
PREFACE

In the auricular structure introduced by this University for students of Post- Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subject introduced by
this University is equally available to all learners. Instead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of a learner is judged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholars is indispensable
for a work of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing and devising of a proper lay-out of the materials.
Practically speaking, their role amounts to an involvement in invisible teaching. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so mat they may be rated as quality self-
learning materials. If anything remains still obscure or difficult to follow, arrangements are
there to come to terms with them through the counselling sessions regularly available at the
network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in
certain areas. Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and further improvement in due course. On the
whole, therefore, these study materials are expected to evoke wider appreciation the more
they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor



Sixth Reprint : December, 2017

Printed in accordance with the regulations of the Distance Education
Bureau of the University Grants Commission.



Subject : Mathematics Post Graduate

Paper : PG (MT) : IX A(I)

: Writer : : Editor :
Prof. P. K. Sengupta Prof. B. C. Chakraborty

Notification
All rights reserved. No part of this book may be reproduced in any form without

permission in writing from Netaji Subhas Open University.

Mohan Kumar Chottopadhaya
Registrar





NETAJI SUBHAS
OPEN UNIVERSITY

PG (MT)–IX A(I)

Unit 1  Analytic Continuation  7-25

Unit 2  Harmonic Functions  26-40

Unit 3  Conformal Mappings  41-49

Unit 4  Multi-valued Functions and Riemann Surface  50-82

Unit 5  Conformal Equivalence 83-104

Unit 6  Entire and Meromorphic Functions 105-155

N
E

T A
JI S

U
BHAS OPEN U

NI
V

E
R

S
IT

Y





7

Unit 1 � Analytic Continuation

Structure

1.0 Objectives of this chapter

1.1 The idea of analytic continuation

1.2 Direct analytic continuation

1.3 Analytic continuation of elementary functions

1.4 Analytic continuation by power services

1.5 Analytic continuation along a curve

1.6 Multi-valued Functions and Analytic continuation

1.0 Objectives of this Chapter

In this chapter we shall introduce the idea of direct analytic continuation of an

analytic function. The concepts of analytic continuation by means of power series,

complete analytic function, natural boundary, analytic continuation along a curve will

be explained with the help of examples. Homotopic curves, analytic continuation of

multi-valued function and Monodromy theorem will also be discussed.

1.1 The idea of analytic continuation

The idea of analytic continuation rests on the notion of analytic function. A

function f(z) is analytic at z = z0 if it is differentiable in some ∈ -neighbourhood of

z0 or, equivalently if it can be expressed in the form of a Taylor series in a

neighbourhood of that point. The domain of convergence of this power series will be

the region of analyticity of the function f(z).

Following Uniqueness Theorem : “If two functions f(z) and g(z), analytic on a

region D, are such that f(z) = g(z) on a set A⊂ D having a limit point in D, then f(z)

= g(z) ∀ z ∈ D,” we know that if two analytic functions agree in some small

neighbourhood of a point situated in their common region of analyticity D, they



8

coincide everywhere in D. We first introduce the idea of analytic continuation by the
following examples.

The geometric series

1 + z + z2 + ...

converges for |z| < 1 and its sum function g(z
z

)
–

= 1

1
 is an analytic function for

|z| < 1.

The geometric series diverges for |z| ≥ 1.

However, the function

h z
z

( )
–

= 1

1
is analytic for all z except z = 1. But we observe that

h z g(z z z C( ) ) \ { }= ∀ ∈ < / 1 1�� �

Thus, we may regard h(z) as determining an analytic continuation of g(z) from the
domain |z| < 1 into the domain /C \{1}.

Example 1.1 Consider the Laplace transform of 1 in the z-plane,

F z z dt
z

zt( ) £ { }( ) Re–= = = >
∞

�  e  for  z1
1

0
0

We introduce a function

φ( )z
z

= 1

which is analytic in the complex plance /C except the origin. Here

φ( ) ( ) / ( ) Rez F z z C= ∀ ∈ / ∩ >0 0 z

and we consider φ(z) as analytic continuation of F(z) from the domain Re z > 0
into the complex plane with the point z = 0 deleted.

We put these ideas more precisely in the following discussion.

1.2 Direct analytic continuation

Let (i) f(z) and g(z) be analytic functions on domains D1 and D2 respectively.

(ii) D D1 2� ≠ φ

(iii) f(z) = g(z) for all z belonging to D D1 2�

Then g (z) is called a direct analytic continuation of f(z) to D2, and vice versa.
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Theorem 1.1. A direct analytic continuation, if it exists, is unique.

Proof. Let f(z) be an analytic function with domain of definition D1 and let g(z), another

analytic function with domain of definition D2, be its direct analytic continuation. We shall

show that g(z) is unique. On the contrary suppose φ(z) be another analytic continuation of

f(z) into D2. Then

f z g(z D D( ) )= ∈ for all z 1 2�

Also, f z z D D( ) ( )= ∈φ  for all z 1 2�

and so φ(z) coincides with g(z) in D D1 2� . Thus we have, by the Uniqueness theorem,

φ(z) = g(z) in D2.

1.3 Analytic continuation of elementary functions

The functions ez, sin z, cos z, sinh z etc are already known to us. These functions are

regular in the entire complex plane. Let us assume, by definition, that

e
z
n

z
n

n

=
=

∞

∑ !0

and observe that it coincides with ex, known earlier, for real values of z. Thus we can

take ez as the analytic continuation of ex from real axis into the entire complex plane.

Likewise introducing sin z, cos z sinh z, cosh z in the form of power series—

sin
(–1)

( )!
, cos

(–1)

( )!
z

z

n
z

z

n

n n n n

nn

=
+

=
+

=

∞

=

∞

∑∑
2 1 2

00 2 1 2
 

sinh
( )!

cosh
( )!

z
z

n
z

z

n

n n

nn

=
+

=
+

=

∞

=

∞

∑∑
2 1 2

00 2 1 2
and 

We can treat them as the analytic continuation of the functions sin x, cos x, sinh x and

cosh x respectively from the real axis into the entire complex plane.

D1 D2

Fig. 1
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1.4 Analytic continuation by power series

We now explain the concept of analytic continuation by means of power series.

Suppose the initial function f1(z) is analytic at a point z1. Then f1(z) can be

represented by its Taylor series about z1 as

f z a z z
f z

nn
n

n

n

n
1 1

1 1

0

1( ) ( – ) .. . ( ),
( )
!

( )

= =
=

∞

∑  where a

The circle of convergence γ1 of the series (1) is given by

γ1 1 1: – ,z z R=  where

1

1

1

R
a

n n
n=

→∞
lim sup  

Let D1 = {z : |z – z1| < R1}. Then

f1(z) is analytic in D1. We draw a curve γ from z1 and perform analytic

continuation along γ as follows :

We take a point z2 on γ such that the arc z1 z2 lies inside γ1.

We then compute the values f1(z2), f1
1(z2),..., f1

(n)(z2) by successive term by term

differentiation of the series (1) and write

f z b z zn
n

n
2

0
2 2( ) ( – ) .. . ( )=

=

∞

∑  where b
f z

nn

n

= 1 2
( ) ( )

!

The circle of convergence γ2 of the series (2) is given by

γ 2 2 2: –z z R= , where 
1

2

1

R
b

n
n

n=
→∞

limsup  

Let D z z z R2 2 2= <: –� � . Then f2(z) is analytic in D2. By uniqueness theorem,

f1(z) = f2(z) for all z D D∈ 1 2� . If γ2 extends beyond γ1, then f2(z) gives an analytic

continuation of f1(z) from D1 to D2. Similarly, considering a point z3 on γ such that

(

R1

Z1

D1

D2

D3

R2 R3

Z2
Z3

γ1

γ2

γ3

γ
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the arc z2 z3 lies inside γ2, we get an analytic function f3(z) in a circular domain D3

such that f2(z) = f3(z) for all z D D∈ 2 3� . If D3 extends beyond D2, then f3(z) gives

an analytic continuation of f2(z) from D2 to D3. Repeating this process we get a number

of different power series representing analytic functions fi(z) in their respective

circular domains Di which form a chain of analytic continuations of the original

function f1(z) such that (fi, Di) is a direct analytic continuation of (fi–1, Di–1).

Note : We may obtain the series (2) from the series (1) in the following way :

We rewrite the series (1) in the form : a z z z zn
n

n

=

∞

∑ +
0

2 2 1( – ) ( – )� �

Using binomial theorem we then expand ( – ) ( – )z z z z
n

2 2 1+� �  and collect the

terms in like powers of (z–z2) and obtain the series (2).

We give two examples.

Example 1.2 The function

f z
z

( ) =
+
1

1 2

possesses two simple poles at z = ± i; Otherwise it is regular throughout the whole

complex plane. We first choose a point, say z = 0 at which f(z) is analytic and obtain

its Taylor series expansion represented by g(z) as

g(z) = 1 – z2 + z4 – ..., |z| < 1

The series fails to converge on and beyond the unit circle, as is clear from the

(

series for z = 1 even though the function f(z) is

analytic at that point. We can in fact continue the

expansion from one region to another. Let us

consider a second expansion of f(z), this time

about a point z = 3
4

 lying inside the unit circle

(i.e. lying inside the region of convergence of the

former series). We form the expansion as follows

1

1

1 1

2

1 1
2+

=
+

=
+

�
��

	

�z z i z i i z i z i( )( – ) –

–

o

i

-i

z = –3
4

Fig. 2
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=
+ + +

�



�

�
�

�

�
�

�
�

1

2

1
3
4

3
4

1
3
4

3
4

i z i z i– –
–

–

= +�
��

	

� +

+
+

�
��

	

�

�

�

�
�
�

�

�

�
�
�

1

2

1
3
4

1
3 4

3 4

1
3
4

1
3 4

3 4i i

z

i i

z

i–

– /

/ –
–

– /

/

–1 –1

= +1
2

3 4 1 3 4 3 4 3 4 3 42 2

i
i z i z i[( / – ) { – ( – / ) / ( / – ) ( – / ) / ( / – ) –.. .}–1

       –( / ) { – ( – / ) / ( / ) ( – / ) / ( / ) –...}], ––3 4 1 3 4 3 4 3 4 3 4
3

4

5

4
2 2+ + + + <i z i z i zi

= �
��
	

�
�
��

	

�

+ �
��
	

�
�
��

	

�

+ �
��
	

�
�
��

	

�

16

25

3

2

16

25

3

4

11

16

16

25

3

4

21

16

16

25

3

4

2 3 2 4 4

– – – –z z z ... (2)

We denote this expansion by h(z), which converges in the right-hand circle

z –
3

4

5

4
<  and coincides with g(z) in the shaded region. We see that h(z) is clearly

a direct analytic continuation of g(z).

Let us construct another analytic continuation of g(z). Now we consider a
neighbourhood of the point z = 1 (though it is a boundary point of the unit circle the

function f(z) is analytic there) and obtain an
expansion represented by

φ( ) – ( – ) ( – ) –...z z z= +1

2

1

2
1

1

4
1 2

for z – ... ( )1 2 3<
In this way we can determine all possible

direct analytic continuations of g(z) and then
continuations of these continuations and so on. A
complete analytic function is defined as consisting

of the original function and the collection of all the continuations so achieved.

Here the complete analytic function is 1

1 2+ z
, defined in the whole complex plane

barring the points z = ±i.

Example 1.3 Consider the function

Fig. 3

∨∨∨∨∨

O

z − <
3

4

5

4
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f z
z

( ) =
+
1

1

Clearly this function is analytic everywhere except at z = – 1. We take a function

φ( ) –z z z= +1 2 ... (4)

Then sum function φ(z) is 
1

1+ z
 in | z | < 1. Take a point z = – 1/4 inside the region

of convergence of φ(z) and in a neighbourhood of this point
we determine

Ψ( )z z z= − +�
��

	

�

+ �
��
	

�

+�
��

	

�

−
�


�

��

�
�
�

��
4

3
1

4

3

1

4

4

3

1

4

2 2

�

z + <1

4

3

4 ... (5)

It can be checked easily that φ(z) and Ψ(z) are direct
analytic continuation of each other.

Again in the neighbourhood of z = i/2 we obtain an
expansion

k z
i

z i

i

z i

i
( )

/

/

/

/

/
. ..=

+
− −

+
�
��

	

�

+ −
+

�
��

	

�

−
�

�
�
�

�

�
�
�

1

1 2
1

2

1 2

2

1 2

2

z
i− <
2

5

2
... (6)

In performing analytic continuations we notice that there
are certain points which always lie on the boundary of domains in which expansions
are not valid. These points are nothing but the singularities of the complete analytic
function. In example 1.2 these are z = ± i whereas it is z = –1 for example 1.3.

Regular and Singular points

Let f(z) be an analytic function defined in
the domain D, bounded by a simple closed
curve Γ. A point ς ∈ Γ is called a regular point
of the function f(z) if there exist a neighbourhood
| z – ς | < ∈ of the point ς and an analytic function

φς(z) such that φ ςς ( ) ( ) | |z f z z D z= ∀ ∈ ∩ − < ∈ .

The boundary point ζ which is not a regular

Fig. 4

Fig. 5

Fig. 6

∨∨∨∨∨
↓

–1 –1/4 O 1

–1 1O

z
i

–
2

5

2
<

D

Γ

ς
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point is called a singular point of f(z) i.e., in any neighbourhood of the point ζ, there
cannot be any analytic function coinciding with f(z) in the part common to the
neighbourhood of ζ and the domain D.

Natural boundary

In examples 1.2 and 1.3 we have encountered with finite number of singular points
situated on the boundary of the region of analyticity of the given function. It might
happen that the boundary is dense with singular points. In this case analytic
continuation across the boundary of the region is not possible. Such a boundary is
called a natural boundary.

Example 1.4 Test whether analytic continuation of the function f z z
n

n

( ) =
=

∞

∑ 2

0

 is

possible outside its circle of convergence.

Solution : Applying the ratio test we find that the given series

f(z) = z + z2 + z4 + z8 + ... (7)

converges for | z | < 1. The point z = 1 is a singular point of f(z) as it is seen for

real z that the sum x
n

n

2

0=

∞

∑  increases indefinitely as x → 1. Now to test whether the

circle of convergence, the unit circle, is a natural boundary we examine the behaviour
of the given function at the points.

z ek s

i
s

kk

, , , , , ...= =
2

2 1 2 3 2
π

 s    

(k is any natural number). For this sake we consider the points ~
.z rek s

i
s

k=
2

2

π

0 < r < 1 and evaluate f(z) at these points.

Then f z r e r ek s
n

k i
s

n k

i
sn k

n
n k

n

(~ ),

. .

= +
=

−

=

∞

∑ ∑2

0

1 2

2
2

2
2

2
2

π π

and observe that the first term consists of a
finite number of terms and hence bounded in
absolute value, whereas the second term is absolute

value reduces to r
n

n k

2

=

∞

∑ . Clearly this sum increases

indefinitely as r → 1. This shows that the points

z
k,s

 (as lim ~
, ,

r
k s k sz z

→
=

1
 are singular points of the Fig. 7

↓

O 1

~
,zk s
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given function f(z). Now as k → ∞  these points form an everywhere dense set of
points on the boundary of the unit circle. Thus analytic continuation outside the circle
of convergence of the given function is not possible.

Example 1.5 Show that the function f z zn

n

( ) !=
=

∞

∑
1

 has unit circle as its natural

boundary.

Theorem 1.2 Every power series has at least one singular point on its circle of
convergence.

Proof. Let f(z) = a
0
 + a

1
(z – z

0
) + a

2
(z – z

0
)2 + ... be any power series with region

of convergence K:|z – z
0
| < R. We

shall have to prove there lies at least
one singular point on the circle of
convergence Γ:|z – z

n
| = R of the

function. Suppose, on the contrary,
that every point on Γ are regular
points. Let ς

1
, ς

2
,... ς

i
,... be certain

number of regular points belonging to
Γ and N(ς1), N(ς2), ..., N(ςi)... be
their neighbourhoods respectively. The
points ς

i
’s are chosen in such a way

that N(ςi) has non null intersection
with N(ς

i – 1
) and N(ς

i + 1
) and the

union of these neighbourhoods
completely cover the boundary Γ. Let
D be the union of K and all these
neighbourhoods N(ςi). D is open since K and every N(ςi) are open. D is also
connected since.

(i) any two points lying in K⊂ D can be connected by a straight line segment lying
in K, since K is connected.

(ii) one point z
1
∈ N(ς

1
) and the other z

2
∈ K can be connected by two straight line

segments z1 1ζ  and ζ1 2z  lying within N(ς
1
)UK⊂ D.

(iii) one point z
m
∈ N(ζ

m
) and z

n
∈ N(ζ

n
) can be connected by a curve consisting of

z z Dm m m n n nζ ζ ζ ζ+ + ⊂  since z N D Dm m m m nζ ζ ζ ζ⊂ ⊂ ⊂ ⊂( ) ,  Γ  and

ζ ζn n nz N D⊂ ⊂( ) .

(
(

Fig.8

H ςi zi�

�

�

�

�

Z0

K

R

Γ

z1

z2
ζ1

ζ2

β

α
..........

.
.
..... .
.
.. .
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and finally if two points lie in the same neighbourhood N(ζ
i
) it is always

connected by a curve γ ⊂ N(ζ i) ⊂ D. Now we introduce an analytic function ψ(z) on the

open connected set D which satisfies

ψ(z) = φςi
(z), z ε N(ζ i)

f(z), zεK

where φςi
(z) is a direct analytic continuation of f(z) in the neighbourhood N(ζi) of the

regular point ζi.

We now prove that ψ(z) is well-defined on D. Let α, β be any two points on

Γ such that H N N= ≠( ) ( )α β φ�  and since α, β are regular points there exist

functions φα(z) and φβ(z) as direct analytic continuations of f(z) in N(α) and N(β)

respectively i.e.

φ ε αα ( ) ( ) ( )z f z z K= ∀  N �

φ ε ββ ( ) ( ) ( )z f z z K= ∀  N �

so that φ φ ε α βα β( ) ( ) ( ) ( ) ( )z z f z z G N K N K H= = ∀ = ⊂ � � �� � � � . Now since

φα(z),φβ(z) are analytic in H and G is a part of H, by the uniqueness theorem φα(z)  ≡ φβ(z)

∀ z ε H. As α and β are arbitrary points of Γ we conclude that ψ(z) is a well-defined

analytic function on D. Let C be the boundary of D and let ρ ζ ζ ε= z0 ,   C  be the minimum

distance from z0 to the boundary C of D. Then clearly ρ > R as ς lies outside the circle

Γ . Thus we observe that ψ(z) coincides with f(z) on the disc

|z–z0| < R. Then it is obvious to conclude that the radius of convergence of the given power

series a z zn
n

n

( – )0
0=

∞

∑  is ρ, not R, which is a contradiction. Hence every point on Γ cannot

be regular points, i.e., there must be at least one singular point on Γ.

1.5 Analytic continuation along a curve

Earlier, analytic continuation by power series method, we have extended f(z) to a
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larger domain considering its power series expansion
about a point a from its original circle of convergence
with centre at z0 (–a ≠ z0) and radius r. We know, this
power series converges in the disc D1 :|z – a| < R,
where R ≥ r–|z0 – a| [(see Fig. 9), for example 1.2].
Then it converges to an analytic function g(z) defined on
D1, which is equal to f(z) on D D� 1 .

Analytic continuation along a curve is an extension
of this idea to the situation where a curve is covered by

an overlapping sequence of
discs and an analytic function
defined on the first disc, can
be extended succesively to
each disc in the sequence (see
figure 10). We will make this
idea more precise after
introducing the definition of
function element.

Definition 1. An ordered
pair (f, D), where D is a region and f is an analytic function on D is called a function
element. We say that it is a function element at z0 if z0 belongs to D. Two function
elements (φ, G) and (ψ, H) are equal if and only if φ(z) ≡ ψ(z), G = H.

