (i

2,3,...) s aroot of the transcendental equation J, (o) = 0. Hence replacing o by a, in

(6.46), we get
" ( r.fzw 1 {fu
jr — |y (ot )dr =~ j.' wir)J, (o )dr
A
Using this and the hnundary condition (6.43), we have
d* 1d \dhv Ldw
[d; 2 I}[ o +; T ] Jo(er)dr =o _[; we)yar)dr . 47)
Let us now define finite Hankel transforms of yi(r) and §(r) by

(6.48a,b)

]

wet,) = [ (), (o). e, ) = [ #Gi(r)ay (e rar.
1]
Multiplying both sides of (6.45) by /,(ex,) and integrating both sides w.t.t, r between

() 1o 0. we obtain
= gla,)
o jJ=—mm—+
(ct,) Dla’ - ) (6.49)

Now the inverse Hankel transform of (6.48a) gives
- 2 Sl )
wir)=— ) wid, ]—l——";
o E [J Cl: ¢l ]
Hence, using (6.49) we obtain

2 < Joler) I
= E.'a BT < [EiEM (0 fe (6:50)

and finally
Wl ) =i(r)e™. (6.51)
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6.6 Summary

Assuming small deflection theory, transverse vibration of thin elastic plates has been
considered in this Unit. Differential equation of vibration is obtained and the different types -
of edpe condition are noted. As applications, transverse vibrations of thin rectangular and
circular plates are considered.

6.7 Exercises

1. Short Answer Type :

(a) State the assumptions made in the small deflection theory of thin elastic
plates. '

(b) Write down the expressions for displacements, strains and stresses in terms
of deflection.

(¢) Find the bending and twisting moments of a thin elastic plate.

(d) Define the flexural (bending) rigidity.

(e) Write down different types of edge conditions of a thin circular plate.
2. Broad Answer Type :

(2) Deduce the equation of transverse vibration of a thin elastic plate in small
deflection theory.

(b) Solve the problem of vibration of a thin rectangular plate with simply supported
edpe. : :

(c) Solve the problem of free vibration of a thin circular plate with (i) clamped
edge, (ii) simply supported edge.

(d) Using Hankel transform method, obtain the deflection for symmetrical vibration
of a thin circular plate.
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Unit-7 (] Plasticity

(In this Unit we shall use unabridged notations in place of tensor notations)
Structure
7.1  Basic Concepts
7.2 Yield Criterion
7.3  Equations of Plasticity
7.4  Elasto-plastic problems
75  Summary

7.6 Exercises

7.1 DBasic Concepts

The components of stress at a point 0 are given by @,,T, ,T,. across a plane whose
normal is parallel to x-axis while T, & ,T _ across the plane with normal parallel to y-axis
and T.,T..0. across the plane having

normal parallel to z-axis, 0,0 ,C. are

N
- O

normal components of stress and the other ; }[._}- T
components are the shearing stresses. Six : £l
components of shearing stress satisfy the t T2

; T 3
relation : 5
it

T;uq ZTW-! {P,g';qu,z ﬂndf;iq} i T.'r_i' 7
(7.1)
There are three mutoally perpendicular AN T e L =y

directions called principal axes of stress i
in which the stress is purely normal and

has the values 0,,0,.0, called the X

principal stresses and for which shearing stresses are zero. Also there are three quantities
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{,.1,.1; which remain vnehanged or invariant by transformation l[rom one orthogonal set
of axes to another given by

.fl =g,+0,+0_=0,+0,+0, (?,2}

‘r? = _(ﬂ.tﬁr + UJ'G.T + G:U¥)+ t_?'.r + T'i'r * 131-

==(0,0,+0,06,+0,0,) (7.3)
o o, 1| lo. 1
. “":;-.3 s M & i Ayl =5
S N [ R
and
a, o T,

] 1
=0,6,0.+2 T Ty =0~ . 8T (7.4)

LI )

Deformation is specified by six components of strain namely €,.£,.E. which are
analogous in the direction of the axes x, y, z and three shearing strain

Y.‘F_I‘ = ?.ﬂ'
.fj: s Y:j' (?5}
'r.:r = T'.'r:

Here also we can find three mutually perpendicular lines called principal axes of
sirain referred to which the shearing strains vanish. The strain components in this case

consist of &,€,.€,, which are known as principal strains.
In this case strain invariants are
g +E +E =6 +E,+E, (7.6)
T
68,86, +EE, ~ 2V 1L +1)
(7.7)

=EE, -+ E4E; + E.E
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E1E_|-E: + :1!' Tﬁ‘ll’:.'l.Y\l _E-.-Yf: _ELY;_:_T - f_—Yf_., )

(7.8)
= EE,E,

Dilatation : Let «.b.¢, be the lenpth of three elements along the principal aexs of
strain. After deformation these lengths become a(l +g,). b(l R E:)- c(14E;).
Then.

: : change in volume
Dilatation = A =

original volume
=g +E +e, =€ +E +E. i (7.9)
We shall use the symbol G for modules of rigidily and v for the Poisson’s ratio,
Stress deviator : The mean stress s is definied as
0,+0,+0. o+0,+0,
B
This is an invariant. The stress deviators s, 5, 5, $ 5. 8, are given by

y=

(7.10)
B =08, 8 =0 _—8 8§ =0, =8
‘ﬁl.'rl.' =k N '?i'.' = Tlr: x ""’;'n' o T.—r {?"] 1}
IF 5,.%,.5; be components of the stress deviation along the principal axes then

_20,-0a,-0,

5-,:5,—.':——3— (7.12)
Similarly
20,-0,-0,
0= 3 (7.13)
20, —0;—C,
.~.-1=-:r_,—.-.-=-——3-—— (7.14)
By adding we get,
ﬁ+ﬁ+&=ﬂ
c,+0, +0.
Also ¢, +5 +5.=0,+0 +0. _f (7.15)

=0
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Strain deviator :
In a similar way we have from the strain components the mean strain defined by
€, hE,+E. E +E,+E,

3 3
The components of strain deviator

AT N
e= = . which is an invariant. (7.16)

€,€,,0.,6,,€,. €. Can be written as
£ =By =0, SE =88 =8, 8 5 (?+1?]

E_|l: = YJ-:! ""‘:: = T:‘r_‘ e'l._'l' = .f'rll.'
50 that
e, té, te. =& +& +€ =Je=0

Il e,,¢,,¢; be the components of principal strain deviator then

&= — €, = Ex— €, € €y~ €, (7.18)
so that
e te,+e, =& +E, +8-3e=0 (7.19)

Relation between the stress and strain deviators :
For an isotropic material the stress-strain relations are ;
0, = AA + 205,
a, = A +2Ge,

(7.20)
0, = AA+ 206k,

so that by adding we get
0, +0, +0; = JAA +2GA = (3N +2G) A
Let 6, =0,=0,=-p

L0, +0,+0,=3p =3{3A+2G)e

=E= (31 +20) (7.21)
e

! i _f = K = Bulk modulus

n-E=(30+26)=3K
e
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Moreover, 6, +G, +0, =3s=-3p

SE¥=-p
so that ~=—£=3K (7.22)
e e
and hence s=13Ke
Again we have
o, = AA+2GE, :
o5 +s=3he+2G(e+e,) = e(3M+2G)+20e,
=3Ke+2Ge,
=5+ 20Ge,
L8 =2Ge,
Similarly
. 8, =2Ge, : (7.23)
s =20e.
Also

'?,1: = T_‘Irz = GTE = GE_I:
5., =T, =GY,=Ge, (7.24)
‘?.'rr = T.n- = G.ll'x_v = Ga.rrl'
Thus components of stress deviator can be considered as the components of stress
involving no dilatation,

Stress-stirain curve @

Suppose that a rod of ductile metal is stressed in tension in a testing mechine, The
observable quantities are the stress o which is the load applied by the mechine divided
by the original area of cross-section of the rod and the strain & is given by
e,

"y

E
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where [ is the original length of the rod and 1 is the length when the stressis o . I
o is plotted against ¢ a stress-strain curve (Fig. 1) is obtained, From the law of stresses
it is found that if the stress is reduced to zero the rod returns to its original length i.e. there
is no permanent deformation. This is the property of elasticity and the range of stress
in which there is no permanent deformation is called clastic region, In this region it is
[ound that the stress is proportional to the strain. The stress @, al which permanent
deformation first appears is called the yield stress and the point is called yield point, [t
15 at the point A corresponding to the stress @,
that the curvature of the stress curve is first
noticed. Deformation at a stress above the yicld
stress is described as plastic deformation and a
material with a yield stress may be idcalised by
the perfectly plastic solid (Fip. 2). The
behaviour is elastic below the yield stress @,

but on attaining this stress, it flows plastical ly
under the constant stress.