Clearly a function element (f1, D1) is a direct analytic continuation of another
function element (f2, D2) when D1 ∩ D2 ≠ φ and f1 = f2 in D1 ∩ D2. In this case the
two function elements (f1, D1) and (f2, D2) are said to be equivalent.

Definition 2. Let γ  [0,1]: → /C  be a curve and (f0, D0) be a function element at
z0 = γ(0). Suppose there exists

(i) a partition 0 = t0 < t1 < ... < tn = 1 of [0, 1] and

(ii) a finite sequence of function elements

(f0, D0), (f1, D1), ..., (fn, Dn)

with γ([tj, tj+1]) ⊂  Dj and (iii) fj(z) = fj+1(z) on Dj ∩ Dj+1 for j = 0, 1, ... n–1.

Then (fn, Dn) is called an analytic continuation of (f0, D0) along γ. Apparently,
it seems that the function element (fn, Dn) of the above definition, depends on the
choice of partition 0 = t0 < t1 < ... < tn = 1 of [0, 1] and the finite sequence (f0, D0),
(f1, D1), ..., (fn, Dn) of function elements. It turns out that up to equivalence, it is
actually independent of these choices.

Fig. 9

Fig. 10

o

–i

i
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Theorem 1.3 Given a curve γ  [0,1]: → /C  beginning at z0 and ending at zn and
a function element (f0, D0) at z0, any two analytic continuations of (f0, D0) along γ give
rise to two function elements at zn that are direct analytic continuations of each other.
[Though the theorem can be proved by taking different partitions of [0, 1] for two
different analytic continuations of (f0, D0) along γ, here we prove the theorem taking
the same partition of [0, 1] for two analytic continuations along γ].

Proof. Let (f0, F0), (f1, F1), ... (fn, Fn) and (g0, G0), (g1, G1), ..., (gn, Gn) be two
analytic continuations of (f0, D0) along γ, using the same partition,

0 = t0 < t1 < ... < tn = 1
where γ(tj) = zj and γ ([tj, tj+1]) ⊂ Fj and γ([tj, tj+1]) ⊂  Gj for j = 0, 1, ..., n.
By given hypothesis, (f0, D0) = (f0, F0) = (g0, G0). Now we set Ej = Fj ∩ Gj for

j = 1, 2, ... n, and E0 = F0 = G0. Then each Ej is a connected open set containing γ(tj)
and γ(tj+1). To prove the theorem we show, by induction, that fn = gn on En.

We have f0 = g0 on E0 = F0 = G0 by definition. Suppose j < n and fj = gj on Ej.
But we have

fj = fj+1 on fj ∩ Fj+1

and gj = gj+1 on Gj ∩ Gj+1

and γ(tj+1) is common to both the open sets Fj∩Fj+1 and Gj∩Gj+1. So it follows
that

fj+1 = gj+1

in a neighbourhood of γ(tj+1) and hence on Ej+1 by the uniqueness theorem. By
induction the proof is therefore complete.

Homotopic curves. Two arcs γ1 and γ2, with common end points, contained in
a region R are said to be homotopic if one can be obtained from the other by
continuous deformation where the process of continuous deformation must be confined
in R.

γ1
γ2

γ3

γ4

γ5

R
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In the given figure {γ1, γ2 and γ3} is one set of homotopic curves while {γ4, γ5}
is the other set. Here no curve of the first set is homotopic to any curve of the second
set. These are geometrical interpretations. We now explain such a deformation in an
analytical manner.

Let us suppose γ0 : z = σ0 (t), 0 ≤ t ≤ 1 and γ1 : z = σ1 (t), 0 ≤ t ≤ 1 be two
curves, lying in a region R, having common end points a and b i.e., a = σ0(0) = σ1(0)
and b = σ0(1) = σ1(1) hold. We say that the curve γ0 can be continuously deformed
into the curve γ1 keeping the process confined to R, if there exists a function σ(t, s)
which is continuous in the unit square I2 = I × I, I = [0, 1] and satisfies the following
conditions :

(i) for each fixed s ε [0, 1] the curve γs : z = σ (t, s), 0 ≤ t ≤ 1 lies in R.

(ii) σ (t, 0) = σ0(t) and σ (t, 1) ≡ σ1 (t), 0 ≤ t ≤ 1
(iii) σ (0, s) ≡ a and σ (1, s) ≡ b, 0 ≤ s ≤ 1.

Let α and ς be two points lying in a domain D and suppose that γ0 and γ1 are
two curves connecting α to ς. Let there exist, as in definition 2, two finite sequences
of function elements (f0, G0), (f1, G1) ..., (fn, Gn) and (g0, H0), (g1, H1), ..., (gm, Hm)
along the curves γ0 and γ1 respectively. We also suppose that the function elements
(f0, G0) and (g0, H0) at the point α are equivalent. Then a question arises whether the
function elements (fn, Gn) and (gm, Hm) at the point ς are also equivalent? If γ0 and
γ1 are the same curve the Th. 1.3 confirms the answer for equivalence. However, if γ0

and γ1 are distinct there is no definite answer. The reason behind this is the fact that the
regions enclosed by the curves γ0 and γ1 may contain points at which we can not find
any function element that can be included in the sequence of function elements from the
point α to ς along any curve passing through these points. Here we discuss a few
problems highlighting these facts :

Example 1.6 Let Q1 = {z ε /C  | Re
z > 0, Im z > 0} denote the first quadrant
and set f(z) = log z for all z ε Q1

Show that, if g1 is the analytic
continuation to /C \(–∞, 0] of f         and
g2 is the analytic continuation to

/C\[0, ∞) of f, then g1 ≠ g2 throughout the
third quadrant, Q3 = {z ε /C  | Re z < 0,
Imz < 0}.

Proof. Clearly, g1 is the principal branch
of log z throughout /C \(–∞, 0]

∧∧∧∧∧

∧∧∧∧∧

∧∧∧∧∧

Q
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o

z
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by the uniqueness theorem. That is

g z
d

z1 1
( )

[ , ]
= � ς

ς
for all z barring the negative real axis including origin. We define

(i) g z
d

i C
z2( ) \ [0, ]

[–1, ]
= + / ∞�

ς
ς

π ε for all z  

and show that

(ii) g2 (z) = g1 (z) + 2πi for all z ε Q3.

Let γ be the closed curve (see figure) consisting of the line segments [1, z],
[z, –1] and a semi-circular path Γ with centre at the origin and radius 1, where z is
any point in Q1.

Now we wish to calculate
dς
ςγ
�

By Cauchy’s Residue Theorem, it is equal to 2πi origin is the only pole inside
γ). So breaking up the contour γ, we can equate

2
1

1
π ς

ς
ς
ς

ς
ς

i
d d d

z
z

= + +� � �
[ , ]

[ – ] Γ

 = +�g z
d

i
z1( ) –

[–1, ]

ς
ς

π

i.e., g z
d

i g z
z1 2( ) – ( )

[–1, ]

ς
ς

π� + =

Hence g2(z) = g1(z) = log z for all z ε Q1,
that is, the mapping g2 defined in (i) is the
unique analytic continuation of f to /C\[0, ∞).

To prove (ii) Let z ε Q3 and γ be the curve
joining the line segments [–1, z], [z, +1] and a
unit semi-circular path Γ in the upper half plane.
Thus

2
1

π ς
ς

ς
ς

ς
ς

ς
ςγ

i
d d d d

z z
= = + +� � � �Γ [–1, ] [ – ]

= + �π ς
ς

i
d

g z
z[–1, ]

– ( )1

-1

P
z

0Q

Γ

Fig. 11
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i.e., g2(z) = g1(z) + 2πi for all z ε Q3.

Remark : The preceding example presents the following observation : If γ1 and
γ2 be the two curves joining z0 and ς, (f0, D0) be a function element at z0, then the
resulting function elements of (f0, D0) along the curves γ1 and γ2 at ς may not be direct
analytic continuations of each other. We shall now discuss for what reasons such type
of situation occurs.

1.6 Multi-valued Functions and Analytic continuation

When we define both real and complex functions we always keep in mind that
for each value of the independent variables the value of the function must be unique.
For example, even Cauchy’s theorem is based on the assumption that a function can
be defined uniquely in the region under consideration. All the same, multivaluedness
often arises out of necessity in the actual construction of functions, the simplest
example is perhaps the logarithm :

In section 5.2 [14] we showed that if z is a non zero complex number, then the
equation z = eω has infinitely many solutions. Since the function f(w) = eω is a many-
to-one mapping, its inverse (the logarithm) is multi-valued.

Definition 3 : [Multi-valued logarithm] : For z ≠ 0, we define the function
log z as the inverse of the exponential function; that is,

log z = ω if and only if z = eω (8)

If we go through the same steps as we did to obtain (5.5) [14], we find that, for
any complex number z ≠ 0, the solutions ω to equation (8) take the form

ω = log z = log |z| + iθ, for z ≠ 0 (9)

where θ ε arg z and log |z| denotes the natural logarithm of the positive number
|z|. Because arg z is the set arg z = Arg z + 2nπ, where n is an integer, we can express
the set of values comprising log z as

   log z = log |z| + i (Arg z + 2nπ), where n = integer (10)

or log z = log |z| + i arg z for z ≠ 0, (11)

where it is understood that the identity (11) refers to the same set of numbers given
in identity (10).

We call any one of the values given in identities (10) or (11) a logarithm of z.
Notice that the different values of log z all have the same real part and that their
imaginary parts differ by the amount 2nπ, where n is an integer. Regarding analytic
continuation, we treat log z for complex valued z as the extension of log x from
positive real domain to complex domain. Consider the Taylor series expansion of
log x :
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log log{ ( – )}
(–1)

( – ) ,
–

x x
n

x x
n

n

n= + = < <
=

∞

∑1 1 1 0 2
1

1
(12)

We take this series for complex valued z and write

f z
n

z
n

n

n
0

1

1

1( )
(–1)

( – )
–

=
=

∞

∑ (13)

which converges in the disc K0 : |z–1| < 1 so that f0(x) = log x for 0 < x < 2.

Thus f0(z) and log x are direct analytic continuations of each other.

Our object is to specify the curves along which the analytic continuation of the

function element (f0, K0) is possible. For this purpose it is advantageous to apply the

integral representation.

log ,x
ds

s
x

x
= < < ∞� 0

1
(14)

Lemma 1.1. The following formula

f z
dz

0 1
( ) = � ς

ς (15)

holds for z ε K0 where the integral is taken along any path lying completely

within K0.

Proof. The function f0(z) given by (13) is regular in K0 and following Theoren

3.2[14] the integral on the r.h.s of (15) is also regular in K0. But we see that this

integral coincides with log x in (14) for 0 < x < 2. By the uniqueness theorem.
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n
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1

1
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∞ ς
ς

ε z  K

In continuing f0(z) analytically to an arbitrary point ω we isolate a single-valued
piece of log z, as we shall do later for other multivalued functions, called a branch
of the function. The standard way to isolate single-valued branches is by the use of
branch cuts to different branches. For log z the question of multivaluedness arises
when z goes around the origin, as a result argument changes by 2π. Such a point is
called a branch point. If we do not allow the paths to travel around a branch point
of a multi-valued function then certainly we would not face varied values at a point
lying in the domain of definition of the function.
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Let C be any simple curve from 0 to ∞, so that z cannot go around the origin
crossing C.

The above consideration shows that if analytic continuation along a given curve
Γ is possible, then one can get from a function element at the initial point of the curve
another function element at the terminal point of the curve by a finite number of
applications of direct analytic continuation. If there is no function element at the initial
point of Γ that can be continued along Γ, then there exists a definite point on the curve
Γ which is a singular point at which the process of analytic continuation must stop.

The following question immediately arises : if ω is some non-singular point
outside the disc D0, then there may two or more chains of function elements which
eventually continue analytically f0 (z) onto a disc D containing ω. For example, let
(fj, Dj) be the function element of one chain and (fk, Dk) be the function element of
a different chain and that ω ε Dj ∩ Dk; will then fj (z) = fk(z) ∀  z ε D?

The Monodromy Theorem

The above question is answered by the Monodromy theorem, which, simply
stated, is : if there are no singular points in between the two paths of analytic
continuation, then the result of analytic continuation is the same for each path. Another
way of stating the theorem is :

Theorem 1.4 [Monodromy Theorem] Let (f0, D0) be a function element at z0 and
R be a simply connected region containing D0, ς be any point lying in R. We suppose

(i) (f0, D0) can be analytically continued along every curve in R.

(ii) γ0 and γ1 are homotopic curves from z0 to ς.

Then the continuations of the function element (f0, D0) along γ0 and γ1 at ς are
equivalent.

Fig. 12 Fig. 13
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Proof. A homotopy from γ0 to γ1 determines a continuous one parameter family
of curves {γs}, 0 ≤ s ≤ 1 from z0 to ς given by the equations z = σs(t), 0 ≤ t ≤ 1.

By hypothesis, the function element (f0, D0) has an analytic continuation along each
of the curves, γs. Denote the terminal function element at ς for the continuation along
γs by φs. We claim that, for each k ε [0, 1], there is a δ > 0 such that φs is equivalent
to φk whenever |s–k| < δ.

Let 0 = t0 < t1 < .... < tn = 1 be a partition and (f0, D0), (f1, D1), ..., (fn, Dn) be
a finite sequence of function elements defining φk = (fn, Dn) as the terminal function
element at ς for the analytic continuation of (f0, D0) along γk. Then

Ej = σk ([tj, tj+1]) ⊂ Dj for j = 0, 1, ..., n–1

For each j = 0, 1, ... n–1, let εj be the minimum distance from the compact set
Ej to the boundary of the Dj. If |σs(t)–σk(t)| < εj, t ε [0, 1], then it will also be true
that σs ([tj, tj+1]) ⊂ Dj. Thus, if ε = min {ε0, ε1, .... εn–1} and we choose δ > 0 such
that |σs(t) – σk(t)| < ε whenever |s–k| < δ, then for each s with |s–k| < δ, the partition
0 = t0 < t1 < ... < tn = 1 and sequence of function elements (f0, D0), (f1, D1), ....,
(fn, Dn) also defines (fn, Dn) as the terminal function element at ς for the analytic
continuation of (f0, D0) along γs. Since, by the previous theorem 1.3, any other
continuation of (f0, D0) along γs results function element equivalent to this one, we
conclude that φk is equivalent to φs. This proves that φs is equivalent to φk whenever
|s–k| < δ.

This means that for every s ε I = [0, 1] there is a positive δ(s) such that if s
lies in the interval Is = (s–δ(s), s + δ(s)), then the analytic continuation of f0(z) along
all such curves γs, result equivalent function elements at the point ς. Now by the
Heine-Borel theorem, we can always choose a finite number of intervals Isj, 0 = s0

< s1 < .... < sn = 1 that cover the segment I and are such that the intervals Isj and

Fig. 14

E1

σs(tj)

z
0

γk

γs
σs(tj+1)

σk(tj)
σk(tj+1)

ς

�
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Isj+1, 0 ≤ j ≤ n–1 have a non-empty intersection. Then, if s ε Is0 ∩ Is1, the analytic
continuation of f0(z) result equivalent function elements at the point ς. The same is true
for s ε Is1 ∩ Is2 and so on. Continuing in this way we observe that the analytic
continuation of the function element (f0, D0) along all the curves γs, 0 ≤ s ≤ 1 produce
equivalent function elements at the point ς. This completes the proof of the theorem.

The above theorem leads us to the following most important corollary.

Corollary. Let R be a simply connected region and

(i) (f0, D0) be a function element at z0 belonging to R

(ii) (f0, D0) admit analytic continuation along every curve in R.

Then there is a function F which is analytic on R and coincides with f0 on D0.

Proof. Let z1 be a point in R. Then, since R is simply connected any two curves
from z0, to z1 are homotopic in R. The Monodromy theorem implies that any two
terminal function elements of analytic continuations of (f0, D0) along curves from z0

to z1 in R will be equivalent and hence, will determine a function F1 analytic in some
neighbourhood of z1, say Q1.

Clearly, F1(z) = f0 (z) on D0, F1(z) = f1(z) on D1, ..., etc for the continuation along
the curve γ1 from z0 to z1.

Again let z2 be a point in R, and γ2 be a curve in R joining z0 to z2 and let (gn,
En) be the function element at z2 continuing along the curve γ2 with f0 = g0 on D0 =
E0. We simply join z2 to z1 by a curve γ and claim that continuation of (F1, Q1), along
the curve γ to z2, will be equivalent to (gn, En) (since the curves γ1∪γ and γ2 are
homotopic), which gives rise to the fact that there is a function F2 analytic in some
neighbourhood of z2, say Q2, which coincides with F1 On Q1.

Clearly, F2(z) possesses larger domain of analyticity than F1(z). Proceeding in this
way finite number of times we can achieve a function F analytic throughout the region
R.
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Unit 2 � Harmonic Functions

Structure

2.0 Objectives

2.1 Harmonic Function

2.2 Gauss’ Mean Value Theorem for harmonic

2.3 Inverse point of a given point with respect to a circle

2.4 The Dirichlet Problem

2.5 Subharmonic & Superharmonic Functions

2.0 Objectives

In this chapter we shall mainly study harmonic functions and their basic properties.

Gauss’ mean value theorem, Poisson’s integral formula, Dirichlet’s problem for a disc and

Harnack inequality for harmonic functions will be discussed. Subharmonic and super

harmonic functions will be explained through examples.

2.1 Harmonic Function

A function u(x, y) of two real variables x and y defined in an open set D is said to

be harmonic in D if it has continuous derivatives of the second order and satisfies the

equation

∂
∂

∂
∂

2

2

2

2 0
u

x

u

y
+ = (16)

known as Laplace’s equation.

The differential operator 
∂
∂

∂
∂

2

2

2

2x y
+  is called the Laplacian and is denoted by ∇ 2.

We introduce the differential operators
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in order to achieve a condition equivalent to (16) for f(z). If we write

x z z
i
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2
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and consequently the condition equivalent to (16) is
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A function f(z) is said to be harmonic in D if f has continuous second derivatives in
D and satisfies

∇ = ∀2 0f z , ε D (21)

Result 1 : If f = u + iv is analytic in a domain D, then 
∂
∂

εf

z
z = ∀0,  D .

Proof : u and v satisfy the Cauchy-Riemann equations and using (19b) we have,

∂
∂

f

z
u iv

i
u ivx x y y= + − +1

2

1

2
( ) ( )

= + − − +
1

2

1

2
( ) ( ),u iv

i
v iux x x x  using C–R equations

= 0

Result 2 : The real and imaginary parts of an analytic function are harmonic.

Proof : Let f = u + iv be analytic in a domain D. By Cauchy-Riemann equations

ux = vy and uy = – vx

i.e. uxx = vxy and uyy = –vxy [since vxy = vyx, partial derivatives being continuous]

and on addition it proves that u is harmonic in D. Likewise v is also harmonic in D.

Harmonic conjugates : Let u (x, y) and v(x, y) be two harmonic functions in a
domain D C⊆ / .



28

If they satisfy the Cauchy-Riemann equations :
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x
= = −, , in D, then

we say that v is a harmonic conjugate of u. It follows that f(z) = u(x, y) + i v
(x, y) is analytic in a domain D if and only if v(x, y) is a harmonic conjugate of u(x,
y) in D.

Remark : We know that the real part as well as the imaginary part of an analytic
function are harmonic. Now the questions arise :

1. Can any real harmonic function be the real part of an analytic function?

2. Whether every real harmonic function has a harmonic conjugate?

Existence of Harmonic conjugates

Theorem 2.1 Let u(x, y) be a real-valued harmonic function in a simply connected
domain D C⊆ / . Then there is an analytic function f in D such that u = Re f (or,
equivalently there is a function v, a harmonic conjugate of u) which is unique to within
addition of an arbitrary real constant.