During this flow we no longer have a one-
to-one correspondance between stress and
strain, If the stress has been maintained at the value o, for any finite time before unloading,
plastic flow occurs during this time and speci-
men will exibit a permanent deformation af-
T ter unloading, The stress-strain relation dar-
ing such an unloading is represented by the
. B plastic Now  Portion BC (Fig.2) and the permanent elon-
D gation by the segment OC. Then segment
BC obtained during unloading is parﬁllcl to
the segment OA obtained during the first
> £ loading, IT the specimen is reloaded after
being completely or partially unloaded the
stress-strain diagram for reloading coincides
with the diagram for the preceeding unload-
ing until the critical stress is reached again. Thercafter the specimen flows plastically as if
the unloading and reloading had never taken place. The stress-strain relation during such
a reloading and subsequent plastic flow is represented by the portion CBD (Fig.2).

6

a

0 C
Fig. 2




The typical stress-strain diagram (Fig.3) shows a rise in region AD beyond the yield
stress, I the material is stressed beyond the yield stress. 1T the material is stressed beyond
the yicld stress o, at A and the load is then removed at a point D well beyond A, the strain
is reduced to & and not to zero value. €, is the permanent deformation. Il now the load

15 reapplied a narrow loop EFG,
a with FG very nearly parallel 1o OA,
will be described.

The diagram indicates that fol-

) D' lowing the cycle of unloading and the
7L , : reapplication of the load the clastic
strain range lead upto G which is
| higher then A, Thus the stress at
0 which plasticity oceur in this case
>a,. This is the phenomenon of

worlk hardening in which the mate-

0 ¢ F - BE L inl i it senss stronger afler the
lvad cycle has taken place. Thus, we
observe again an intervel of elastic

strain with a new proportion limit o, followed by an interval of small plastic strain. As the

stress is brought near to the original value the curve bents sharply near D' and part D'E'

beeomes virtually a continuation of AD. Indeed, if the stress had been increased

continuously from D the same curve DE' would have been deseribed.

7.2 Yield Criterion

The stress-strain curve described above is only for the uniaxial state of stress. It is

important to know the behaviour of a material under combined stresses. In particular, it is
* necessary to have an idea of the conditions which characterised the transition of material
from elastic state to the state of yielding. In simple tension o = constant = g, in the state
of yielding and in simple shear T = constant = 7,.

The question arises here as to the possible form of the conditions l:huraclterising the
transition beyond the elastic limit under combined stresses. This condition which is fo be
fulfilled in the state of yielding is called yicld condition,
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For an isotropic body, since the plastic yielding depends only on the magnitude of the
three principal applied stresses and not on their direction any yielding criteria can be
expressed in the form

J.0,.1)=0 (7.25)
where [, 1, and [/, are first three invariants of the stress tensor. An immediate
simplification of (7.25) can be achived by using the experimental fact that the yielding of

a metal is, to a first approximation, unaffected by the moderate hydrostatic pressure or
tension either applied alone or superposed on some state of combined stress.

Suppose that the above observation is strictly true for ideal plastic body, Then it
follows that yielding depends only on principal components s,,5..5, of the stress deviator.

Since s +5, +5, =0 implies that 5,,8,,8, are not independent so the yield criterion
can be reduced to the form

Sy L)=0 " (7.26)
where I] =—(s5, 5,8 +55)
b = E s,

There are two important theorems available lo predict (he begining of the plastic
yielding in ductile metals,

(a) Maximum shearing stress or Tresea’s criterion

The ctiterion states that yielding occurs at a point when the magnitude of the maximum
shearing stress has the value Lo, which is a constant for a material.