Proof. Since the function u(x, y) is harmonic in a simply connected domain D,
we have
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is exact. So there is a single-valued function v(x, y) which is unique to within an
additive arbitrary constant, i.e.

v x y
u

y
dx

u

x
dy K

x y

x y
( , )

( , )

( , )
= − + +� ∂

∂
∂
∂0 0

(22)

K ≡ real constant,

where (x0, y0) is an initial point and (x, y) is any variable point lying in D and the
integral on the curve connecting (x0, y0) to (x, y) is path independent.

From (22) we find that
∂
∂

∂
∂

∂
∂

∂
∂

v

x

u

y

v

y

u

x
= − = −, ,



29

which in turn ensures that v(x, y) is harmonic in D and harmonic conjugate to u(x, y)
i.e. f = u + iv forms an analytic function in D.

Observation : If D is multiply connected then the integral in (22) may take
different values for different paths connecting (x0, y0), to (x, y) giving v(x, y) as a
multi-valued function, unless the paths are restricted to a simply connected sub domain
contained in D.

Example 1. Let D be the whole plane cut along the negative real axis including
the origin (y = 0, x ≤ 0). Show that u(x, y) = sin x cosh y is harmonic in D, and find
its harmonic conjugate. Also find the corresponding analytic function.

Solution : Here u(x, y) possesses continuous second order partial derivatives in
D and also satisfies the Laplace equation : uxx + uyy = 0. Hence u(x, y) is harmonic
in D.

Let v(x, y) be its harmonic conjugate. Then according to the formula (22), we have
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 real constant,

where M(1, 0) is the initial point.

Here, u(x, y) = sin x cosh y

ux = cos x cosh y

uy = sin x sinh y

Now let the point Q(x, y) lie in the 1st
quadrant of the right-half plane. Then
integrating along MNQ, we find that

v x y
u

y
dx
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x
dy K

MN NQ
( , ) = − + − +� �∂

∂
∂
∂ 1

= − + +� �sin sinh cos coshx o dx x K
x y

1 10
 y dy

= cos x sinh y + K1

Again, if the point (x, y) lies in the 2nd quadrant of the left-half plane, then we obtain

v x y
u
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y
dx K

MN N Q
( , ) = + − +� �∂

∂
∂
∂1 1 2

= �0y cos 1 cosh y dy + �1x  – sin x sinh y dx + K2

= cos 1 sinh y + cos x sinh y – cos 1 sinh y + K2

= cos x sinh y + K2

The expression for v(x, y) in both the cases turns out to be the same apart from
an additive constant. It results from the fact that the two paths in determining the
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integral lie in a simply connected domain. Thus, v(x, y) = cos x sinh y + K at all points
of D. Therefore, an analytic function with the given real part will be of the form

f(z) = sin x cosh y + i cos x sinh y + iK, K ≡ real constant

= sin(x + iy) + iK

= sin z + iK

As for uniqueness, if two analytic functions in D have the same real part, then their
difference has derivative zero, by the Cauchy-Riemann equations. In that case the
functions differ by a constant.

2.2 Gauss’ Mean Value Theorem for harmonic functions
Let u(z) = u(x, y), z = x + iy, be harmonic in the disk K : |z – z0| < R and

continuous on the closed disk K. Then

u z u z i( ) ( Re )0 00

21

2
= +�π

θ
π θ  d (23)

Proof. Let f(z) be an analytic function defined in K such that Re f (z) = u(z). It
follows from Cauchy’s integral formula that

f z
i

f z
z z

dz r R
z z r

( )
( )

,
| |0

0

1
2

0
0

=
−

< <
− =�π

 

using the parametric form of the circle |z – z0| = r.

z z rei= + ≤ ≤0 0 2θ θ π, ,  so that dz ire di= θ θ. The integral then gives

f z f z re d r Ri( ) ( ) ,0 00

21

2
0= + < <�π

θθπ
 

Equating the real parts, we obtain

u z u z re di( ) ( )0 00

21

2
= +�π

θθπ

whence taking the limit r → R, we obtain the desired result (23)

2.3 Inverse point of a given point with respect to a circle
Let γ : |z – α| = R and z0 be a given point. Let z1 be another point on the radius

through z0 such that |z0 – α| |z1 – α| = R2. Then either of the points z0 and z1 is called
the inverse point of the other with respect to γ. The centre of the circle γ is called the centre
of inversion.

It follows from the definition that (i) if z0 lies inside γ, then z1 must lie outside
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γ, (ii) if z0 lies on γ, then z1 must also lie on γ and it coincides with z0, (iii) if z0

lies outside γ, then z1 must lie inside γ.

Every point, except the centre of the circle, on the plane has a unique inverse point
with respect to the circle. We associate the point at infinity to the inverse point of the
centre.

Result : Let γ : |z| = R and z0 be a given point. Then the inverse point of z0 with

respect to γ is given by 
R

z

2

0

.

Proof : Let z0 = reiθ. Then its inverse point with respect to γ is given by z1 = r1eiθ,

where rr1 = R2. Hence r1 = 
R

r

2

 and so

z
R

r
e

R

re

R

z
i

i1

2 2 2

0

= ⋅ = =−
θ

θ

Poisson’s integral formula : Theorem : Let u(x, y) be a harmonic function in a simply
connected region D and γ : |ς| = R be a circle contained in D. Then for any z = reiθ,

r < R, u can be written as u(r, θ) = −
+ − −�1

2 2

2 2

2 20

2

π
φ φ
φ θ

π ( ). ( , )
cos( )

R r u R d
R r Rr

, where Reiφ is a

point on γ.

Proof : Since u(x, y) is harmonic in D, there exists a conjugate harmonic function
v(x, y) in D so that f(z) = u(x, y) + iv(x, y) is analytic in D. Then f(z) is analytic within
and on γ and so for any z within γ, by Cauchy’s integral formula,

f z
i

f

z
( )

( )=
−�

1

2π γ
  d

ς
ς

ς (24)

The inverse point of z with respect to γ lies outside γ and is given by 
R

z

2

. Hence

by Cauchy-Goursat theorem,

0
1

2 2=
−

�π γi

f
R
z

  d
( )ς

ς
ς (25)

Subtracting (25) from (24) we get,

f z
i z R

z

d( ) ( )=
−

−
−

�
�
	

�
		

�
�
	



		

�1

2

1 1
2π γ ς ς

ς ς f
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=
−

− −���
�
��

�1

2

2

2π γi

z R
z f d

z
R
z

� � ( )

( )

ς ς

ς ς
(26)

Let ς = Reiφ. Also, z re i= − θ. Then (26) becomes

f re
i

re
R

r
e f i d

re
R

r
e

i

i i i i

i i i i

( )

(Re ) Re

(Re ) Re

θ

θ φ θ θ

θ θ φ θ

π

π

φ
=

−
�
��

�
��

− −
�
��

�
��

�1

2

2

20

2

= −
− −

+

�1
2

2 2

0

2

π
φφ θ φ

φ θ φ θ

π ( ) (Re )
(Re )( Re )

( )r R e f d
re re

i i

i i i i

= −
− −− −�1

2

2 2

0

2

π
φφ

φ θ φ θ

π ( ) (Re )
(Re )(Re )

R r f d
re re

i

i i i i

=
−

+ − −�1

2 2

2 2

2 20

2

π
φ

φ θ

φ
π ( ) (Re )

cos( )

R r f d

R r Rr

i

(27)

Let f(reiθ) = u(r, θ) + iv(r, θ). Then (27) becomes

u r iv r
R r u R iv R

R r Rr
( , ) ( , )

( ) ( , ) ( , )

cos( )
θ θ

π
φ φ

φ θ
φ

π
+ =

− +
+ − −�1

2 2

2 2

2 20

2 � �
 d (28)

Equating real parts in (28) we get,

u r
R r u R

R r Rr
( , )

( ) ( , )
cos( )

θ
π

φ
φ θ

φ
π

= −
+ − −�1

2 2

2 2

2 20

2
 d (29)

Formula (29) is known as Poisson’s integral formula.

Note : Let 
R r

R r Rr
P R r

2 2

2 2 2

−
+ − −

= −
cos( )

( , , )
φ θ

φ θ . Then,

the function P(R, r, φ – θ) is called the Poisson Kernel. Hence we can write (29) in
the form

u r R r u R d( , ) , , ) ( , )θ
π

φ φ φ φ
π

= −�1

2 0

2
   P( (30)
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We can also get a formula similar to (29) for the imaginary part of f(z) by equating
the imaginary part in (28). The corresponding formula is

v r
R r v R d

R r Rr
P R r v R d( , )

( ) ( , )
cos( )

( , , ) ( , )θ
π

φ φ
φ θ π

φ θ φ φ
ππ

= −
+ − −

= −��1
2 2

1
2

2 2

2 2 0

2

0

2

(31)

Remark : Cauchy’s integral formula expresses the values of an analytic function
inside a circle in terms of its values on the boundary of the circle whereas Poisson’s
integral formula expresses the values of a harmonic function inside a circle in terms
of its values on the boundary of the circle.

Result 3. 
1

2 0

2

π
φ θ φ

π
P R r d( , , )−�  = 1.

Proof : By Poisson’s integral formula we have,

u r P R r u R d( , ) ( , , ) ( , )θ
π

φ θ φ φ
π

= −�1

2 0

2

 Taking u(r, θ) ≡ 1 we get,

1

2
1

0

2

π
φ θ φ

π
P R r d( , , )− =�

Result 4. P R r
z

z
( , , ) Reφ θ ς

ς
− = +

−
�
��

�
��

Proof : Let ς = Reiφ, z = reiθ, r < R. Then,

ς
ς

+
−

= +
−

= + + +
− + −

z

z

re

re

R r i R r

R r i R r

i i

i i

Re

Re

( cos cos ) ( sin sin )

( cos cos ) ( sin sin )

φ θ

φ θ

φ θ φ θ
φ θ φ θ

= + + + − − −
− + −

{( cos cos ) ( sin sin )}{( cos cos ) ( sin sin )}

( cos cos ) ( sin sin )

R r i R r R r i R r

R r R r

φ θ φ θ φ θ φ θ
φ θ φ θ2 2

Simplifying we get, Re
cos( )

( , , ).
ς
ς

+
−

�
��

�
�� = −

+ − −
= −z

z

R r

R r Rr
P R r

2 2

2 2 2 φ θ
φ θ

Result 5. Poisson Kernel P(R, r, φ – θ) is harmonic in |z| < R.

Proof : Let f z
z
z

( ) .= +
−

ς
ς

 Then f(z) is analytic in |z| < R. By result 4, P(R, r φ–

θ) = Re f(z). Hence the Poisson Kernel is the real part of an analytic function. Hence
P(R, r, φ–θ) is harmonic in |z| < R.

Note : We can easily show that 
R r

R r Rr

R z

zi

2 2

2 2

2 2

22

−
+ − −

=
−

−cos( ) Reφ θ φ



34

where z = reiθ, r < R. Hence Re
Re

ς
ς φ

+
−

�
��

�
�� =

−

−

z

z

R z

zi

2 2

2  and Poisson’s integral

formula (29) can be written as

u r
R z

z
u R d

i
( , )

Re
( , )θ

π
φ φ

φ

π
=

−

−
�1

2

2 2

20

2

(32)

The function 
R z

zi

2 2

2

−

−Re φ
 is the Poisson Kernel.

Theorem 2.2 Let u(x, y) ≠ constant be harmonic on a simply connected domain
D. Then u(x, y) has neither a maximum nor a minimum at any point of D.

Proof. Let z0 = x0 + iy0 be an arbitrary point of D. Then following theorem 2.1
there is an analytic function f(z) in a neighbourhood N(z0) of z0 such that Re f = u.
Then

g(z) = ef(z)

is analytic on N(z0) and not equal to constant since u(x, y) ≠ constant and

|g(z)| = eu(x,y)

Again exponential function is strictly increasing, so a maximum for u at (x0, y0)
is also a maximum for eu, and hence also a maximum of |ef| i.e. of |g(z)| at z0. The
function u(x, y) cannot have a maximum at (x0, y0), since otherwise |g(z)| would have
a maximum at z0, thereby contradicting the maximum modulus principle. Likewise,
following the minimum modulus principle |g(z)| cannot have a minimum value at z0

since |g(z)| ≠ 0 on D. Therefore u(x, y) cannot possess minimum value at (x0, y0).

Corollary. Let u(x, y) be harmonic on a domain D and continuous on D . Then
u(x, y) attains its maximum and its minimum on the boundary of D.

Proof. Since u(x, y) is continuous on the compact set D , it attains both its

maximum and its minimum on D , but u(x, y) cannot possess a maximum or a minimum
at a point of D. Therefore the corollary follows.

Example 2. Given u(x, y) harmonic in the disk |z| < R and A(rj) its maximum value
on the circle |z| = rj, rj < R, j = 1, 2, 3. Prove that

A r
r r
r r

A r
r r

r r
A r( )

log log
log log

( )
log log

log log
( )2

2 1

3 1
3

3 2

3 1
1≤ −

−
+ −

−
for 0 < r1 < r2 < r3 < R.

Solution. Since u(x, y) is harmonic in |z| < R, u(x, y) + α log r, r x y= +2 2 ,  α ≡ a

real constant to be fixed later, is also harmonic in the annulus r z r1 3≤ ≤ . Hence its
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maximum is attained on the boundary of the annulus i.e. on |z| = r1 or, |z| = r3 or, on both.
Either A(r1) + α log r1 or, A(r3) + α log r3 is maximum. We define α so that

A(r1) + α log r1 = A(r3) + α log r3

or, α = −
−

A r A r

r r

( ) ( )

log log
1 3

3 1

The circle |z| = r2 lies inside the annulus r1 ≤ |z| ≤ r3 and according to corollary of the
theorem 2.2 regarding maximum value of the harmonic function u(x, y) + α log r we have

A(r2) + α log r2 ≤ A(r3) + α log r3

or, A(r2) ≤ A(r3) + α(log r3 – log r2)

= + −
−

−A r
A r A r

r r
r r( )

( ) ( )

log log
(log log )3

1 3

3 1
3 2

= −
−

+ −
−

log log
log log

( )
log log

log log
( )

r r
r r

A r
r r

r r
A r2 1

3 1
3

3 2

3 1
1

2.4  The Dirichlet Problem

Let D be a domain with boundary Γ and let � (x, y) be a continuous real function

defined on Γ. The Dirichlet problem is to find a function u(x, y), harmonic on D and

continuous on D , which coincides with � (x, y) at every point of Γ.

Existence of a solution of Dirichlet’s problem for a disc

Theorem 2.3 Let D be the disc |z| < R with boundary Γ : |z| = R and let U(φ)
be a continuous real function on the interval [0, 2π] such that U(0) = U(2π). Then the
function u(r, θ) defined by the integral

u r
R r U

R r Rr
d( , )

( ) ( )
cos( )

θ
π

φ
φ θ

φ
π

= −
+ − −�1

2 2

2 2

2 20

2
(33)

         for any point (r, θ) on D any by u(R, φ) = U(φ) (34)

for any point (R, φ) on Γ, solves the Dirichlet problem for the disc D. In otherwords,

(i) u is harmonic on D and continuous on D  and (ii) lim ( , ) ( ),
Rerei i

u r U
θ φ

θ φ
→

=
0

0

where Reiφ0  is any fixed point on Γ.

Proof : To prove that u(r, θ) defined by (33) on D is harmonic on D we observe that
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R r

R r Rr
P R r

2 2

2 2 2

−
+ − −

= −
cos( )

( , , )
φ θ

φ θ

= +
−

�
��

�
��Re ,

ς
ς

z

z
 where P (R, r, φ–θ) is the Poisson Kernel and ς = Reiφ, z = reiθ, r < R.

The r.h.s. is the real part of the function 
ς
ς

+
−

z

z
 which is analytic in D. Hence the

Poisson Kernel P(R, r, φ–θ) is harmonic in D. So, differentiation under the sign of
integration is valid. Applying the Laplacian ∇ 2 in (r, θ) to both sides of (33) we get,

∇ = ∇ − =�2

0

2 21

2
0u P(R r d

π
φ φ θ φ

π
   U( ). , , )  [Since P(R, r, φ–θ)

is harmonic in D ⇒ ∇ 2P(R, r, φ – θ) = 0].

⇒  u is harmonic on D.

Next we prove that the function u(r, θ) defined by the integral (33) approaches
U(φ0) as the point (r, θ) in D tends to any fixed point (R, φ0) on Γ.

Let (rn, θn) be an arbitrary sequence of points in D converging to the boundary
point (R, φ0). We now consider the difference

u r U R r U d Un n n n( , ) ( ) , , ) ( ) ( )θ φ
π

φ θ φ φ φ
π

− = − −�0 0

2

0

1

2
   P(

    = − −�1

2 0

2

0π
φ φ φ θ φ

π
   { ( ) ( )} , , )U U P(R r dn n (35)

     (Since 
1

2
1

0

2

π
φ θ φ

π
P R r dn n( , , ) )− =�

Since U(φ) is continuous on Γ, for given ∈ > 0 there exists a δ(∈ ) > 0 such that

U U( ) ( )φ φ− <
∈

0 2
(36)

whenever φ φ δ− <0 2 (37)

we choose δ so small that (36) is satisfied and φ0 – 2δ > 0, φ0 + 2δ < 2π. We
break the integral on r.h.s. of (35) as

u r U P(R r U U dn n n n( , ) ( ) , , ){ ( ) ( )}θ φ
π

φ θ φ φ φ
φ δ

− ≤ − −
−�0 0

2

0

1

2
0

+ + = + +
−

+

+� �1

2

1

20

0

02

2

2

2

1 2 3π πφ δ

φ δ

φ δ

π
� � | | | | | |I I I (38)
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Now, | | | ( , , )| ( ) ( )|I P R r U U dn n2 2

2

0

1

2 0

0≤ − −
−

+�π
φ θ φ φ φ

φ δ

φ δ

      < ∈ ⋅ − =�2

1

2 20

2

π
φ θ φ επ

   | , , )|P(R r dn n (39)

To estimate the other two terms we choose n so large that

|φ0 – θn| < δ. Then, |φ – θn| = |φ – φ0 + φ0 – θn| ≥ | φ – φ0| – |φ0 – θn) > 2δ
– δ = δ since |φ – φ0| > 2δ whenever φ belongs to either of the intervals [0, φ0 –
2δ] or, [φ0 + 2δ, 2π].

Then, | | | | . .
cos

I I M
R r

R r Rr
d dn

n n
1 3

2 2

2 2 2

2

0

2
2

1

2 2 0

0+ ≤ −
+ −

+
+

− ��π δ
φ φ

φ δ

πφ δ
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     < −
+ −

→ →2
2

0
2 2

2 2M
R r

R r Rr
Rn

n n
ncos

,
δ

 as r

where M Max U U n= − − <
φε π

φ ϕ φ θ δ
[ , ]

| ( ) ( )| cos( ) cos .
0 2 0  and 

Thus, for sufficiently large n, | | | |I I1 3 2
+ < ε

(40)

Using (39) and (40) in (38) we get,

| ( , ) ( )|u r Un nθ φ ε− <0  for sufficiently large n;

i.e. lim ( , ) ( )
n

n nu r U
→∞

=θ φ0 (41)

where (rn, θn) is an arbitrary sequence of points in D approaching (R, φ0).

Equation (41) still holds if some or all the points (rn, θn) lie on Γ since in that
case we can directly use the fact that U(φ) is continuous on Γ. This implies u(r, θ)

is continuous on D . This completes the proof.

Uniqueness of the solution to the Dirichlet problem for a disc.

Let u1 and u2 be two solutions of the Dirichlet problem. Then their difference u1

– u2 = h is harmonic in D and continuous in the closed disk and takes the value zero
on the boundary. Hence h attains its upper bounds at some points of the closed disk.
If l > 0, the upper bound will occur in the open disk, since on the boundary Γ h is
zero. This contradicts the conclusions of theorem 2.2. So then l = 0. In the same way

we can show that the lower bound of h on D  is zero. Thus there is no alternative

but h to be zero on D .
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Theorem 2.4 Any continuous function u(z) possessing the mean-value property in
a domain D is harmonic in D.