If 0,.06,,0, be the principal stresses such that 6, > &, > o, then it is known that the
pratest shearing stress is %(U, —d, ) and 1t acts across the plane whose normal bisects the
angle between the directions of the grealest and least principal axes. Thus, if ¢, > @, > g,,
Tresca’s condition can put as

'%(U: _“3) =30,
ie. 0,-0,=0, _ (7.27)

In order to use (7.27) it i necessary to know the principal stresses and also the
knowledge of greatest and least principal siresses. For simple cases it may be possible to
find, but in many cases it is difficult to obtain the information. Hence (7.27) is not quite
suitable as general mathematical formulation.
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(b) The eriterion of Von Mises :

Frem (7.26) we see that the yield criterion can be written in the form
rln.z)=0

According to Von Mises, yielding occurs when 7} reaches the critical value, a constant

of the material, The criterion can be written in the alternative form as

Y o 20, 7

i e = (7.28)
2 2 2 s ! s 2 o 2

or, 25" +2s; +28] =255, — 25,5, = 28,5, 8 T8 5

+25,8, + 25,8, + 28,8, = 20,

2 X

o, (5,=8) +(s=5) +(s=5) +(s+s+s ) =202

2

or, (s, —.5'])! +(5,—5) +(s -i5) =202

and noting that s, =0, =8, i=123.
We have :

(0,~0,) +(crl-cr_,)! +(o,~6,) =20; (7.29)
(7.28) and (7.29) are the two altemative forms of Von Mises criteria,
Corollary 1 : When o, =0, =0, Von Mises Criteria becomes 0, =0,

Thus o, is the yield stress in uniaxial tension.
Corollary 2 : Interpretation of Miscs Criteria based on strain energy.

If there be principal extension €,€,,€, and corresponding principal stresses are
G,,0,.0,, then the strain energy W per unit volume is given by
IW =08, +0,8, +0,€,:
Since 5, =0, —sande, =g —¢ fori=123.
We have

1
2w =3 (s, +s)(e +e)
=1
e S A 5
ve(s +s,+5,)+s(g +e, +e)
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Noting (hat E‘; =0 =E ¢, §,=20e, s=3Ke

I L 3 S!
it follows that 21V = ?(.\"‘ +5 +.-.'_;)+~E ,

e

Now the components of stress deviator are given by

T
8, =2Ge,

Since ZtJr =0 it follows that, the component of stress deviator can be considered

as component which produces no dilatation, Hence whatever dilatation be produced is due
lo mean stresses only. Thus, if the mean stress acting in all directions produces the principal

strains g,.€,.&,, the corresponding encrgy of deformation W is given by

2V, = xg, + $€, + 58, = 34e
TR .
= [since s =3Ke].
Thercfore,
I - 5 9
W= _1[.«-; L7 B gt ]+ i
4G
Thus it follows that the elastic strain cnergy per unit volume can be splite into a part
W associated with change in volume and a part Jy = 4—-[31‘" + 5] +.\-3J associated with
; G 5N

distortion.

Thus Von Mises Criterian $; +3; 457 = constant for yielding is equivalent to the

statement that the strain encrgy of distortion attains the constant value character-
istic of the material,

7.3 Equations of Plasticity

I. Prandtl - Reuss Theory :

In the plastic range the total strain may be considered as the sum of the elastic strain
and the plastic or permanent strain. The mean normal strain and the strain deiator may be
decomposed in the same manner into the elastic and plastic components. Hete single prime
will be used to denote clasitc components and double prime to denote the plastic
components. In atmost all the theories of plasticity it is assumed that there is no permanent
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change in volume. This means that the plastic mean normal strain e must vanish. i.e,
i i i " " ] (1] L] i
el= j(E,I +E, +E_)‘=-3(E, +E:+£.,)

s = (7.30)
we know that,

¢, =€ —e".

50 that ¢! =g’

similarly ¢! =€, ¢! =¢€! (7.31)

In other words, the plastic strain deviator is identical with plastic strain,
Furthermore, all these theories assume that during plastic flow the rate of change of
plastic strain (or plastic strain deviator) is at any instant proportional to the instantageous
stress deviator. To be able to combine the equations expressing these assumptions with
those of the rate of change of elastic strain we write them in the form
2G8 = A, (—’T. =k

268 = M |GYL = Mt
2GE = As | GY, = Ar

3=

(7.32)

ti
where A is a positive factor of proportionality, According to Hooke's law the rate of
change of elastic strain deviator is

268, = & |Gy, = t,

268 = i |Gy, = 1,

Combining (7.32) and (7.33) we obtain, the following relation for the rate of total
strain

2G¢, = & +As |Gy, = T.+AT.
2G¢, = §.tAs, |Gy, = 1.+At, (7.34)
2e. = & +th |GY, = 1,.thT,

where &, =4+, 11, =1, +1), et
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These equations, however, are applied during plastic flow when the yield conditions
requires that.

; o 2 2 1
g, == (.a_‘,.';_h +u 8 A ) +T e g 41 75 )

= e e+t 4+l 1
=L(s7 4574 S|+t AT,

= constant = -k’ (7.35)
Then,
L= s ST T,
-+21 x, +2%.1,.=0 i, (7:36)
Let us assume
=58, +8,6, +86 4T J. +T. 0., +T,¥, (7.37)

which can be computed whenever the stress and the rate of strain are known, From
equation (7.35) and (7.37) we have

WG =J,+2J,
=0+2k%A
i _(E (7.38)
E:
Since ), has been defined as a positive quantity, jj7 must be positive during (he plastic
flow. With the above value of A we have

_ LW . L
e 2G [E.r "EF.';I] TJ: G[TJ: _k_lt":]
$, —2(:[9 —ia ] G['if E ]
2k gl T '
_ (7.39)

W T (e
i —EG[E —ﬂ"é) Tm,;({ .v_'FT-v]

when the state of stress which fulfills the }ri-éld conditions J, = k*, is given and a strain

1l

EI

rate together with piven state of stress furnishes the value of jj7 , the equation (7.39) .
determines the rate of change of stress deviator,
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Corollary : Interpretation of J¥ :
Let ¥, be the strain energy of deformation per unit volume, Now, IV, is a function of

strain components €, . BB Yoa Y Yy and so

dw, oW de, AW, de, Ay, de, IV, OV,
= L 4 L s
dt  ode, o de dr  de. 9 dy, o

A

=0 & +0 € +0.E +T. ¥t

= R R, (7:40)
(Since ¢, =€ —e, ete.)
=¢(0, 40, +0)4+0L +T ¢+ T, e (741)

The first term in (7.41)
—3w“¢£{E+E+E}
S S E RE e,

= The rate of work done in producing dilatation by means of normal stress
operating in all directions,

,  The remaining term in (7.41)
= (3, +8)¢, +ont Y, tosince 5 =0, =
= N2 48, 4 )88+ AT b SincRE, = E e ele. (7142)

S ke e SE K E e —Je=(),
Hence the first expression in (7.42) is zero. Therfore from (7.41) and (7.42) we have

i
' d_rl = Terms giving rate of change ol volume

+ 17 (Containing terms producing distorsion only).
Thus, we conclude that

Jj/ = The rate at which strain energy of deformation changes due to distortion

anly.
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1L. Stress-strain relation of Von-Mises :

In many problem of unrestricted plastic flow the plastic strains are so much larger than
the clastic strain that the elastic strain many be neglected altogether. In other words, when
the body is under the action of stresses below the yield point the material may be
considered as rigid. Whenever this point of view be adopted the stress-strain relation of
Prandtl-Reuss may be replaced by simple stress-strain relation when the elastic strain is
desregarded, Tn this case, the total sirain and plastic strain are identical. Moreover, since
the plastic mean normal strain is supposed to vanish, the total mean normal strain also
vanishes i.e. the material is incompressible, for

e=E, tE,+E = [E'.\‘ +E,+E, ) +(I:'_1L B E:)
= l+ E ] = E'II

and so e=e"=0.

Thus the material is incompressible.

The stress-strain relations of Mises state that the rate of strain is proportional to stress

deviator, 1.8

E.‘t - ul".l.ﬁ .Ilf’lg: = 2'.l"'rl':J:
E_! = "l"'l_r-" ﬁ}r:'r e EH'TH

. (7.43)
EI‘!': = J‘L""._' ' 1|r w e EI'I'T.W
where Ji is a positive factor of proportionality.
Let J=4(g +& + &2 )+ L1+ 75 +15) (7.44)

Substituting the relations (7.43) into (7.44) we get,
[=4p (s} 457+ .s'f]ﬂf (‘rf___ +1T2, +"L‘n)
=g,

The yield condition stipulated that

J,:kl;p.’z-L,
K
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. 1
Therefor, p = —:i; (7.45)

Hence Von-Mises stress-strain relations are

¥, = ! E, [T.= T M

T ll_l" X i = 2 I Iz
§ = g |%. —v——u-.‘i'_ .

i ;! i/ (7.46)
i =—~’ E.|T..=—FY.