Proof. Let K  be a closed disk contained in D. By hypothesis of the theorem u
satisfies the mean value property in K. We shall prove that u is harmonic in K. By
the theorem 2.3 on the Dirichlet problem for a disk there exists a continuous function
~( )u z  in K, which  is harmonic in the interior of K and coincides with u(z) on the
boundary of K. The difference u u− ~ is continuous and satisfies the mean-value
property in K. By the corollary to the theorem 3.7 [(14) page-58] u u− ~ satisfies the
maximum modulus prnciple in K. Now as u u− ~ is zero on the boundary of K, it will
be identically zero in K. Therefore u coincides with the harmonic function ~u  in the
interior of K and since K is arbitrary, u is harmomic in the domain D.

The Harnack Inequality : Let u be a non-negative Harmonic function on a closed
disk D (0, R). Then, for any point z ε D(0, R)

R z

R z
u u z

R z

R z
u

−
+

≤ ≤
+
−

( ) ( ) ( )0 0 (42)

where D(0, R) denotes a disk with centre 0 and radius R.

Proof. From the Poisson’s integral formula for u on D  (0, R) :

u z u
R z

z
di

i
( ) (Re )

Re
=

−

−
�1

2 0

2
2 2

2π
φφπ

φ
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R z

R z

R z
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2 2
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−
≤

−

−
=

+
−Re φ � �

Combining these two, we see that

u z
R z

R z
u d

R z

R z
ui( ) (Re ) ( ),≤

+
−

=
+
−�1

2
0

0

2

π
φφπ

where we make use of the mean value theorem. Similarly, the other inequality in

(42) will follow from 
R z

z

R z

R z

R z

R zi

2 2

2

2 2

2

−

−
≥

−

+
=

+Re

–
φ � �

Corollary Let u be a non-negative harmonic function on a closed disk D R( , )ς . Then
for any z ε D (ς, R),

R z

R z
u u z

R z

R z
u

−
+

≤ ≤
+
−

–

–
( ) ( )

–

–
( )

ς
ς

ς
ς
ς

ς (43)
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2.5 Subharmonic & Superharmonic Functions
Definition : A real-valued continuous function u(x, y) in an open set D of the

complex plane C/ is said to be
(i) subharmonic if, for any ς ε D

u u re di( ) ( )ς ς≤ +�1

2 0

2

π
θθπ

hold for sufficiently small r > 0.
(ii) superharmonic if, for any a ε D

u a u a re di( ) ( )≥ +�1

2 0

2

π
θθπ

hold for sufficiently small r > 0.
From the definition it follows that every harmonic function is subharmonic as well

as superharmonic.
Example 3. If f(z) is analytic on a domain D, then |f(z)| is subharmonic but not

harmonic in D unless f(z) ≡ constant.
Solution : Using the Cauchy’s integral formula

f a f a re di( ) ( )≤ +�1

2 0

2

π
θθπ

(44)

for every a ε D and r (> 0) is small enough. Here equality holds only if f(z) ≡
constant. We now show that the integral

I r f a re di( ) ( )= +�1

2 0

2

π
θθπ

is a strictly increasing function of r, if f(z) ≠ constant. Let 0 < r1 < r2 < k(a) and
g(θ) be continuous on [0, 2π] and F(z) be defined by

(i) g f a r e f a r ei i( ) ( ) ( ) ,θ θ πθ θ+ = + ≤ ≤1 1 0 2

(ii) F z f a ze g d z ri( ) ( ) ( ) ,= + ≤�1

2 0

2

2π
θ θθπ

(iii) k(a) ≡ minmum distance between a and the boundary of D.
F(z) is regular for |z| ≤ r2 and attains its maximum of the boundary of the disc,

say at z = r2eiφ. Then

I r f a r e di( ) ( )1 10

21

2
= +�π

θθπ

     = +�1

2 10

2

π
θ θθπ

f a r e g( di( ) )
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= F(r1)

< F r ei( )2
θ

≤ + +�1

2 20

2

π
θθ φπ

f a r e di( )( )

= +
+�1

2 2

2

π
ψψ

φ

π φ
f a r e di( ) ,  taking φ + θ = ψ

= − + +
+���1

2 22

2

00

2

π
ψψ

π

π φφπ
f a r e di( )� �

= +�1

2 20

2

π
ψψπ

f a r e di( ) ,  (substituting ψ = 2π + θ in the third

integral, we find that it cancels the second term)

= I (r2). Hence equality in (44) is possible if and only if f(z) ≡ constant. Therefore
|f(z)| is subharmonic but not harmonic in D unless f(z) ≡ constant.

Example 4. If f(z) ≠ 0 is analytic in a domain D, then log |f(z)| is subharmonic
in D.

Solution : Let Φ(z) = log|f(z)|. Here at the zeros of f(z), Φ(z) has poles and takes
the value – ∞ there. In every closed disk contained in D there are at most a finite
number of points where log f(z) = – ∞.

Now let a ε D be any point at which f(z) is distinct from zero. Since f(z) is
analytic and not identically zero, there exists a small neighbourhood of a where f(z)
is distinct from zero. We find that

log f(z) = log |f(z)| + i arg f(z)

is analytic in this neighbourhood and hence log |f(z)| is harmonic there and we
have the equality

Φ Φ( ) ( )a a re di= +�1

2 0

2

π
θθπ

(45)

for all sufficiently small values of r. On the otherhand, if a is a zero of f(z), we have

Φ Φ( ) ( )a a re di= − ∞ < +�1

2 0

2

π
θθπ

(46)

Combining (45) with (46) we obtain Φ(z) is subharmonic in D.



41

Unit 3 � Conformal Mappings

Structure

3.0 Objectives of this Chapter

3.1 Conformal Mappings

3.2 Basic Properties of Conformal Mapping

3.0 Objectives of this Chapter

This chapter deals with conformal mappings and their basic properties. Many
examples are given to explain different concepts on conformal mappings. The inverse
function theorem is also discussed.

3.1 Conformal Mappings

Let X be an open set in /C  and suppose a function f : X → /C  is given. We know

from functional analysis that if f is continuous, a compact set of X is mapped onto a
compact set in f(X) and a connected set of X onto a connected set of f(X). If moreover,
f is single-valued and analytic there occur several interesting results. In this chapter
we study mappings which transform different curves and regions from one complex
plane to other complex plane with reference to magnitude and orientation. Such type
of mappings play an important role in the study of various physical problems defined
on domains and curves of arbitrary shape.

Level Curves

Let w = f(z) with z = x + iy and w = u + iv where f(z) is analytic. u = u (x, y)

v = v(x, y) satisfy Cauchy-Riemann equations

ux = vy, uy = – vx

from which it follows that

uxx + uyy = 0

vxx = vyy = 0

Also, ∇ u . ∇ v = 0, where
Fig. 16

u(x, y) = constant
v(x, y) = constant
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∇ =
�
��

�
��

∂
∂

∂
∂x y

,

So that the level curves u (x, y) = constant and v (x, y) = constant are orthogonal.

Now f1(z) = ux + ivx = ux – iuy = vy + ivx

so that f z u u v vx y x y
1 2 2 2 2 2( ) .= + = +

Two basic results :

No. 1

Suppose that w = f(z) maps D into D1.
Let ψ(u, v) = ψ ((u (x, y), v (x, y)) = φ (x, y).
To prove φxx + φyy = | f1 (z) |2 (ψuu + ψvv)
we calculate φx = ψuux + ψvvx

φ ψ ψ ψ ψ ψxx uu x vv x uv x x u xx v xxu v u v u v= + + + +2 2 2
φ ψ ψ ψ ψ ψyy uu y vv y uv y y u yy v yyu v u v u v= + + + +2 2 2

Thus,  φ φ ψ ψ ψxx yy x y uu x y vv uv u vu u v v+ = + + + + ∇ ∇( ) ( ) . ,2 2 2 2 2
since u, v satisfy Laplace equation. Again,  ∇ u . ∇ v = 0,
so we obtain φxx + φyy = | f1(z) |2 (ψuu + ψvv)
Therefore if f1(z) ≠ 0 inside D we have φxx + φyy = 0 imples ψuu + ψvv = 0 and

vice-versa.

Fig. 17

Fig. 18

w = f(z)φ (x, y)

D

ψ (u, v)

D1

xy plane

uv plane

w = f(z)
D

D1

φxx + φyy = 0 in D

ψuu + ψvv = 0 in D1

z = x + iy
w = u + iv
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No. 2. Consider a level curve F(x, y) = 0 upon ∇φ . n = 0.

Let under the analytic mapping w = f(z) the level curve map to G(u, v) = 0.

We shall show that ∇ψ .n = 0 on G(u, v) = 0

Consider the map w = f(z) → ω = u + iv, so u = u(x, y), v = v(x, y).

Suppose f(z) is analytic. Then,

φ ψ ψ
φ ψ ψ

φ
φ

ψ
ψ

x u x v x

y u y v y

x

y

u

v

x x

y v

u v

u v
so S with S

u v

u v

= +
= +

�
�
	

�
��
�
��

=
�
��
�
��

=
�
��

�
��

,

Then, ∇φ  = S∇ ψ, ∇ F = S∇ G and clearly, STS = | f1(z) |2 1

Now, 
∂φ
∂n

F

F

S S G

S G

S S G

S G S G

G f z

G G

T T

T

T

T
= ∇φ ⋅ ∇

∇
= ∇ψ ∇

∇
= ∇ψ ∇

∇ ∇
=

∇ψ ∇

∇ ∇

.( ) ( )

( ) ( )

( ) ( )

( )
/ /


 � 
 �
1 2

1

1 2

(where the usual vector operations, a.b = aTb and (a.a)1/2 = (aTa)1/2 = |a | have

been used)

So,
∂φ
∂

∂ψ
∂n

F

F
f z

G

G
f z

n
= ∇φ ⋅ ∇

∇
= ∇ψ ∇

∇
=1 1( ) ( )

This shows that if 
∂φ
∂n

= 0  on the boundary of D then 
∂ψ
∂n

= 0 on the boundary

of D1, provided |f1(z) | ≠ 0 on the boundary of D.

Note : These give us a means of transforming the domain over which the
Laplace’s equation is to be solved comfortably. Such type of things is usually dealt
in solving boundary value problems in potential theory.

Angle of Rotation

Given a function of a complex variable w = f(z) analytic in a domain D. Let z0

be any point lying within D, γ : z = σ(t), a ≤ t ≤ b, σ(t0) = z0, be a curve passing

Fig. 19

D
D1

Fig. 20
F(x, y) = 0

G(u, v) = 0

nn
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through z0 (and lying within D). The function σ(t) has a non zero derivative σ1(t0) at
the point z0 and the curve γ has a tangent at this point with a slope equal to Arg σ1(t0).

Under the mapping w = f(z) the curve γ is transformed into a curve Γ : w = f(σ(t))
= µ(t), a ≤ t ≤ b, µ(t0) = f(z0) = w0 in the w-plane. µ(t) is differentiable at t = t0 and
the curve Γ has a tangent at w0 = f(z0). Then following the chain rule for differentiation
of composite functions, assuming f1(z0) ≠ 0

µ1(t0) = f1(σ(t0) σ1(t0)

It follows that

Arg µ1(t0) = Arg f1(z0) + Arg σ1(t0)

i.e., Arg µ1(t0) = Arg σ1(t0) + Arg f1(z0) (47)

This implies that change in slope of a curve at a point under a transformation
depends only on the point and not on the particular curve through that point.

Example 1. Verify the result given in equation (47) for the curve y = x2 under
the transformation f(z) = z2 at z = 1 + i.

Solution. First we calculate the change in slope of the curve y = x2 at the given
point under the transformation w ≡ f(z) = z2. Following the formula given in eq. (47)

Arg f1(1 + i) = Arg 2(1 + i) = tan–1 1

A parametric form of the given curve y = x2 is given by

γ : z = t + it2, –∞ < t < ∞.

Here z0 = 1 + i at t0 = 1 and z1(1) = 1 + 2i, so that slope of the curve γ is
tan–1 2.

Now we find slope of the transformed curve.

w = f(z) ⇒  u + iv = (x + iy)2

So, u = x2 – y2 and v = 2xy = 2x . x2 = 2x3.

Fig. 21 Fig. 22
z-plane w-plane

x u

y
v

γ

0

Γ
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0 0

C1

C2

z0

θ
φ

c1
1= w1(t)

c2
1= w2(t)

= f(z2(t))
w0

Then, u x x
v v= − = �
��
�
��

− �
��
�
��

2 4

2 3 4 3

2 2

/ /

,  which is the equation of the transformed

curve Γ. The image of the point (1 + i) of z-plane is the point 2i in the w-plane and

the slope of the curve Γ at w = 2i is

dv

du w i=

= −
2

3

Thus the change in slope of the curve γ under the transformation is

tan ( ) tan ( ) tan tan− − − −− − = − −
−

=1 1 1 13 2
3 2

1 6
1

which is the same as obtained earlier following equation (47).

Definition : A mapping w = f(z) is said to be conformal at a point z = z0, if it
preserves angles between oriented curves, passing through z0, in magnitude and in
sense of rotation.

Theorem 3.1 : Let f(z) be an analytic function in a domain D containing z0.

If f1(z0) ≠ 0, then f(z) is conformal at z0.

Proof. Let C1 : z = z1(t) and C2 : z = z2(t), t ≡ parameter, be two curves which

intersect at some t = t0 where z1(t0) = z2(t0) = z0, C C1
1

2
1,  are their images under the

mapping w = f(z).

Then following the result given in eq. (47)

Arg w t Arg z t Arg f z t Arg f z( ( )) ( ( )) ( ( ( )) ( ))1
1

0 1
1

0
1

1 0
1

0− = =

and Arg w t Arg z t Arg f z t Arg f z( ( )) ( ( )) ( ( ( )) ( )).2
1

0 2
1

0
1

2 0
1

0− = =

Fig. 21 Fig. 22

z-plane w-plane

tangent lines are

z1 = z1
1(t0), z1 = z2

1(t0) at t = t0

tangent lines are

w1
1(t0) = f1(z1(t0)z1

1(t0)

w2
1(t0) = f1(z2(t0)z2

(t
0)z2

1(t0)
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Subtracting, Arg w t Arg w t Arg z t Arg z t( ( )) ( ( )) ( ( )) ( ( ))1
1

0 2
1

0 1
1

0 2
1

0 0− − − =� 


i.e., θ = φ, where θ = angle between the curves C1 and C2 at z0 and

φ = angle between the curves C and C1
1

2
1  at w0.

Observation : From the basic results proved earlier we learn that if f is a

conformal mapping, then orthogonal curves are mapped onto orthogonal curves.

3.2 Basic Properties of conformal Mappings

Let f(z) be an analytic function in a domain D, and let z0 be a point in D. If f(z0)
= 0, then we can express f(z) in the form

f(z) = f(z0) + (z – z0)f1(z0) + (z – z0)η(z),
where η(z) → 0 as z → z0. If z is near z0, then the transformation w = f(z) has

the linear approximation
G(z) = A + B(z – z0).

where A = f(z0) and B = f1(z0). As η(z) → 0 when z → z0, for points near zn

the transformation w = f(z) has an effect much like the linear mapping w = G(z). The
effect of the linear mapping G is a rotation of the plane through the angle α = Arg
(f1(z0)), followed by a magnification by the factor | f(z0) |, followed by a translation by
the vector A + BZ0.

Remark : If f1(z0) = 0, the angle may not be preserved.

Let us consider, w = f(z) = z2, then we have f1(0) = 0 and

the angle at z = 0 is not preserved but is doubled.

Definition : Let f(z) be a nonconstant analytic function. If f1(z0) = 0, the z0 is
called a critical point of f(z), and the mapping w = f(z) is not conformal at z0. We

shall see afterwards what happens at a critical point.

Fig. 23 Fig. 24

z-plane w-plane
0 0
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The Inverse Function theorem 3.2 Let f(z) be analytic at z0 and f1(z0) ≠ 0. Then

there exists a neighbourhood N(w0, ε) of w0 = f(z0) in which the inverse function
z = F(w) exists and is analytic.

Moreover, F1(w0) = 1/f1(z0). (48)
Proof : Given w = f(z), (z = x + iy, w = u + iv)
is analytic in a neighbourhood of z0, K : |z – z0| < ρ. We shall show that for each

w ∈ L : |w – w0| < ∈  there is a unique solution z = F(w), where z ∈ K.
We express the mapping w = f(z) in terms of the set of equations

u = u(x, y) and v = v(x, y) (49)
which represents a transformation from the xy plane to the uv plane, u, v, possess
continuous first-order partial derivatives satisfying C-R equations. The Jacobian

determinant J(x, y), is defined by

J x y
u u

v v
x y

x y

( , ) = (50)

The transformation in equations (49) has a local inverse in L provided J(x, y) ≠ 0

in K [(3) pp. 358-361]. Expanding r.h.s. of equation (50) and using the C-R equations,

we obtain

J x y u x y v x yx x( , ) ( , ) ( , )0 0
2

0 0
2

0 0= +
= | f1(z0)|2 (51)

≠ 0, by the given hypothesis.
Utilising the continuity of J(x, y) in a small neighbourhood of (x0, y0), equations (49)
and (51) imply that a local inverse z = F(w) exists in a neighbourhood of the point

w0 = f(z0). The derivative of F(w) is given by the familiar expression

F w
F w w F w

w

z

w

z

f z z f zw w z

1

0 0 0
( ) lim

( ) ( )
lim lim

( ) ( )
= + − = =

+ −→ → →∆ ∆ ∆

∆
∆

∆
∆

∆
∆

  =
+ −�

��
�
��

= + −�
��

�
��→ →

lim /
( ) ( )

/ lim
( ) ( )

∆ ∆

∆
∆

∆
∆z z

f z z f z

z

f z z f z

z0 0
1 1

i.e., F w
f z

1
1

1
( )

( )
=

holds in a neighbourhood of the point w0, as f(z) is analytic in K.

In particular, F w
f z

1
0 1

0

1
( )

( )
=

Theorem 3.3 Let f(z) be analytic at the point z0. If f1(z0) = 0, f11(z0) = 0, ...,
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f(k – 1)(z0) = 0 and f(k)(z0) ≠ 0, then the mapping w = f(z) magnifies angles at z0 by

k times.

Proof. By the given hypothesis, f(z) has the Taylor expansion in a neighbourhood

of z0 in the form

f(z) = f(z0) + ck(z – z0)k + ck + 1(z – z0)k + 1 +..., ck ≠ 0

so that we can express

f(z) – f(z0) = (z – z0)k + h(z) (52)

where h(z) is analytic at z0 and h(z0) ≠ 0. Now let w = f(z) and w0 = f(z0) and

we obtain from (52)

Arg(w – w0) = k Arg(z – z0) + Arg(h(z))

Let z → z0 along a curve γ. Then w → w0 along the image curve Γ and the slope

of tangent to the curve γ at z0 and that of the tangent to the curve Γ at w0 are connected

by the relation

lim ( ) lim ( ) lim ( ( ))
w w z z z z

Arg w w k Arg z z Arg h z
→ → →

− = − +
0 0 0

0 0

i.e., θ0 = kφ0 + Arg(h(z))

Thus, if γ1 and γ2 be two curves passing through z0 and their images Γ1 and Γ2

under the mapping w = f(z), pass through w0, the difference of slopes of the curves

γ1 and γ2 at z0 and that of the curves Γ1 and Γ2 at w0 are related as

θ2 – θ1 = k(φ2 – φ1)

with the sense remain unchanged.

Example 2. Show that the mapping w = f(z) = z2 maps the rectangle

R x iy x y= + − ≤ ≤ ≤ ≤�
�
�

�
�
	

: ,1 1 0
1

2
 of unit area onto the region enclosed by the

parabolas

v u and v u2 21

4
4 1= + = − −( ).

Solution : Here f1(z) = 2z and the mapping w = z2 is conformal for all z ≠ 0.