£ III = N zﬂ XV

When the strain rate is given, subject to the condition of incompressibility
E +E +E =0,

the rates of strain be computed from (7.44) and then the stress strain relations (7.46)
pive the components of stress diviator. '

In equation (7.46) if we consider the principal rate of strain and the principal
components of stress deviator, we have.

B, = W8, By = [y, £y = S,

s o8y de
so that 5, &, de,
; g, +0,+0, |1
Again we have % =0, =5 =0, ——3—-= 5(25;- 0,—0,)

1
Similatly $, = %(253 =gy=0:} & 33{20.‘- ~0,-0;)

de, 20,-0,-0,
Therefore de, 20,-0,-0,

(7.47)

“«Similarly, we get two other relations of the form (7.47).
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7.4 [Elasto-plastic problems

1. Spherieal shell under internal pressure

Let p he the internal pressure which acts uniformly on the inner boundary of a spherical
shell whose internal and extemnal radii arc « and b respectively. From the central symmetry
of the shell and of applied forces it can be concluded that the field of displacement vectors
also posses a central symmetry. Hence all points on a concentric spherical surface of radius
rhave the same radially directed displacement.

Thus using sperical polar co-ordinates the displacement.components are given by

(nr*nﬂ.uu ) = (u(r).0.0)

and the nonvanishing strain components are

_ e - u .
i e (7.48)
iy 2u
N=E +E, 40, s—F— (7.49)
b e
From the stress-strain relation, we have
o =A+20GE,
0, =0, = AA+2GE, (7.50)

The only equation of equilibrium is

7
di'i':(ﬁr _Gn) =
e

Using (7.48), (7.49) and (7.50), the equation of equilibrium when expressed in lerms
of the displacement component becomes.

{1 + 2(§]i[ﬁi+2—“-]= {
il

ar

The solution is given by

B
H=z‘-!l'+r—! (7.51)
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Then using the above relations we obtain

o, = (EJﬁ.+213-‘}A—=5|G£_H
7

0, =0, =(3A+2G)A+ EGEII
r
The boundary conditions are
g =0 atr=>5

o, =-patr=ua
Using these boundary conditions, we get

B

(3R+2(?)A—4GB~3-=D, (34 +2G)4-4G B =—p
o’

1

; .
so that (3?1. + EG)A =.%. 4GB = th where L = h—l_]
i

and hence
p(b
g, =-=|—=—
” L[r} ]
pf b (7.52)
Uu=ﬁ¢=I[F+IJ .

Now Von Mises yield criteria is

b

(0,-0,) +(n, - U.,)I + (ts,, -Uﬂ): =20,

Since, 0, =0,, we have

G, —0, =0, (7.53)
Therefore, from (7.52). we have
3ph
0, -0, ==———
n r 2 L r_l
_3p a
i
I—E

This shows that, o, —o, is maximum when r = a.
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Hence, yielding begins at the inner surface. The corresponding pressure p, is given by

ip, d
0y —0,=0, 2_02 )
v
_ 20, a’
W (7.54)

With the increase of pressure a plastic region spreads
into the shell. Due to symmetry, plastic boundary in a

homogeneous medium must a spherical surface. Let its “3 plastic

radius at any instant be c. In the elastic region the region
equilibrium is maintained by same internal pressure which
is at present unknown and the stress will be of the form,

1
vl

bI
GE:'Uo:Al{F+1] (7.55)

where 4, is a parameter.

Now, the material just on the elastic side of plastic boundary must be on the point of
yielding and so from (7.55)

3 A
a,—a, =3 7] %
20, ¢
T
S e

Therefore, for (7.55) the stress components in the elastic region ¢ <, <} are

-2a,¢" [ b°
NE e (7.56)

r
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2w, B
O, =0, = _%“_\ [Fﬂ]nn cErsh

Thus the solution in the elastic region is dependent only on the parameter c.

Tn the plastic region, the equation of equilibrium is

do. 2

dr i 5 (o, E]

do. 2 20
i T t=s s

Inteprating we get
0,.=20;Inr+ 8 ¢T.57)

Since o, is contineous across the elasto-plastic boundary r = ¢, we have,

20 ¢’
g.ﬂn Inc+ BI STn{l"'F]

This gives B,.
Hence from (7.57), we pet

r 20 ¢’
ﬁ,=25ﬁ1ng- 3“[1—!5—3) : (7.58)
0,=0,=0,10,

If p, is the pressure needed to produce plastic deformation upto radius ¢, then

e 2o P
D= (—UI_ }|=JI = ?.ﬂ'“ lﬂ;-l' Tu[i —F] I

We know that the yielding begins when the pressure on the inner boundary is

20,(. @
= g K
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For a thin shell b=a+r =¢:[I+£] where f 1s very small, so
¢

=1
B

If there is sphesical cavily in an infinitely extended material we have on making
h — DO .