We note that the right angles at the vertices z1 = 1, z2 = 1 + i/2, z3 = – 1 + i/2 and

z4 = – 1 are mapped into right angles at the vertices w w i w i1 2 31
3

4

3

4
= = + = −, ,

and w4 = 1 respectively.
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The parabolas shown in the figure are obtained as follows :

Let w = u + iv. Then u = x2 – y2, v = 2xy }... (53)

The line x = 1 corresponds to the curve u = 1 – y2, v = 2y. Eliminating y, we
get v2 = – 4(u – 1), which is a parabola with vertex (1, 0) and opens towards the
negative side of the u-axis in the w-plane. Also, the part of the line x = 1 lying above
the real axis corresponds to the part of the parabola lying above the u-axis in the
w-plane. The same parabola in the w-plane is the image of the line x = – 1. In this
case, the part of the line x = – 1 lying above the real axis corresponds to the part

of the parabola lying below the u-axis in the w-plane.

Again, when y = 1

2
, from (53) we get u x= −2 1

4
 and v = x. Eliminating x we

get, v u2 1

4
= +  which is also a parabola with vertex −�

��
�
��

1

4
0,  and opening towards

the positive side of the u-axis in the w-plane. By similar argument as before we can

say that the mapping w = z2 maps the rectangle R x iy x y= + − ≤ ≤ ≤ ≤�
�
�

�
�
	

: ,1 1 0
1

2

onto the region enclosed by the parabolas v u and v u2 21

4
4 1= + = − −( ).

Note : It is not hard to prove that the parabolas intersect each other orthogonally
at w2 and w3.

At the point z0 = 0, we have f1(z0) = f1(0) = 0 and f11(z0) = 2 ≠ 0. Hence the
angles at the origin z0 = 0 are magnified by the factor k = 2. In particular the straight

angle at z0 = 0 is mapped onto 2π angle at w0 = 0.

Fig. 25

Fig. 26

i/2
y

– + i3
4

– – i3
4

– –1
4

–3
4

x
o

 1 u
– 1

v

v2 = – 4(u – 1)

o

v2 = u + –1
4
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Unit 4 � Multi-valued functions and Riemann
Surface

Structure

4.0 Objectives of this Chapter

4.1 Multi-valued functions

4.2 The logarithm function

4.3 Properties of log z

4.4 Branch, Branch point and Branch cut

4.5 Integrals of Multi-valued function

4.6 Branch points at infinity

4.7 Detection of branch points

4.8 The Riemann Surface for w = z1/2

4.9 Concept of neighbourhood

4.10 The Riemann Surface for w = log z

4.11 The Inverse Trigonometric Functions

4.0 Objectives of this Chapter

In this chapter we shall study multi-valued functions and their Riemann surfaces. In
particular, multi-valued logarithm function, the power function zα both z, α complex
numbers, z ≠ 0 will be discussed. The ideas of branch, branch point, branch cut, branch
point at infinity will be explained by means of different examples. A few contour integrations
of multi-valued functions will be performed. Also Riemann surfaces for different multi-
valued functions will be constructed.

4.1 Multi-valued functions

So far we have considered single-valued functions i.e., one-to-one mapping or, many-
to-one mapping. In the later case, under certain restrictions, inverse mappings give rise to
multi-valued functions i.e., one-to-many.

For example,
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z = eω, z = ω2, z = sin ω, z = cos ω

For each of these functions, a given value of z corresponds to more than one value

of ω.

ω = f–1 (z) is multi-valued and z = f(ω) is single-valued, given ω, there is a

unique value of z.

The aim of this chapter is as follows :

(i) To determine all possible values of the inverse function ω and (ii) To construct

an inverse function which is single-valued in some region of the complex plane.

Let ω = f(z) be a multi-valued function. A branch of f is any single-valued function

f0 that is continuous in some domain (except, perhaps, on the boundary). At each point

z in the domain, it assigns one of the values of f(z).

Example 1 : We consider branches of the two-valued square-root function f(z)

= z1/2(z ≠ 0). The principal branch of the square root function is

f z z e r Arg zi
1

1 2 2 1 2

2 2
( ) cos sin , ( )

/ / /= = +�
��

�
�� =θ θ θ θ

where r = |z| and – π < θ ≤ π. The function f1 is a branch of f. Using the same notation,

we can find other branches of the function f. For example if we let

f z z e r ii
2

1 2 2 2 1 2 2

2

2

2
( ) cos sin

/ ( )/ /= = +�
��

�
�� + +�

��
�
��

�
�	



��

+θ π θ π θ π

then

f z r e r e e f zi i i
2

1 2 2 2 1 2 2
1( ) . ( )./ ( ) / / /= = = −+θ π θ π

So, f1 and f2 can be taken as the two branches of the multi-valued square root

function. The negative real axis is called a branch cut for the functions f1 and f2. Each

point on the branch cut is a point of discontinuity for both functions f1 and f2.

Result 1 : Show that the function f1 is discontinuous on the negative real axis.

ω = f–1(z)

Fig. 27

z0

ω1

ω2

Z-plane

ω-plane
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Solution : Let z0 = r0eiπ be any point on the negative real axis. We compute the

limit as z approaches z0 through the upper half plane lm z > 0 and the limit as z

approaches z0 through the lower half plane lm z < 0. The limits are

lim ( )

( , ) ( , )

lim

( , ) ( , )
cos sin ,/ / f1

0 0

1 2
0
1 2

2 2

re

r r r r
r i ir and

iθ

θ π θ π
θ θ

→
=

→
+�

�	


��

=

lim
( , ) ( , ) ( ) lim

( , ) ( , ) cos sin/ /
r r f re r r r i iri

θ π θ π
θ θθ

→ − = → − +�
�	



��

= −
0

1
0

1 2
0
1 2

2 2

The two limits are distinct, so the function f1 is discontinuous at z0. Since z0 is

an arbitrary point on the negative real axis, f1 is discontinous there.

Note : Likewise, f2 is discontinuous at z0.

Figures : 28-29 The Branches f1 and f2 of f(z) = z1/2
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4.2 The logarithm function

Let us define the inverse function f –1(z) for z = eω : Let z = reiθ and ω = u + iv.
Then reiθ = eu.eiv

So that r = eu and v = θ + 2kπ, k = 0, ± 1, ± 2,...

and ω = log r + i(θ + 2kπ), k = 0, ± 1, ± 2,...

But r = |z | and without loss of generality, we can take θ∈ (–π, π). This motivates
the definition of the inverse function f –1(z) for z = eω

ω = log z = log |z| + i(Arg z + 2kπ), k = 0, ± 1, ± 2,...

or, equivalently

ω = log z = log |z | + i arg z.

Mapping of the strip |Im ωωωωω| < πππππ under z = eωωωωω

I. Take u = u0 > 0, ν∈  (–π, π) for the line PQ :

x iy e iu+ = +0 (cos sin )ν ν

⇒ =
=


��→ + = >x e
y e x y e

u

u
u0

0
02 2 2 1cos

sin ,ν
ν

a full circle in z-plane outside |z| = 1.

Now approach Q; u = u0 > 0, ν = –π + ε
x = eu0 cos(–π + ε) → –eu0 as ε → 0 + and –eu0 < –1 as u0 > 0

y = eu0 sin(–π + ε) → 0 – as ε → 0 +

Now approach P : u = u0 > 0, ν = π – ε

Fig. 30

ω-plane
v = π

v = –π
u = u0 > 0

Q

u = 0
u = u0 < 0

S

R

o

eω = z

P1

Q1

|z| = 1

x

z-plane

y

R1

S1
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x = eu0 cos(π – ε) → –eu0 as ε → 0 +
y = eu0 sin(π – ε) → 0 + as ε → 0 +

II. Now take  u = u0 < 0, ν∈  (–π, π) for the line RS :

⇒ x e
y e x y e

u

u
u=

=

��→ + = <

−
−

−0

0
02 2 2 1cos

sin
ν
ν

represents a full circle in z-plane inside |z| < 1.
Approach S : u = – u0 < 0, ν = – π + ε

x = e–u0 cos(– π + ε) → – e–u0 > – 1 as ε → 0 +
y = e–u0 sin(– π + ε) → 0 – as ε → 0 +

Now approach R : u = – u0 < 0, ν = π – ε
x = e–u0 cos(π – ε) → – e–u0 > – 1 as ε → 0 +
y = e–u0 sin(π – ε) → 0 as ε → 0 +

Observation : Points along the negative real axis in the z-plane yield multiple w
values. In order to obtain a single-valued inverse function for the fundamental strip
|lm ω|<π we require a cut in z-plane along Re z < 0. The mapping z = ew and
w = f –1(z) will be single-valued in |lm w| < π and z∈ /C \(∞, 0).

Clearly the inverse function   w = Log z = log |z| + iArg z, – π < Arg z ≤ π

0

is single-valued. We call this function the
principal value of log z.

The principal value of log z is not defined
at z = 0 and is discontinuous as z approach the
negative real axis from top and bottom. Using
the necessary and sufficient conditions for
differentiability we find
d

dz
Log z

z
z z= ≠ ∉ −∞1

0 0, , ( , )

The point z = 0 is called a branch point of

Log z since if we encircle the origin z = 0 by

a closed contour then Log z changes by an

amount proportional to 2πi.

4.3 Properties of log z
(i) log (z1z2) = log z1 + log z2

(means that the set of all values of log z1 + log z2 is the same as the set of all

values of log (z1z2)).

Fig. 31

θ

Branch cut

z-plane
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(ii) z = elogz, but log(ez) = z + 2kπi, k = 0 ±1, ±2, ...

Let z = x + iy

log log( ) tan
sin

cos
e e i

y

y
k x iy k ix iy x+ −= + �

��
�
��

+
�
��

�
��

+ + =1 2 2π π

= z + 2kπi, k = 0, ±1,...

(iii) log zn ≠ n log z in general.

Let z = reiθ

log zn = n log r + i(nθ + 2kπ), k = 0, ±1,...

n log z = n log r + in(θ + 2mπ), m = 0, ±1,...

Let n be fixed. Then the set of values of {k}, k = 0, ±1, ±2,...

do not coincide with the set of values of {mn}, m = 0, ±1, ±2,...

⇒  log zn ≠ n log z

(iv) log log/z
n

zn1 1� � =  (provided the set of values are the same) n ≡ + ve integer.

Now, z = reiθ, z1/n = r1/nei(θ + 2kπ)/n, k = 0, 1, 2,..., n – 1

log log , , ,..., – ; , , ,.../z
n

r i
k

n
k nn1 1 2

2 0 1 1 0 1 2= + + +�
��

�
�� = = ± ±θ π π� �   

Again,
1 1 2

0 1 2
n

z
n

r i
n

m

n
mlog log , , , ,...= + +�

��
�
�� = ± ±θ π

  

The set of values of log (z1/n) and 1/n log z are the same if the sets {k + ln},

k = 0, 1,..., n – 1; l = 0, ±1, ±2,... coincide with the set {m}, m = 0, ±1, ±2,...

Complex exponents

If α is complex and z ≠ 0 then

zα = eα log z multi-valued.

zα = eα[log|z| + i(Argz + 2kπ)], k = 0, ±1, ±2,...

   = eα[log|z| + i(θ + 2kπ)]

agrees with our previous results if α = m, α = 1

m
;  m = integer. If α is a rational number

say p/q, then zα will have only q number of distinct values, occurred against k = 0,

1, 2, ..., q – 1 and the values of ei2pkπ/q for k = – 1, – 2, ..., – (q – 1) coincide with
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its values for k = q – 1, q – 2, ..., 2, 1 respectively, whereas the values of ei2pkπ/q

for k = ±q, ±(q + 1), ... coincide with its values for k = 0, ±1, ±2, ...
zα takes infinite number of values when α is irrational or complex. Clearly there

is a distinct branch of zα for each distinct branch of log z and the branch cuts are
determined as in the case of log z. Every branch of zα is analytic except at the branch
point z = 0 and on a branch cut.

Example 2. Find all distinct values of i–2i.

Solution :  i e e ki i i
i i i k

− −
+ +�
��

�
��

�
�	



��= = = ±2 2

2
2

2

0 1log
log

, , , ...
π π

 

  = e(4k + 1)π, k = 0, ±1, ±2,...

So, there are infinite number of values.

Example 3. Find all solutions of z1 – i = 6.

Solution :  e(1 – i)log z = elog 6

⇒ (1 – i) log z = log 6 + 2kπi, k = 0, ±1, ±2,...

or, 2 log z = (1 + i)[log 6 + 2kπi]

or, log
log

(log )z
k i

k= − + +6 2

2 2
6 2

π π

Thus, z e k i kk= + + +−log cos( log ) sin( log )6 6 6π π π

  = − −−6 1 6 6e ik kπ( ) cos(log ) sin(log )

4.4 Branch, Branch point and Branch cut

Definition : F(z) is a Branch of the multi-valued function f(z) in a domain D if

F(z) is single-valued and continuous in D and has the property that for each z in D
the value of F(z) is one of the values of f(z).

To determine F(z) we introduce a line imanating from a point (called a Branch
Point) to ensure that F is single-valued in the cut plane by the line. A Branch Point
is one for which if we enclose it with a curve the function changes discontinuously
as the variable makes a complete round over the curve.

For instance, consider w = z1/2. Let P be a point on the z-plane where w z1 1
1 2= /

and Arg z1 = φ1, 0 < φ1 < 2π.

Let z r ei
1 1

1= φ ,  then at P, w r ei
1 1

1 2 21= / / .φ  We now encircle the region along closed
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curve C through P. Upon travelling

anticlockwise once, we have φ = φ1 + 2π,

i.e., w r e r ei= = −+
1
1 2 2 2

1
1 2 1 21 1/ ( ) / / /φ π φ  at the point

P.

⇒  w = – w1 at P. This shows that w has
changed discontinuously after performing a
loop about z = 0, which establishes z = 0 a
Branch Point.

Now we consider a different loop, a
closed curve Γ around some point z* which

does not enclose the origin. As before,

z r ei
1 1

1= θ  and w r ei
1 1

1 2 21= / /φ  upon returning
to P, travelling anticlockwise, we have φ =
φ1 again. Hence w is continuous after
performing the loop. So z = z* is not a
Branch Point for z1/2 = w.

Example 4. Discuss the multivaluedness
of the function f(z) = (z2 – 1)1/2 and introduce
cuts to obtain single-valued branches.

Solution : Let z – 1 = r1eiθ and z + 1 = r2eiψ

Then  f z r r ei( ) ( )/= +
1 2

2θ ψ

We choose a branch of f(z) at a point z0 by taking values of θ0 of θ and ψ0 of
ψ. Then at z0, f(z) takes the value

f r r ei
0 1 2

20 0= +( )/θ ψ

If now z traverses from the point z0, and form a simple closed contour (end point
also z0) C0 enclosing the point z = 1, where the point z = –1 lies outside C0, the value
of f(z) at z0 changes to

r r e fi
1 2

2 2
0

0 0( )/θ ψ π+ + = −

φ1

Fig. 33

Fig. 32

O

P

z*

o

C

P

φ1

Γ
>>>>>

>>>>>

>>>>>

Fig. 34

–1

Fig. 35

C1

z0

1

C0

z0

>>>>>

>>>>>

>>>>>

>>>>>

� �

�
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f(z) takes the same value – f0 while z travelling from z0 and returns to z0 itself

forming a closed contour C1 which encloses –1, but not 1. Hence it is clear that

–1 and 1 are the branch points for the function f(z).

In order to obtain single-valued branches we introduce two different set of branch

cuts. (i) A branch cut between the points –1 and 1 on the real axis. In this case consider

the closed contour C enclosing the branch points –1 and 1. Here f(z) returns to the

value (from its value f0 at z0).

r r e r r e fi i
1 2

2 2 2
1 2

2
0

0 0 0 0( )/ ( )/θ π ψ π θ ψ+ + + += =

So, it is a single-valued branch.

(ii) Two branch cuts on the real-axis, (–∞, –1) and (1, ∞).

Here the contour Γ does not enclose any of the branch points, so f(z) remains

single-valued as z makes a complete round through Γ initiating from z0.

Example 5. Construct a branch of log z

z

−
+

�
��

�
��

1

1
, which is analytic at the origin and

takes the values 5πi there.

Solution : Let g z
z

z
( ) log= −

+
�
��

�
��

1

1
. The points z = ± 1 are the branch points of g(z)

and the behaviour of g(z) at these branch points are similar to f(z) as shown in the previous

example. We do not repeat these here.

Write both z – 1, and z + 1 in polar form :

z – 1 = reiθ,  z + 1 = ρeiψ

Then we can express

g z
re

e

r
e

i

i
i( ) log log ( )=

�
��

�
��

=
�
�	



��

−
θ

ψ
θ ψ

ρ ρ

Fig. 36

–1

Fig. 37

1

z0 z0

C –1 1

Γ

� �
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=
�
��
�
��

+ −log ( )
r

i
ρ

θ ψ

We consider the complex z-plane with two branch cuts (–∞, –1), and (1, ∞). Here

the principal branch of g(z) is taken as

log ( ), ;
r

i
ρ

θ ψ θ π π ψ π
�
��
�
��

+ − ≤ < − ≤ <0 2

Now, g0 = g(0) = iπ
In the branch 4π ≤ θ < 6π; π ≤ ψ < 3π, g(z) will take the value 5πi at the origin.

Example 6. Let z = ω2 and consider Re ω > 0.

Image is z  ∈ / ∞C \ (– , )0

Note : Injective mapping if Re ω > 0 and z ∈  /C \(–∞, 0). We need a Branch

cut along negative real-axis in the z-plane.

Hence w = z1/2,  z = reiφ,  –π < φ ≤ π
This ensures that Re ω > 0. Here the points on the cut go either to P or Q. P and

Q are arbitrary.

4.5 Integrals of Multi-valued functions

Example 7.  Evaluate 
x

x
dx

α

α
−∞

+
< <�

1

0 1
0 1, .

Let us consider the integal
z

z
dz

C

α−

−�
1

1
where the contour C consists of a large Circle ΓR with centre at the origin and

radius R, a small circle γε with centre origin and radius ε joined to the large circle

Q1 O1

z-plane

ω-plane

O

Q

P

P1

ω2 = z

Fig. 38
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ΓR along the negative side of the real axis from ε to R by means of a cut as shown

in the figure 39. Thus we have avoided the branch point z = 0.

We take principal branch of zα – 1. Then

z

z
dz R

R

R

R

R
as R

R

α α α

π π− −

−
≤

+
=

+
→ → ∞�

1 1

1
2

1

2

1
0

Γ
,

since α < 1,

z

z
dz

α

γ

α
α

ε

πεε πε ε
− −

−
≤ = → →�

1 1

1
2

1
2 0 0 as ,

since α > 0.

Thus, by residue theorem,

z

z
dz i s

z

zC

α α

π
– –

–
Re

–
;

1 1

1
2

1
1  � = �

�	


��

Observe that 
z

z

α –

–

1

1
 has a simple pole at z = 1 which lies inside C.

or, lim
–

lim
– – –

–2
– – – –

R

z
z

z
z

z
z

dz
z

z
i

R→∞ →� � � �+ + + =
α

ε

α

γ

α

γ

α

γε α β

π
1

0

1 1 1

1 1 1 1Γ
 dz  dz   dz

so,
z

z
z

z
i

α

γ

α

γα β

π
– –

– –
–2

1 1

1 1� �+ = dz  dz (54)

On γα : z = ρeiπ, 0 < ρ < ∞

so 1 – z = 1 + ρ and dz = eiπdρ

and
z

z
e d e d ei i i

α

γ

π
α

π α π α
α

πα
α

α

ρ
ρ

ρ ρ
ρ

ρ ρ
ρ

ρ
–

( – )
– –

–
–

1 0
1

1 1

001 1 1� � ��= =
+

=
+∞

∞∞
 dz

1+
 e  d

–1
i ( –1)

On γβ, z = ρe–iπ, 0 < ρ < ∞

so 1 – z = 1 + ρ, dz = e–iπ dρ, then

z

z
e e d ei i i

α

γ

π
α

π α π α
α

β

ρ
ρ

ρ ρ
ρ

ρ
–

–
–

– ( – ) – ( – )
–

–
–

1

0

1
1 1

1

01 1 1� � �+
+

=
+

∞ ∞
 dz  d

=
+

∞�e di–
–

πα
αρ

ρ
ρ

1

0 1
 

Substituting these integrals into (54), we get

Fig. 39

ΓR

γα γε

γβ
1
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[ ]− +
+

= −−
−∞�e e d ii iπα πα

αρ
ρ

ρ π
1

0 1
2

i.e.
ρ

ρ
ρ π

πα

α−∞

+
=�

1

0 1

2

2
d

i

i sin

or,
x

x
dx

α π
πα

−∞

+
=�

1

0 1 sin

Example 8 : Evaluate 
x

x
dx

α

α
−∞

+
< <�

1

30 1
0 3, .

We take the contour integral

z

z
dz

C

α−

+�
1

31
,  where C is the contour as shown in the fig. 40. Take

principal branch of zα  – 1.

Then,
z

z
dz as

α

γε

α
απε ε πε ε ε

−

+
≥ = → → → >�

1

3

1

1

2

3 1

2

3
0 0 0

–

since

and
z

z
dz

R R

R
R

R

α α
απ π α

− −
−

+
≤ = → ∞ → ∞ <�

1

3

1

3
3

1

2

3

2

3
3

Γ
 as R since

Now the function z
z

α−

+
1

31
 has only one simple pole z e

i

=
π
3  inside C. Thus

z

z
dz i s

z

z
e i

e

e

i
e

i
i

i
i

C

α α α

π
αππ π ππ

π− − −

+
=

+
�
�	



��

= = −�
1

3

1

3

1

2 3
3

1
2

1
2

3

2

3
3

3

Re ; .
( )

/
/

i.e.,
z

z
dz

z

z
e e d d i

ei i
iR

RR

α α α
π α π

α απ

ε

ε

γε

ρ
ρ

ρ ρ
ρ

ρ π
− − −

−
−

+
+

+
+

+
+

+
= −����

1

3

1

3

1

3
2 1 3 2 3

1

3

3

1 1 1 1
2

3
( )/ /

/

Γ

[In the third integral, we used z = ρe2πi/3, dz = e2πi/3dρ, 1 + z3 = 1 + ρ3, and in

the fourth integral, z = ρ, dz = dρ]

Taking R → ∞ and ε → 0 in the above integrals, we find using the earlier results

−
+

+
+

=
− −

��e d d
iei

i
2 3

1

3

1

3

3

00 1 1

2

3
απ

α α απαα ρ
ρ

ρ ρ
ρ

ρ π/
/

Fig. 40

ΓR

take branch cut on the
negative real-axis

z = ρe2πi/3

γR γε

γ1 R
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So that,

ρ
ρ

ρ π π
απ

α

απ απ

−

−

∞

+
= ⋅

−
=�

1

3 3 30 1

2

3

1

3
3

d
i

e ei i/ /

sin

or,
x

x
dx

α π
απ

−∞

+
=�

1

30 1 3
3

sin

Riemann Surface

A Riemann surface is a generalization of the complex plane to a surface
comprising several sheets so that a multi-valued function can have only one value
corresponding to each point on that surface. Once such a surface is ascertained for
a given multi-valued function, the function becomes single-valued on the surface and
can be treated according to the theory of single-valued functions.

This topology removes artificial restrictions-Branch Cuts and gives us a more
general notion of a domain so that a multi-valued analytic function becomes single-
valued if it is considered as a mapping to an appropriate generalized domain as
suggested by G. F. B. Riemann (1826-1866) in 1851. The idea is ingenious—a
geometric construction that permits surfaces to be the domain or range of a multi-
valued function.

4.6 Branch points at infinity

So far we have considered only branch points in the finite plane. Now we discuss

about the possibility of a branch point at infinity. For this sake we map the point at

infinity to the origin with the transformation ς = 1
z  and then examine the point

ς = 0.

Example 9 : Again we consider the multi-valued function f(z) = z1/2. Making the

transformation ς = 1

z
,  the point at infinity is mapped to the origin, we have

f( )ς ς= ��
�
�1

1
2

. For each value of ς, there are two values of ς–1/2. Writing ς–1/2 in

modulus-argument form

ς
ς

ς–1 – ( )/

| |
2 21= e iArg
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we find that like z1/2, ς–1/2 possesses double sheeted Riemann surface. We see that
each time we walk around the origin, the argument of ς–1/2 changes by –π. This means
that the value of the function changes by the factor e–iπ = –1, i.e. the function changes
sign. If we walk around the origin twice, the argument changes by –2π, so that the
value of the function does not change, e–2πi = 1.

Now, since ς–1/2 has a branch point at zero, we conclude that z1/2 has a branch
point at infinity.

Example 10 : Again consider the multi-valued logarithm function f(z) = log z.
Mapping the point at infinity to the origin, we have

f( ) log – logς ς ς= �
�
�
� =1

But log ς has a branch point at ς = 0. Thus log z has a branch point at infinity.

Branch points at infinity : Paths around infinity
We can also check for a branch point at infinity by considering a path that encloses

the point at infinity and no other singularities. This can be done by drawing a simple
closed curve that separates the complex plane into a bounded region that contains all
the singularities of the function in the finite plane. Then, depending upon the
orientation, the curve is a contour enclosing all the finite singularities, or the point at
infinity and no other singularities.

Once again consider the function z1/2. We know that the function changes value
on a curve that goes around the origin. Such a curve can be considered to be either
a path around the origin or a path around the point at infinity. In either case the path
encloses one branch point. Now consider a curve that does not go around the origin.
Such a curve can be considered to be either a path around neither of the branch points
or both of them. Thus we see that z1/2 does not change value when we follow a path
that encloses neither or both of its branch points.

Example 11 : Consider the multi-valued function f(z) = (z2 – 1)1/2. Rewriting the
function f(z) = (z – 1)1/2 (z + 1)1/2, we see that there are branch points at z = ± 1. Now
consider the point at infinity.

f(ς–1) = (ς–2 – 1)1/2 = ±ς–1(1 – ς2)1/2

which shows that f(ς–1) does not have a branch point at ς = 0 and f(z) does not
have a branch point at infinity. We might reach the same conclusion by considering
a path around the point at infinity. Consider a path that encircles the branch points at
z = ±1 once in the positive direction. Equivalently it encircles the point at infinity once
in the negative direction. In traversing this path, the value of f(z) is multiplied by the
factor (e2iπ)1/2 (e2iπ)1/2 = e2iπ = 1. Thus the value of the function remains unchanged.
There is no branch point at infinity.
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4.7 Detection of branch points

We have the definition of a branch point, but we do not have a convenient
criterion for determining if a particular function has a branch point. We have noticed
that log z and zk for non-integer k have branch points at zero and infinity. The inverse
trigonometric functions like sin–1z, cos–1z etc. also have branch points, but they can
be written in terms of the logarithm and the square root. In fact all the elementary
functions with branch points can be written in terms of the functions log z and zk.
Furthermore, note that the multi-valuedness of zk comes from the logarithm, zk = eklogz.
This gives us a way of determining branch points of a function if there is any.

Result : Let f(z) be a single-valued function. Then log f(z) and (f(z))k may have
branch points only where f(z) is zero or singular.

Example 12 : Consider the functions

1. (z2)1/2  2. (z1/2)2  3. (z1/2)3

Are they multi-valued? Do they have branch points?

Solution

1. z z z2 1 2 2� �
/

= ± = ±

Because of (.)1/2, the function is multi-valued. The only possible branch points are
at zero and point at infinity. If (eiθ)2)1/2 = 1, then as ((e2πi)2)1/2 = (e4πi)1/2 = e2πi = 1
the function does not change value when we walk around the origin. We can also
consider this to be a path around infinity. This function is multi-valued, but has no
branch points.

2. z z z1 2 2 2
/� � � �= ± =

This function is single-valued.

3. z z z1 2 3 3 3
/� � � � � �= ± = ±

This function is multi-valued. We consider the possible branch point at z = 0. If
(ei0)1/2)3 = 1, then as ((e2iπ)1/2)3 = ((eiπ2)1/2)3 = (eiπ)3 = e3πi = –1, the function changes
value when we walk around the origin. So it has a branch point at z = 0. Since this
is also a path around infinity, there is a branch point at the point at infinity.

Example 13 : Consider the function f(z) = log (1/z – 1). Since 
1

1z –
 has only

zero at infinity and its only singularity (a pole here) is at z = 1, the only, possible
branch points are at z = 1 and z = ∞.
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Here f z
z

z( ) log
–

– log( – ) log ,= �
��

�
�� = =1

1
1 ω  say

We know that log ω has branch points at zero and infinity, so f(z) has branch
points at z = 1 and z = ∞.

Example 14 : Consider the functions

1. elogz  2. log ez

Are they multi-valued? Do they have branch points?

Solution :
1. elogz = elogz + i2πk, k = 0, ± 1, ...

= eLogz ei2πk = z

The function is single-valued.
2. logez = Logez + i2πk = z + i2πk, k = 0, ± 1, ...

This function is multi-valued. It may have branch points only where ez is zero or
infinite. This occurs only at z = ∞. Thus there are no branch points in the finite plane.
The function does not change when traversing a simple closed path and since this path
can be considered to enclose the point at infinity, there is no branch point at infinity.

Note : Let f(z) be single-valued and have either a zero or a singularity at z = z0.
Then {f(z)}k may have a branch point at z = z0. If f(z) is not a power of z, then we
are not sure whether {f(z)}k changes value when we walk around z0.

Now if f(z) can be decomposed into factors f(z) = h(z) g(z), where h(z) is finite
and non zero at z0, then from g(z) we know how fast f(z) vanishes or tends to infinity.
Again {f(z)}k = {h(z)}k {g(z)}k and {h(z)}k does not have a branch point at z0. So
that {f(z)}k has a branch point at z0 if and only if {f(z)}k has a branch point there.

Similarly, we can decompose

log {f(z)} = log {h(z)g(z)} = log {h(z)} + log {g(z)}
to see that log {f(z)} has a branch point at z0 if and only if log {g(z)} has a branch

point there.

Example 15 : Consider the functions :
1. sin z1/2   2. (sin z)1/2   3. z1/2 cos z1/2   4. (sin z2)1/2.

Find the branch points and the number of branches.

Solution : 1. sin sin sinz z z1 2 = ± = ±� �
So it is multi-valued. It has two branches and the possible branch points are zero

and infinity. Consider the unit circle |z| = 1 which is a path around the origin and
infinity. If

sin(ei0)1/2 = sin(1), then as
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sin((ei2π)1/2) = sin(eiπ) = sin(–1) = – sin1,

there are branch points at the origin and infinity

2. (sin ) sin/z z1 2 = ±
The function is multi-valued and has two branches. The sine function vanishes at

z = nπ and is singular at infinity. These may be branch points of the function. Consider
the point z = nπ. We can express

sin ( – )
sin

–
,z z n

z

z n
= π

π
 n an integer.

But lim
sin

–
lim

cos
(–1)

z n z n

nz

z n

z
→ →

= =
π ππ 1

So, (sin z)1/2 has branch points at z = nπ since (z – nπ)1/2 has a branch point at
z = nπ.

Here the branch points are z = nπ, n = 0, ±1, ... and they go to infinity. So it is
not possible to make a path that encloses infinity and no other singularities. The point
at infinity is a non-isolated singularity. A point can be a branch point only if it is an
isolated singularity.

3. z z z z1 2 1 2/ /cos cos⋅ = ± ±� �
= ± z zcos

The function is multi-valued. It may possess branch points at z = 0 and z = ∞.
If (ei0)1/2 cos(ei0)1/2 = cos(1), then as (ei2π)1/2 cos((ei2π)1/2) = (–1)cos(eiπ) = – cos(–1)
= – cos1, there are branch points at the origin and infinity.

4. (sin ) sin/z z2 1 2 2= ±
The function is multi-valued. Now since siz z2 = 0 at z = (nπ)1/2, there may be

branch points there.

We consider first the point z = 0. We can write

sin
sin

z z
z

z
2 2

2

2
=

but lim
sin

lim
cos

z z

z

z

z z

z→ →
= =

0

2

2 0

22

2
1

So, (sin z2)1/2 does not have a branch point at z = 0 as (z2)1/2 does not have a
branch point there.

Next consider the point z n= π
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sin –
sin

–
z z n

z

z n
2

2

= π
π

� �

but lim
sin

–
lim

cos
(–1)

z n z n

nz

z n

z z
n

→ →
= =

π ππ
π

2 22

1
2

Since z n–
/

π� �
1 2

 has a branch point at z n z= π, (sin )2 1 2 , too as a branch
point there.

Thus we see that (sin z2)1/2 has branch points at z = (nπ)1/2 for n ε Z \ {0}. This

is the set of numbers : ± ± ± ±π π π π, ,..., , ,...2 2  i i� � . The point at infinity is

a non-isolated singularity and hence it is not included in the set of branch points.

Example 16 : Find the branch points of

f(z) = (z3 – z)1/3

and introduce the branch cuts. If f ( ) ,3 2 33=  find f(–3).

Solution : Here f(z) = z1/3(z – 1)1/3 (z + 1)1/3

So the branch points are at z = –1, 0 and 1. We consider the point at infinity

f 1 1 1
1

1
1

1 3 1 3 1 3

ς ς ς ς
�
�
�
� =
�
��
�
��
�
��

�
�� +
�
��

�
��–

/

= +1
1 11 3 1 3

ς
ς ς( – ) ( )/ /

Since f(1/ς) does not have a branch point at ς = 0, f(z) does not have a branch
point at infinity.

Here we give three possible branch cuts :

In the first and third the function is single-valued but in the second it is not. It
is clear that the first branch cut does not allow us to walk around any of the branch
points.

>>>>>

∧∧∧∧∧ ∧∧∧∧∧ ∧∧∧∧∧

>>>>> >>>>>

Fig. 41

O

Three possible branch cuts for f(z) = (z3 – z)1/3

O O

–1 1 –1 1 –1 1
� �
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The second branch cut allows us to walk around the branch points at z = ± 1. If
we walk around these two once in the positive direction, the value of the function
would change by the factor ei4π/3.

The third branch cut allows us to walk around all the three branch points, the
value of the function will not change (since ei6π/3 = ei2π = 1).

To find f(–3), we consider the third branch cut with f ( ) .3 2 33=

f e e ei i i( ) ( ) ( ) ( )/ /3 3 2 4 2 30 1 3 0 1 3 0 1 3 3= =

The value of f(–3) is

f e e ei i i(–3) ( ) ( ) ( ) –/ /= =3 2 4 2 31 3 1 3 1 3 3π π π  

Example 17 : Determine the branch points of the function f(z) = (z3 – 1)1/2.

Construct branch cuts and define a branch so that z = 0 and z = –1 do not lie on
a cut, such that f(0) = –i; then what is f(–1/2)?

Solution : The roots of the equation z3 – 1 = 0 are

1 1
3

2

3

2
2 3 4 3, , ,

–1
,

–1 –/ /e e
i ii iπ π� � = +�

�
�



�
�

so that,

z z z
i

z
i3 1 2 1 2

1 2 1 2

1 1
1 3

2

1 3

2
– ( – )

–
/ /

� � = +
�
��

�
��

+ +�
��

�
��

There are branch points at each of the cube roots of unity

z
i i= +�

�
�



�
�

1
3

2

3

2
,

–1
,

–1 –

Now we examine the point at infinity. We make the change of variable z = 1/ς
f(1/ς) = (1/ς3 – 1)1/2 = ς–3/2(1 – ς3)1/2

ς–3/2 has a branch point at ς = 0, while (1 – ς3)1/2 is not singular there. Since
f(1/ς) has a branch point at ς = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts to separate the branches of the
function. The easiest approach is to put a branch cut from each of the three branch
points in the finite complex plane out to the branch point at infinity (see Figure 42a).
Clearly this makes the function single-valued as it is impossible to walk around any
of the branch points. Another approach is to have a branch cut from one of the branch
points in the finite plane to the branch point at infinity and a branch cut connecting
the remaining two branch points (see Figure 42 bcd). In this case, in walking around



69

any one of the finite branch points (in the + ve direction), the argument of the function
changes by π. This means that the value of the function changes by eiπ, which is to say,
the value of the function changes sign. In walking around any two of the finite branch
points (in the +ve direction), the argument of the function changes by 2π i.e., the value
of the function changes by ei2π, that means the value of the function does not change.

Figure 42. Branch cuts for (z3–1)1/2

Now we choose the branch 42a, and introduce
the variables z – 1 = r1eiθ, 0 ≤ θ1 < 2π

z
i

r ei+ = ≤ <1 3

2

2

3 32 2
2

–
, –θ π θ π
 

z
i

r ei+ = ≤ <1 3

2 3

2

33 3
3

–
, –θ π θ π
 

We compute f(0) to see whether it has the desired value,

f z r r r ei( ) ( )/= + +
1 2 3

21 2 3θ θ θ

f(0) = ei(π–π/3+π/3)/2 = eiπ/2 = i

Since it does not have the desired value, we change the range of θ1,

z – 1 = r1eiθ1, 2π ≤ θ1 < 4π
f(0) now has the desired value,

f(0) = ei(3π–π/3+π/3) = – i

We compute f – ,
1

2
�
��
�
��

f
i

–
–1

2

3

2

3

2

3

2

3
2 2

2�
��
�
�� = ⋅ ⋅

+�
��

�
�� e

π
π π

a

b

c

d
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= =9
8 2 2

3 2e
ii π/ –3

Example 18 : Identify the branch points of the function

ω = f(z) = (z3 + z2 – 6z)1/2

in the extended complex plane. Specify the branch cuts and select a branch that
gives a single-valued function where it is continuous at z = –1 with f(–1) = –√6.

Solution : First we factor the function

f(z) = [z(z – 2(z + 3)]1/2 = z1/2(z – 2)1/2 (z + 3)1/2

There are branch points at z = –3, 0, 2. Now we examine the point at infinity.

f ( / ) – ( – )( )–3/ /
1

1 1
2

1
3 1 2 1 3

1 2

2 1 2ς
ς ς ς

ς ς ς=
�
��

�
�� +
�
��

�
��

�
�
	



�
� = +

Since ς–3/2 has a branch point at ς = 0 and the rest
of the terms are analytic there, f(z) has a branch point
at infinity.

Now consider the branch cuts given in the figure
43. These cuts do not permit us to walk around any
single branch point. We can walk around none of the
branch points (or all of the branch points considering
the cuts [–3, 2] and x = 0, y ≤ 0). The cuts can be
used to define a single-valued branch of the function.
Now to define the branch, we choose z + 3 = ri eiθ

1, –π ≤ θ1 < π; z = r2eiθ
2,

–π θ π
2

3

22≤ <  and z – 2 = r3eiθ3, 0 ≤ θ3 < 2π.

The function is, f(z) = (r1r2r3)1/2ei(θ1 + θ
2 + θ3)/2

Here f(–1) = [(2)(1)(3)]1/2ei(0 + π + π)/2 = – 6

So our choice of angles gave the desired branch.