2o
il
P = 3

; , ; : 2
i.c. the inner surface yields at a pressure which is 3 of the yield stress.

2. Torsion of a-cylindrical bar of solid cireular section

Following Saint Venant we write for a torsional problem of a circular cylinder of clastic
meterial, the displacement components at any point (x, y, z) in the eylinder are

I=—T¥: [7-59]
v =Tay
w=10

where 7 is a constant and the axis of z is taken along the axis of cylinder.

The system of stresses associated with the displacement (7.59) is given by

6, =0, =0 =1 =0

fdu o)
1. = (}[5;+ —é?J =Ty (7.60)
dv  dw
=0 —+—|=G1x
i [az dyJ 1:1

Obviously, the stresses satisfy the equations of equilibrium under no body forces and
the equations of compatibility,

In polar co-ordinates
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T.=1,c080+7 _sind

= Gr(-rsinBeosB+rsinfeos) =0

T BB cus{9ﬂ°+ﬂ}+1_.: cosh (7.61)
s o
Mnrelnver

The applied torque on a section is

Ima

() = Total Torque= j Jr‘rug'mrdﬂ

i1

= g(}m' (7.62)
Therefore
9 _mt
U o
200
Cr, %= vy {?.6;)

Tor a given torque T, has its maximum value when r = a . Hence yielding for

sufficiently large torque begins at the outer surface where 1, attains the greatest value.
The Von Mises condition for yielding is

g el e o,
his l,[.v; +47 + .»'?)+'4:;_ +T, b1, =L
4 T ) - = = iy 3

In the persent case, we have

L S
: 3
r1aGi
iz 3
_Bu
Therefore %o- = 5 (7.64)
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Hence if an clement at a distance » from the centre is in a plastic state, then

i . 20r
Ji i ‘aT']-' }al i ']Tﬂ'q

J
_ a0y

Q= 3J3r (7.65)

Suppose that 0, is the value of the torque when yelding just begins at r = a,

1
na'c,

Then @ = 23 -

Again from (7.65) we have,

na' o,

230

Hence as O increases the plastic deformation oceurs for smaller values of r.

i

For 0 > (, a plastic zone will develop between the outer surface and a concentric
cylindrical surface. The radius p of the plastic front or clasto-plastic boundary depends on
the magnitude of the applied torque. In the plastic zonc we have

s
=%
and in the elastic zone

1. =G,

So at the elastic plastic boundary » =p , from the continuity of the stresses, we have

a, (7.66)
p=—

Now, the torque corresponding to a given value of p is

I e

U= I T +dOdr

]
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sible.

plasite. There is always a core of material which is
elastic.

stretched while the lower fibre is compressed.
Thus there must be a line in this section which
remains unstretched. This line is called the nuetral
line, The axis of z is along the neutral line of the
central section which is supposed to be bent to

perpendicular to the z axis and is in the plane of
bending as shown is figure.

neutral is extended to the length P'(Q'=ds’, then

' 3 & PO
= on[ Grrridr+2n[ =L rid
’}'I.'..[[I TTrroar RJ‘FE-?' r

_2me,a’ mo
T 33 4G (7.67)
where equation (7.66) has been used.

If the whole cylinder had been plastic the corresponding torque will be

s S 2no.a’
O, =anf —ortdr=——p (7.68)

From (7.67) it is evident that 0, of O can be obtained when 7 is infinitely large or when
= G71r is infinite, which is physically not pos-

Thus we find that the cylinder cannot be fully

3. Bending of a prismatic bar for a
narrow rcetangular cross-section by
terminal couples,

In each longitudinal section, the upper fibre is

1 g :
arc of constant curvature " The axis of y is

il s
iy

If a fibre PO of length ds a a distauce y from

extension E=M
PO
L {R+_:|.f)ﬂ-Rﬂ _y
- RO "R
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Henge

_ By

I (7.69)

o.=Eg

We observe that y is posilive, when o is positive and when y is negative, 0_becomes
negative,

Now, M = moment of traction across any scction = bending moment.