4.8 The Riemann surface for ω ω ω ω ω = z1/2

We have seen that ω = z1/2 possesses two branch points z = 0 and z = ∞. To utilize

the developments made in Example 1, we introduce a branch cut along the negative
real axis. The given function has two values for any z ≠ 0.

f1(z) = r1/2eiθ/2, –π < θ ≤ π

Fig. 43

O–3 2
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and f2(z) = r1/2 eiθ/2, π < θ ≤ 3π
Each function f1 and f2 is single-valued on the domain formed by cutting the z-

plane along the negative real-axis. Let D1 and D2 be the domains of f1 and f2

respectively. The range set for f1 is the set R1

consisting of the right-half plane and the positive
imaginary axis [see Figure 28b]; the range set
for f2 is the set R2 consisting of the left-half
plane and the negative imaginary axis [see
Figure 29b]. The sets R1 and R2 are glued
together along the positive imaginary axis and
the negative imaginary axis to form the
w-plane with the origin deleted. We stack D1

directly above D2. The edge of D1 in the upper-half plane is joined to the edge of D2

in the lower-half plane, and the edge of D1 in the lower-half plane is joined to the
edge of D2 in the upper-half plane (it is needless to mention that the line of joining
is the negative real-axis). When these domains are glued together in this manner, they
form a Riemann surface domain for the mapping w = f(z) = z1/2 shown in the figure
44 for some finite r.

4.9 Concept of neighbourhood

When a point lies on the boundary of two domains D1 and D2, we define a

neighbourhood of that point in the following manner. Here the boundary of D1 and D2

is the negative real-axis. (i) Neighbourhood of a point ς∈ D1 with Im ς < 0, Arg

ς = π, |z – ς| < ε consists of points on : (a) D1 if Im ς ≥ 0 (b) D2 if Im ς < 0. (ii)
Neighbourhood of a point ηε D2 with Im η = 0, Arg η = 3π, |z–η| < ε consists of points
on (a) D1 if Im η < 0 and (b) D2 if Im η ≥ 0. With these definitions of neighbourhood
of a point, it becomes clear that w = z1/2 is continuous and differentiable everywhere
on the Riemann surface except at the origin and the point at infinity. The derivative
is given by

d

dz
z

f

f

1 2 1
1

2

1

2

1

1

2

1
/ =

�

�
��

�
�
�

 on D

on D2

Fig. 44
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4.10 The Riemann Surface for w = log z

The Riemann surface for the multivalued function ω = log z is similar to the one
we presented for the square root function. However, it requires infinitely many copies
of the z-plane cut along the negative x-axis, which mark Sk for k = ..., –n, ..., –1, 0,
1, ..., n, ... . Now we stack these cut planes directly on each other so that the
corresponding points have the same position. We join the sheet Sk to Sk+1  as follows.
For each integer k, the edge of the sheet Sk in the upper half-plane is joined to the
edge of the sheet Sk+1 in the lower-half plane. The Riemann surface for the domain
of log z looks like a spiral staircase that extends upward on the sheets S1, S2..., and
downward on the sheets S–1, S–2, ... as shown in figure 45. For Sk, we use

z = reiθ = r (cos θ + i sin θ), where

r = |z| and 2πk–π < θ ≤ π + 2πk

Again, for Sk, the correct branch of log z on each sheet is

log z = log r + i θ, where

r = |z| and 2πk–π < θ ≤ π + 2πk

Example 19 : Form a Riemann surface for f(z) = (z – 1)1/3 taking a branch cut
along the line y = 0, x ≥ 1. Detect the point where the function takes the value
√2 (i – 1).

Solution : Let r = |z – 1| and θ = arg (z – 1), where 0 ≤ θ < 2π. Here the Riemann
surface consists of three domains D1 D2 and D3 :

f1(z) = r1/3eiθ/3, 0 ≤ θ < 2π (D1)

f2(z) = r1/3 eiθ/3, 2π ≤ θ < 4π (D2)

Fig. 45 Fig. 46

ω-plane
3π
2π
π
u

–π

–2π

–3π

v
y

z-plane S1

S0
x

S–1
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f3(z) = r1/3 eiθ/3,   4π ≤ θ < 6π (D3)

Each function f1, f2 and f3 is single-valued on the domain formed by cutting the
z-plane along the line y = 0, x ≥ 1.

We place D1 on the top, then D2 and D3. The edge
of D1 in the upper-half plane is joined to the edge of D2

in the lower-half plane and the edge of D2 in the upper-
half plane is joined to the edge of D3 in the lower-half
plane and finally the edge of D3 in the upper-half plane
is joined to the edge of D1 in the lower-half plane.

Say at z = ς, f(ς) = √2 (i – 1)

i.e. f
i

( ) –2 –ς = �
��

�
��

1

2 2

= =2 24 3 4e e ei
i

iπ
π

π– / 

= =
�
��
�
�� +�

��
�
��2 2

9

4
3

4
2 3

e e
i i

π π
π/ /

So, ς ς
π π

– ,1 2 1 83 4 4= = +e e
i i

 lying in the domain D2.

Example 20 : Form the Riemann surface for the function f(z) = (z2 – 1)1/2.

Solution : Here the given function f(z) = (z2 – 1)1/2 has branch points at z = ±1.
To examine the point at infinity, we substitute z = 1/ς and examine the point ς = 0.

f

i

1 1
1

1
1

2 2

2 1 2
2 1 2

ς ς ς
ς�

�
�
� =
�
��
�
��

�

�
	
	




�
�
�

=–
( )

( – )

/

/
/

Since there is no branch point at ς = 0, f(z) has no branch point at infinity.

Let z – 1 = r1eiφ
1 and z + 1 = r2eiφ

2,

where φ1 = Arg (z – 1) and φ2 = Arg (z + 1). Then ω = f(z) = (z2 – 1)1/2

= (z – 1)1/2 (z + 1)1/2 = (r1r2)1/2 ei(φ
1 + φ

2)

O 1 x

y

Fig. 47

ς

D

Fig. 48

φ1

D1 O–1 B'

B

r2

1 C'
C

z

r1

φ2 )↑
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Case-I  0 ≤ φ1 < 2π, 0 ≤ φ2 < 2π

on the φ1 φ2 ei(φ1+φ2)/2 Continuity
segment of f(z)

B π 0 i No

B′ π 2π –i

C 0 0 1 Yes

C′ 2π 2π 1

D π π –1 Yes

D′ π π –1

     Fig. 49

Case-II  0 ≤ φ1 < 2π, –π ≤ φ2 < π

on the φ1 φ2 ei(φ1+φ2)/2 Continuity
segment of f(z)

B π 0 i Yes

B′ π 0 i

C 0 0 1 No

C′ 2π 0 –1

D π π –1 No

D′ π –π 1

Two branches of (z – 1)1/2 can be taken as

f z r e z r e f z
i

1 1

2

2 1

2 2

1 1
1 0 2( ) ( ) , – ( )

/ ( )/
= = ≤ < =

+i 1  and f  
φ φ π

φ π
Again two branches of (z + 1)1/2 can be taken as

g z r e z r e
i

1 2

2

2 2

2 2

2
2 0 2( ) ( ) ,

/ ( )/
= = ≤ <

+i 2  and g  
φ φ π

φ π
      = – g1(z)

Let us construct a Riemann surface for ω = (z2 – 1)1/2 considering case I.

Here a Riemann surface consists of two sheets So and S1. Let S0 be an extended
complex plane cut along the real axis from z = –1 to z = 1 and S1 be another extended
complex plane cut of similar nature.

S
Arg z

Arg z

Arg z

Arg z0 1

0 1 2

0 1 2

2 1 4

2 1 4

≤ <
≤ + <

�
�
�

≤ <
≤ + <

�
�
�

( – )

( )

( – )

( )

π
π

π π
π π

    S

The sheets S0 and S1 are joined along the segment [–1, 1] in such a way that the
lower edge of the slit in S0 is joined to the upper edge of the slit in S1, and the lower
edge of the slit in S1 is joined to the upper edge of the slit in S0.

–1 0 1
x

y

–1 0 1
x

y

Fig. 50 Branch cut [–1, 1]

Fig. 51 Branch cuts (–∞, –1] and [1, ∞)

′
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Let a point on the sheet S0 move anticlockwise and form a simple closed curve
which encloses the segment [–1, 1] once. Then both φ1 and φ2 change by an amount
2π upon returning to their original position. i.e. (φ1 + φ2)/2 changes by an amount 2π,
so the value of

ω φ π φ π φ φ= =+ + + +( ) ( )/ ( )/ / ( )/r r e r r ei i
1 2

1 2 2 2 2
1 2

1 2 21 2 1 2

remains unchanged.

Then ω = f1g1 on S0 and as well as on S1.

If a point starting on the sheet S0 travels a path which makes a complete round
about only the branch point z = 1, it crosses from the sheet S0  to S1. In this case,
the value of φ1 changes by an amount 2π, while the value of φ2 does not change at
all. The change in (φ1 + φ2)/2 is then π. The change in (φ1 + φ2)/2 remains the same
if a point on the sheet S0 makes a complete round about the branch point z = –1 only
and enters on the S1 sheet. This time.

ω =
�
�
�

f g

f g
1 1 0

1 1 1

 on S

 on S–

Thus the double-valued function ω = (z2 – 1)1/2 can now be considered as a
single-valued function on the Riemann surface constructed above. Hence the
transformation ω = (z2 – 1)1/2 maps each of the sheets S0 and S1 forming the Riemann
surface on the entire ω-plane.

Riemann surface for the case II
Here the Riemann surface is formed by two sheets S0 and S1. Each of these sheets

is an extended complex plane cut along the line (–∞, –1) ∪ [1, ∞)

S
Arg z

Arg z

Arg z

Arg z0 1

0 1 2

1

2 1 4

1 3

≤ <
≤ + <

�
�
�

≤ <
≤ + <

�
�
�

( – )

– ( )

( – )

( )

π
π π

π π
π π

    S

These sheets are joined along the line (–∞, –1] ∪ [1, ∞) in such a way that the
lower edge of the slit in S0 is joined to the upper edge of the slit in S1, and the lower
edge of the slit in S1 is joined to the upper edge of the slit in S0.

If a point traverses a simple closed curve on either of the sheets S0 or S1 not
enclosing any of the branch points –1 or 1, then the function f(z) remains single-valued
on the respective sheet, whereas if it encloses any one of the branch points the function
changes the branch as explained in case I. In the same way the double-valued function
f(z) = (z2 – 1)1/2 can be treated as a single-valued function on the Riemann surface
formed earlier.

Example 21 : The power function ω = f(z) = [z(z – 1) (z – 2)]1/2 has two branches.
Show that f(–1) can be either –√6i or √6i. Suppose the branch that corresponds to
f(–1) = –√6i is chosen, find the value of the function at z = i.
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Solution : The given power function can be expressed as

ω π= = =+ +f z z z z ei Argz Arg z Arg z ik( ) ( – )( – ) , ,[ ( – ) ( – )]/1 2 0 11 2 2 e  k  

where the two possible values of k correspond to the two branches of the double-

valued power function.

If figure 52a branch cuts are y = 0, x ≤ 0
and y = 0, 1 ≤ x ≤ 2 and in figure 52b branch
cuts are y = 0, 0 ≤ x ≤ 1 and y = 0, x ≥ 2. In
both the cases Riemann surface is formed by
two branches.

At z = –1, we note that

Arg z = Arg (z – 1) = Arg (z – 2) = π and z z z( – )( – ) .1 2 6=

So, f(–1) can be either 6 6 6 6 6
3 2 2 2 2 3 2e i or e e e i

i i i iπ π π π π π π π π/ ( ) /– .= = =+ + + + +

The branch that gives f(–1) = √6i corresponds to k = 0. With the choice of that
branch, we find

f i i(i i ei Argi Arg i Arg i( ) – )( – ) | ( – ) ( – )/= + +1 2 1 2 2

= =+ +

�

�
��

�

�
��

2 5 102 3 4 1 2 2 4 4
2

21

2

e ei
i

i( / / –tan / )/
– tan

–1

–1
/

π π π

π

π e

= =– –(tan –tan / )/ (tan / )/–1 –1 –1

10 104 1 1 1 2 2 4 1 3 2 e  ei

4.11 The Inverse Trigonometric Functions

(i) The function sin–1z is defined by the equation

z = sin ω

Substituting 
e e

i

i iω ω– –

2
 for sin ω, we find that

(eiω)2 – 2ieiωz – 1 = 0

i.e., eiω = iz + (1 – z2)1/2

⇒ iω = log{iz + (1 – z2)1/2}

so that sin–1z = –ilog{iz + (1 – z2)1/2}

Similarly, we can have

10 2

Fig. 52a

10 2

Fig. 52b
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cos–1z = –ilog{z + (z2 –1)1/2}

(ii) We take the function ω = tan–1z, which is the inverse of z = tan ω. Expressing
tan ω in terms of sin ω and cos ω and then converting to their exponential form, we
get

z
e

i e e

i i

i i=
+

1 e ω ω

ω ω

– –

–

=
+

1 1

1

2

2

 e i

ii e

ω

ω

–

i.e., iz
e
e

e
iz
iz

i

i
i=

+
⇒ = +2

2
21

1
1
1

ω

ω
ω–

–

and finally, ω = +1

2

1

1i

iz

iz
 log

–
Note : When z ≠ ± 1, the quantity (1 – z2)1/2 has two possible values. For each

value, the logarithm generates infinitely many values. Therefore sin–1z has two sets of
infinite values. For example, consider

sin –1 1

2
= ±

�
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�
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1
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2i

i
log

=
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1

6
2

1 5

6
2

i
i k

i
i k

π π π π or 

= + +π π π π
6

2
5

6
2k k or ,  k is any integer.

Likewise, the set of values for other inverse trigonometric functions can be
ascertained.

Example 22 : Discuss the mapping ω = sinh z that transforms the infinite strip
–∞ < x < ∞, 0 < y < π into the ω-plane. Find cuts in the ω-plane which make
the mapping continuous both ways. What are the images of the lines (a) y = 1/π
(b) x = 1?

Solution : First we express sinh z in cartesian form

ω = sinh z = sinh x cos y + icosh x sin y = u + iv

We consider the line segment x = c, y ε (0, π). Its image is
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{sinh c cos y + i cosh c sin y|y ε (0, π)}

Clearly, u and v then satisfy the equation for the ellipse

u

c

v

c

2

2

2

2 1
sinh cosh

+ =

The ellipse starts at the point (sinh c, 0), passes through the point (0, cosh c) and
ends at (–sinh c, 0). As c varies from zero to ∞ or from zero to –∞, the semi-ellipses
cover the upper-half of ω-plane. Thus the mapping is 2–to–1.

Now consider the infinite line y = c, x ∈ (–∞, ∞).

It’s image is {sinh x cos c + i cosh x sin c|x ∈ (–∞, ∞)}.

Here u and v satisfy the equation for a hyperbola

u
c

v
c

2

2

2

2 1
cos

–
sin

=

As c varies from 0 to π/2 or from π/2 to π, the semi-hyperbola cover the upper-
half of ω-plane. Thus the mapping is 2-to-1.

We look for branch points of sinh–1ω
ω = sinh z

ω = e ez z– –

2
e2z–2ωez–1 = 0

ez = ω + (ω2 + 1)1/2

z = log(ω + (ω – i)1/2 (ω + i)1/2)

The branch points are at ω = ±i. Since ω + (ω2 + 1)1/2 is non zero and finite
in the finite complex plane, the logarithm does not introduce any branch in the finite
plane. Thus the only branch point in the upper-half of ω-plane is at ω = i. Any branch
cut that connects ω = i with the boundary of Im ω > 0 will separate the branches under
the inverse mapping.

We consider the line y = π/4. The image under the mapping is the upper-half of
the hyperbola

2u2 – 2v2 = 1

Consider the segment x = 1. The image under the mapping is the upper-half of the
ellipse.

u v2

2

2

21 1
1

sinh cosh
+ =
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Example 23 : Construct a Riemann Surface for cos–1z.

Solution : The function ω = cos–1z = –i log [z + (z2 – 1)1/2] has two sources of
multi-valuedness; one due to the square root function (z2 – 1)1/2 and the other due to
the logarithm, if any.

First we construct the branch of the square root

(z2 – 1)1/2 = (z + 1)1/2(z – 1)1/2

We see that there are branch points at z = –1 and z = 1. In particular we want
the cos–1z to be defined for z = x, x∈ [–1, 1]. Hence we introduce the branch cuts on
the lines (–∞, –1] and [1, ∞). Let

z + 1 = reiθ, z – 1 = ρ eiφ

With the given branch cuts, the angles have the possible ranges

–π ≤ θ < π, 0 ≤ φ < 2π
Now we must determine if the logarithm introduces

additional branch points. The only possibilities for
branch points are where the argument of the logarithm is
zero.

z + (z2 – 1)1/2 = 0

or, z2 = z2 – 1 ⇒ 0 = –1

We see that the argument of the logarithm can not be
zero and thus there are no additional branch points. Here
the Riemann surface consists of two sheets S0 and S1

joined on the real axis (–∞, –1] ∪ [1, ∞) :

S0 1

0 2 2 4

3

≤ <
≤ <

�
�
�

≤ <
≤ <

�
�
�

φ π
π θ π

π φ π
π θ π–

    S

A particular branch of this function can be obtained by first taking

z + 1 = reiθ, –π ≤ θ < π; z – 1 = ρeiφ, 0 ≤ φ < 2π
Then adding these relations, we find

z = (reiθ + ρeiφ)/2

and the function z + (z2 – 1)1/2 reduces to

z z
re e

r e
i i

i+ = + + +( – ) ( )/ / ( )/2 1 2 1 2 21
2

θ φ
θ φρ ρ

 = + +
�
��

�
��

re

r
e

r
e

i
i i

θ
φ θ φ θρ ρ

2
1 2 2( – ) ( – )/

Fig. 53

–1 1

y

x
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= +
�
��

�
��

re

r
e

i
i

θ
φ θρ

2
1 2

2

( – )/

Then cos – log log–1 ( – )/z i
r

e
r

ei i= �
��

�
�� + +

�
��

�
��

�
��
��



��
��2

1 2

2

θ φ θρ  on S0. If a point lying on the

sheet S0 is allowed to travel a path making a complete round about only the branch
point z = 1, it enters to the sheet S1 from the sheet S0. In this case the value of φ
changes by 2π while the value of θ remains unchanged. The change in (φ–θ)/2 is π.
So in this case,

cos – log log ––1 ( – )/z i
r

e
r

ei i= �
��

�
�� +

�
��

�
��

�
��
��



��
��2

1 2

2

θ φ θρ
 on S1. Similarly we can analyse

the case when the point on S0 encloses only the branch point z = –1 while travelling
a complete round.

Some standard branch cuts of elementary functions.

Function Branch cuts

zs, non integral s with Re s > 0 (–∞, 0)

zs, non integral s with Re s ≤ 0 (–∞, 0]

ez none

log z (–∞, 0]

sin–1z, cos–1z (–∞, –1] and [1, ∞)

tan–1z y ≤ –1, x = 0 and y ≥ 1, x = 0

cosec–1z, sec–1z (–1, 1)

cot–1z [–i, i]

sinh–1z y < –1, x = 0 and y > 1, x = 0

cosh–1z (–∞, 1)

cosech–1z –1 < y < 1, x = 0

sech–1z (–∞, 0] and (1, ∞)

tanh–1z y ≤ 1, x = 0 and y ≥ 1, x = 0

coth–1z [–1, 1]
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Exercises

1. Find the principal value of each of the following complex quantities :

(a) (1 –i)1+i (b) 33–i (c) 22i

2. Give the number of branches and locations of the branch points for the functions.

(a) cos (z1/2) (b) (z + i)–z

3. Determine the branch points of the function

ω = {(z2 – z)(z + 2)}1/3

4. Find the branch points of (z1/2 –1)1/2 in the finite complex plane. Introduce branch
cuts to make the function single-valued.

5. Let D be the complex z-plane with a cut along the segment [–1, 1], determine the
regular branches of the function

f z
z

z
( )

–
/

=
+

�
��

�
��

1

1

1 2

6. Split the function f z z z( ) ( – )( – )= 2 24 9  into two regular branches in the

domain D C: \ {[–3, – ],[2, ]}/   2 3

7. Evaluate

(i) 
x

x

α

α
20 1

1 1
–

, –
∞� < < dx   (ii) 

log x

x20 1+
∞�  dx

8. Prove that  logsin – log .xdx =� π
π

2
0

9. Construct a Riemann surface for the following functions :

(i) ω = z1/3 (ii) ω = (z2 + 1)1/2 (iii) ω = +
log

–

z

z

1

1
 (iv) ω = sin–1z.
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O

–i

i

�

�

10. Let f(z) have branch points at z = 0 and z = ± i but nowhere else in the extended
complex plane. How does the value and argument of f(z) change while traversing
the contour given in the figures 51(a) (b). Do the branch cuts make the function
single valued?