= ([ yo.d4

= ”E—f— dA ] “__-_+ °
“flva e
sl i

R

If the height and breadth of the section be s and & respectively, then

E 1
= hhl(ﬂj = 2

3.2 12
! Ebl
g T e (7.70)
_Ey 12My
and so U_-*—?*—f}?— (7.71)
| "12M
Also T (7.72)

Since 6, =0, =0

and o, =0

The vield condition of Mises is
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{GI- =0, }: +(Uz _Ui)z +(“1 "G:}! = 255}

0,=0.=10 (7.73)
From (7.69) it is evident that the yielding begins when y has got mumerically preatest

#

value i.e., when V= i;‘.

Suppose M, is the corresponding bending moment. Therefore, {rom (7.71), we have

hen y =12
when ) 7
12M, ‘5% 6N
0_=0,= 1.f__ = =
: by bh'
h
and when V=-7>
6M.
0. =—0,=———
bir
o, hi’
Or M =-—* (7.74)
G i
The curvature of the neutral line is obtained from (7.72) as
1 12M, 20,
S (7.75)

R EBIE Eh

[f there be a plastic element at a distance y from the neutral line when the bending
moment is M, then we have from (7.71)

. . 121\&‘_}"

% =0 =y
_obl
U

This relation shows that y decreases with the increase of M provided M=M,, If the
central position of the beam —n < y <1 is an elastic state, then
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E -
o.=—= ~n<y<n

=g, |yPn

plastic zone

At the elasto-plastic boundary y =1 we have

Ca

elastic zone

plastic zone

n

En E_oy M -

?—Ua Or, &% L

Hence Y

_.D-i]y R TE

g.=——, “N=y=

= nsysn
I| =Uu 1I}'|}“

The bending moment corresponding to an assumed value of 1 is

M= Jf«; y6_baly
e 24’:"[:ﬁ yo.dy [yo. iseven]

J b
=2hf:y“‘—$dy + ibj'fyﬂﬁdy

T T
elastic plastic
2 2
= ba, % —bo, -

: E
Using the result 8y = — we have

Ri
o bRt f R
M=—% —_pg, —
4 38
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Now, if the whole section had been plastic we obtain

M = bending moment required for full plastic defomation
" o
£ Zhjﬂ yo.dy = 2b j 3 o,y

_boh’
-2 (7.77)

Compairing (7.77) with (7.76) we find that full plastic deformation requires R =0 and

1
7 is infinitely large. This means that O =% is infinitely large which is physically not

possible, Hence the bar cannot be mad fully plastic. There must be an elastic core.

7.5 Summary

In this unit the basic relationships of the theory of plasticity have been discurred. Yield
criterion, viz. Trisca’s Criterion and Von Mises Criterion are also discussed. The equations
of plasticity of Prandt! Reuss theory and stress-strain relations of Von-Mises have been
derived. Some Elasto-plastic problems are also considered.

7.6 Exercises

1. Short Answer Type :
(a) Define yielﬂ condition,
(b) Explain Tresca’s Criterion.
(c) What are the stress and strain deviators.

(d) Show that the component of the stress deviators can be considered as
components of stress involving no dilatation.

2. Broad Answer Type :

(a) Derive stress-strain relations of Von-Mises. Show that for incompressible
sirain rate the siress-strain relations are expressed in terms of the compo-
nents of stress deviator.

(b) A thick walled spherical shell of internal radius a and external radius b is
subjected to a uniform pressure p on its inner surface. Show that there will
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be a plastic zone bounded by r =aandr =¢, d <c¢=bh provided that p

is piven by
& ¢
=20 =40y ==
N ad e “[ h]
Deduce that for a thin shell of thickness 1, the pressure p, needed to being
yielding is
26,1

Py =——. O, being the yicld constan! {or the material.
o |

(¢) Deduce the Prandtl-Ruess stress-strain relations for plastic flow in an elasto-
plastic medium in the form.

. LW _
A= ZGL“ v —j_k;-‘*'n ] and two similar equation

_ g e, BBl :
T,.=0 (YJ: —1_—!'[5.;] and two similar equations.

(d) A prismatic bar ol narrow rectangular cross-section is bent by terminal
couples such that the bar is partly elastic and partly plastic. Find by using
Von-Mises Criterion, the moment of the couple and show that the bar
cannot be fully plastic,
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