O

Fig. 54 (b)

–i

i

�

Fig. 54 (a)

>>>>>

>>>>>
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Unit 5 � Conformal Equivalence

Structure

5.0 Objectives

5.1 Riemann Mapping Theorem

5.2 The Schwarz Reflection Principle

5.3 The Schwarz-Christoffel Transformation

5.4 Examples : Triangles / Rectangles

5.0 Objectives of this Chapter

The concept of conformal equivalence of two regions will be introduced in this
chapter. The main theorem of this chapter is Riemann mapping theorem. Also
Hurwitz’s theorem, Schwarz lemma, Schwarz reflection principle, Schwarz-Christoffel
transformation will be studied and their applications will be shown through a few

examples.

5.1 Riemann Mapping Theorem

In the family of analytic functions that concern geometrical orientation, conformal
mapping plays a leading role. As its consequences we shall present here a most
important result named after G. F. B Riemann, known as “Riemann mapping theorem”.
Throughout H(G) will denote the family of analytic functions defined on the region G.

Definition : Conformal Equivalence :

Two regions R1 and R2 are said to be conformally equivalent if there exists a
f ∈ H (R1) such that f is one-to-one in R1 and f(R1) = R2 i.e. if there exists a conformal
mapping one to one of R1 onto R2. Clearly, this is an equivalence relation (reflexive,
symmetric and transitive).

Theorem 5.1  [Hurwitz’s Theorem] Let G be a region and {fn} be a sequence
in H(G) that converges uniformly to f∈ H(G). Suppose f ≠ 0, D  (a, R) ⊂ G and f(z)
≠ 0 on γ : |z–a| = R. Then there exists an integer N such that for n ≥ N, fn and f have

the same number of zeros in D(a, R).
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Proof. Since f(z) is never zero on the circle γ, we have

Inf f z
γ

δ( ) = > 0

Again, fn → f uniformly on γ, so there is an integer N such that for n ≥ N

sup ( ) – ( )
γ

δ
f z f zn <

2

and thus on the circle γ, f z f z f zn( ) – ( ) ( )< < ≤δ δ
2

 for n ≥ N. Using Rouche’s

theorem we find that fn and f have the same number of zeros inside the circle
γ : |z–a| = R for n ≥ N.

By means of the above theorem, we can easily prove

Corollary 1. Let G be a region and {fn} be a sequence in H(G) such that each
fn never vanishes in G. Suppose fn → f uniformly in H(G). Then f(z) never vanishes
in G, unless f ≡ 0.

Some useful results
(i) If f(z) is analytic at z0 and f1 (z0) ≠ 0, then there is a neighbourhood of z0 in

which f(z) is univalent.

(ii) An univalent analytic function f on a domain G has a non-zero derivative at
every point of G, i.e., f1(z) ≠ 0 on G.

(iii) The inverse of an univalent analytic function is analytic.

(iv) Any domain in /C , that is conformally equivalent to a simply connected
domain must itself be simply connected.

(v) A domain D in /C  is simply connected if and only if every analytic function
in D has a primitive in D.

Schwarz Lemma
Let f : D (0, 1) → D (0, 1) be an analytic function which maps the unit disc

D(0, 1) to itself. If f(0) = 0,

then

(i) |f (z)| ≤ |z| for 0 ≤ |z| < 1

(ii) |f1(0)| ≤ 1

(iii) if equality holds in (i) for at least one z∈ D (0, 1) – {0}, or, if equality holds
in (ii), then

f(z) = λ z,

where λ is a constant, |λ| = 1.

Proof : Let us consider the function

g z
f z

z
( )

( )=
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which is analytic in the disc D(0, 1) –{0} and it has removable singularity at z
= 0, since f(0) = 0. It can be made analytic at z = 0 if we define

g
f z

z
f

z
( ) lim

( )
( )0 0

0

1= =
→

(55)

For |z| = r, where 0 < r < 1

g z
f z

z r
( )

( )
= < 1

By the Maximum Modulus Principle, |g(z)| < 1/r for the entire disc |z| ≤ r. We fix
z∈ D (0, 1) –{0} and let r → 1. Then

|g (z)| ≤ 1.

This is true for all z∈ D (0,1) –{0} and we get

f z

z
z

( )
,≤ < <1 0 1 (56)

i.e. |f(z)| ≤ |z|, 0 < |z| < 1. Since f(0) = 0, we have |f(z)| ≤ |z| for 0 ≤ |z| < 1. So,

(i) is proved and we find from (55) that |g (0)| = |f1(0)| ≤ 1 which proves (ii)
To prove (iii), we observe that if at a point z0 ≠ 0 (|z0| < 1) |g(z0)| 1 = 1 i.e. |g(z)|
attains its maximum at an internal point and hence by the maximum modulus principle
g(z) = λ, a constant and that |λ| = 1, so f(z) = λz.

Theorem 5.2  Let a∈ D (0, 1). Then φa defined by

φa z
z a

az
( )

–

–
=

1
maps D  (0, 1) onto D  (0, 1).

Proof. Clearly, φa is a bilinear transformation, it is analytic in the whole complex

plane except the point 
1

a
 (which is the inverse point of the point a with respect to

the circle |z| = 1, and hence lies outside |z| = 1). We observe that

φ φa a z

z a

az
a

a
z a

az

– ( )
–

–
� � =

+
+

+
+

1

1
1

=
z a

a

1

1

2

2

–

–

� �

= z = φ–a(fa(z)), similarly.
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Thus φa maps D (0, 1) onto D (0, 1) in a one to one way. Now let θ be a real
number. Then

φ θ
θ

θa
i

i

ie
e a

ae
� � = –

–1

= = =e a

e a e

e a

e a

i

i i

i

i

θ

θ θ

θ

θ

–

–

–

–
–  

1
1

i.e., φa maps |z| = 1 on |z| = 1. Thus, φa maps D  (0, 1) onto D  (0, 1).

A maximal problem

Let α, β be two complex numbers with |α| < 1, |β| < 1 and f be analytic on
D(0, 1) satisfying f(α) = β. What is the maximum possible value of |f1 (α)| among
such mappings?

Solution : Let

g = φβ 0 f 0 φ–α where φβ is defined as in theorem 5.2 (57)

Then g maps D (0, 1) to D (0, 1) and satisfies

g(0) = φβ{f(φ–α (0))}

= φβ {f(α)}

= φβ (β)
= 0

Thus g satisfies all the conditions of Schwaz’s lemma and hence |g1(0)| ≤ 1. To
obtain an explicit form of g1(0), we use (57) and apply the chain rule

g1(0) = {(φβ0f)1 (φ–α(0)}φ1
–α(0)

= (φβ0f)1 (α) (1–|α|2)

= φβ
1(f(α))f1 (α) (1–|α|2)

= φβ
1(β)f1(α)(1–|α|2)

= 
1

1

2

2
1–

–
( )

α
β

αf

But |g1(0)| ≤ 1, therefore

f1
2

2

1

1
( )

–| |

–| |
α β

α
≤ (58)

Equality in (58) occurs only when |g1 (0)| = 1. In that case by virtue of Schwarz
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lemma there is a constant λ, |λ| = 1 so that g(z) = λz. Hence,

f(z) = φ–β{λφα(z)}, z ∈ D (0, 1) (59)

We now present an important consequence of Schwarz’s lemma, which may be
seen as the converse form of theorem 5.2.

Theorem 5.3 : Let f : D (0, 1) → D (0, 1) be any conformal map of the unit disc
onto itself and f(a) = 0, a∈ D (0, 1). Then there is a constant λ, |λ| = 1 such that

f(z) = λφa (z) where φa is defined as in theorem 5.2.

Proof. Since f is a conformal map from D(0, 1) to D (0, 1), we can have inverse
of f, g defined by

g {f(z))} = z,

which is analytic too. Applying the chain rule

g1(0) f1 (a) = 1 (60)

But according to inequality (58), f and g have to satisfy

f a
a

1
2

1

1
( )

–
,≤ g a1 2

0 1( ) –≤ (61)

(since, f(a) = 0 and g(0) = a).

From (60), (61) it follows that |f1(a)| = (1 – |a|2)–1. Hence applying the result (59)
we find that

f(z) = λφa(z)

for some λ with |λ| = 1.

Lemma 5.1 : Let G be a simply connected region and {fn} be a sequence of
injective analytic mappings (conformal mappings) of G into /C  which converges
uniformly on every compact subset of G, then the limit function f is either constant or
injective.

Proof. Suppose f is not constant and not injective. Then there exist two points ς
and η∈ G, ς ≠ η such that f(ς) = f(η) = ω0, say.

Let gn(z) = fn(z) – ω0. We can find a positive δ, δ < |ς–η|/2 so that the discs
D(ς, δ) and D(η, δ) are included in G. Now g(z) = f(z)–ω0 never vanishes on the

circles |z – ς| = δ and |z – η| = δ, where g z g z
n

n( ) lim ( )=
→∞ . Applying Hurwitz’s

theorem, for large n, there exists ςn lying inside the circle |z – ς| = δ with gn(ςn) =
0 as gn → g uniformly in G. Similarly, for all large n, there is ηn within |z–η| = δ
with gn(ηn) = 0. But by construction, D(ς, δ) ∩ D (η, δ) = φ and hence ςn ≠ ηn. Thus

gn(ςn) = gn(ηn) = 0, ςn ≠ ηn

that is, fn (ςn) = fn (ηn), ςn ≠ ηn
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contradicting the injectivity of each fn and the proof follows.
NOTE : There is no conformal map f of the unit disc D (0, 1) onto the whole

complex plane /C because then the inverse function f–1 : /C  → D (0, 1) would be a
bounded entire function which is not constant, contradicting the Liouville’s theorem.

Open mapping theorem : Let G be a region and suppose that f is a non-constant
analytic function on G. Then for any open set U in G, f(U) is open.

Proof : Omitted.
Uniform boundedness : A sequence of functions {fn} defined on a set D is said

to be uniformly bounded on D if there exists a constant M > 0 such that |fn(z)| ≤ M
for all n and for all z∈ D.

Normal family : Let F be a family of functions in a region G. The family F is
said to be normal in G if every sequence {fn} of functions fn∈ F contains a subsequence
{fnk} which converges uniformly on every compact subset of G.

Montel’s theorem : A family F in H (G) is normal if and only if F is uniformly
bounded on every compact subset of G.

Proof : Omitted.
Theorem 5.4 : [Riemann Mapping Theorem] Let G be a simply connected region,

except for /C itself and let a∈ G. Then there is a unique conformal map f : G → D
(0, 1) of G onto the unit disc which satisfies

f(a) = 0 and f1(a) > 0.
Proof. Let us first prove that f is unique. If there was another conformal map

g : G → D (0, 1) with the given properties, then
fog–1 : D (0, 1) → D (0, 1)

would be a conformal map and also
(fog –1) (0) = f(a) = 0

Hence, applying Theorem 5.3, we find that there is a constant λ with |λ| = 1
(fog –1) (z) = λz

Deriving the derivative at the origin, we find

( ) ( ) ( )( )( ) ( ) ( )
( )

( )

( )
,–1 –1 –1

–1
fog f g g f a

g g

f a

g a
′ = ′ ′ = ′

′
= ′

′
>0 0 0

1

0
0

� �
from which it follows that λ is positive. But also |λ| = 1, so λ = 1. Thus

fog–1 is an identity map and f = g.
The proof of existence is divided into several stages.
Lemma 5.2  Let G be a simply connected region other than /C. Then there exists

an injective analytic map f on G with f(G) ⊂ D (0, 1).
Proof. We choose a point b ∈ /C\G. Since G is simply connected there exists a

g : G → /C  analytic with g2(z) = z – b.
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Here g is injective since

g(z1) = g(z2)

⇒ g2(z1) = g2 (z2)
i.e. z1 – b = z2 – b

⇒ z1 = z2.

By open mapping theorem g(G) is open. Let us pick ω0∈ g(G) and choose r > 0
so that D(ω0, r) ⊂ g(G). Then D(–ω0, r) ⊂ /C \g(G). For, if there exists a point ω∈
D(–ω0, r) ∩ g(G), then ω = g (z1) for some z1∈ G and also –ω∈ D (ω0, r) ⊂ g (G),
so that –ω = g(z2) for some z2∈ G. Again,

g(z1) = –g(z2)
⇒ g2(z1) = g2(z2)
or, z1 – b = z2 – b
i.e. z1 = z2

or, g(z1) = g(z2) = –g(z1)
⇒ g(z1) = 0
⇒ 0 = g2(z1) = z1 – b

i.e. z1 = b∈ /C\G

contradicting z1∈ G.

We take f z
r

z
( )

[g( ) ]
=

+2 0ω
(62)

Then f is injective analytic map on G (by construction |g(z) + ω0|  ≥ r for z∈ G)

and also satisfies f z G( ) .≤ < ∈1

2
1 for z

Lemma 5.3 : Let G be a simply connected region other than /C  itself  and let a∈ G
be fixed. Then there exists a conformal map f : G → D(0, 1) of G onto the unit disc
with the properties f(z) = 0 and f(a) > 0.

Proof : Let F denote the family of analytic functions f : G → /C  such that either
f ≡ 0 or f is injective, and f(G) ⊂ (0, 1), f(a) = 0 and f ′ (a) > 0.

Let us consider the function

ψ( )
( ) – ( )

– ( ) ( )
z

f z f a

f a z
=

1  f
where f(z) is given by (62) of lemma 5.2 and we find that ψ(G) ⊂ D (0, 1), ψ(a)

= 0 and ψ1(a) > 0. So F is non empty and by Montel’s theorem it is normal. Applying
Lemma 1 we see that all functions in the closure of F in H(G) are either constant or
injective. Now since all functions in F take the value zero at a, the same is true for
all functions in the closure of F. Likewise the only constant function in the closure is
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0 while the other functions in the closure satisfy f(G) ⊂ D  (0, 1). Since f(G) is open,

by open mapping theorem, f(G) ⊂ D (0, 1). Again since the f → f1(a) is continuous,
all functions in the closure of F must satisfy f1(a) ≥ 0. The functions in the closure,
that are not identically zero, are injective, so f 1(a) > 0 unless f ≡ 0. These observations
prove that the set F is closed in H(G). Hence F is compact in H(G).

Since the map f → f ′(a) : F → R is a continuous function on a compact set, it
must attain its maximum value, as we are not considering constant function (here it
is zero). Let f∈ F be a function with f ′(a) maximum.

We now show that f(G) = D (0, 1). On the contrary, suppose that f(G) ≠ D (0, 1)
and choose w∈ D(0, 1)\f(G). Using the property that every non-vanishing analytic
function in a simply connected region has an analytic square root, we take a function
h ∈ H(G) with

[ ( )]
( ) –

– ( )
h z

f z

f z
2

1
= ω

ω (63)

Now as the bilinear transformation φa z
z a

az
( )

–

–
=

1
 maps D (0, 1) onto D (0, 1)

and as f∈ F, h(G) ⊂ D (0, 1).

Let g : G → /C  defined by

g z
h a

h a

h z h a

h a z
( )

( )

( )

( ) – ( )

– ( ) ( )
=

′
′

⋅
1  h

Then clearly, g(G) ⊂ D (0, 1), g(a) = 0 and g is analytic injective and g′(a) >
0, since

′ = ⋅g a
h a

h a

h a h a

h a
( )

( )

( )

( )[ – ( ) ]

[ – ( ) ]

1

1

1 2

2 2

1

1

              = >
h a

h a

1

2
1

0
( )

– ( )
(64)

So, g∈ F.

Again, differentialing (63) we find that

2h(a)h1(a) = f1(a)(1–|ω|2)
So, from (64)

g a
h a h a

h a h a

f a1

1

2

1 2

1

1

2 1
( )

( ) ( )

( ) ( – ( )

( )( –

( – )
,= =

ω
ω ω  as |h(a)|2 = |ω|
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=
+

>
f a

f a
1

1
1

2

( )
( ).

ω
ω
� �

contradicting the choice of f∈ F as maximising f1(a). Thus f(G) = D (0, 1).

Note : The Riemann mapping theorem is one of the most celebrated results of
complex analysis. It is the beginning of the study of complex analysis from a geometric
view point. G. F. B. Riemann in 1851 correctly formulated the theorem, but
unfortunately his proof of the theorem was lacking. According to various accounts, he
assumed but did not prove that a certain maximal problem had a solution. A final proof
was definitely known by the early 20th century, different sources attributed to it
particularly, W. F. Osgood, P. Koebe, L Bieberbach etc.

5.2 The Schwarz Reflection Principle
Let f be analytic in the domains D1, D2 which have a common piece of boundary,

a smooth curve γ. Assume further that f is continuous across γ. Then, by Morera’s
theorem, f is analytic in D1 ∪  D2. This allows us to perform analytic continuation in
some cases.

Theorem 5.5 [The Schwarz reflection principle] Given a function f(z) analytic in
a domain D lying in the upper half plane whose boundary contains a segment I ⊂ IR,
assume f is continuous on D ∪ I and real-valued on I. Then f has analytic continuation

across I, in a domain D ∪ I U D*, where D* = ∈{ : }.z z D

Proof. Let us consider the function

f z
f z

f z

z DUI

z D UI
( )

( )

( )
,= ��

	
∈

∈ ∗

It is clear that F is analytic in D. We shall show that F is also analytic in D*.
Let z and z + h lie within D*. Then z  and z h+  lie within D and we can express.

lim
( ) – ( )

lim
( ) – ( )

lim
( ) – ( )

( ).
h h h

F z h F z

h

f z h f z

h

f z h f z

h
f z

→ → →

+ = + = +


�
�
�




�
�
�

= ′
0 0 0

So, F is analytic in D*. F is also continuous on D*U I.

For, z  ∈ I
lim ( ) lim ( ) ( ) ( ),
z x z x

F z f z f x f x
→ →

= = =

by hypothesis. Thus F is continuous on D U I U D*. To prove F is also analytic
there, we consider the function
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φ
π

ς
ς

ς( )
( )

–
z

i

F

z
d= �1

2
 

Γ (65)

It is analytic in D U I U D* [as (i)

F

z

( )

–

ς
ς  is continuous function of both

variables when z lies within Γ and ς
on Γ.

(ii) for each such ς ς
ς

,
( )

–

F

z  is

analytic in z in D U I U D*. [see (14)].

To complete the proof, we try to establish φ(z) = F(z) for all z ε D U I D*.

Breaking the integral in (65) and adding the two integrals along I, which are in
opposite directions, we write

φ
π

ς
ς

ς
π

ς
ς

ς( )
( )

–

( )

–
z

i

F

z i

F

z
d= +� �1

2

1

21 2Γ Γ
 d  (66)

where Γ1 and Γ2 are the boundary of D U I and D* U I respectively. When z∈ DUI,
the second integral in (66) vanishes and φ(z) = F(z). Again, the first integral vanishes
when z ε D* U I and φ(z) = F(z) in this case too. Thus φ(z) = F(z) for all z∈ D U
I U D* and we have found a function F(z), analytic in D U I U D*, and coincides with
f(z) in D U I.

5.3 The Schwarz-Christoffel Transformation
We know from Riemann’s mapping theorem that there is a conformal mapping

which maps a given simply connected domain onto another simply connected domain,
or equivalently onto the unit disc. But it does not help us to determine such mappings.

Many applications in boundary-value problem requires construction of one-to-one
conformal mapping from the upper half plane Im z > 0 onto a polygon Ω in the
w-plane. Two German mathematicians H. A. Schwarz and E. B. Christoffel independently
discovered a method for finding such mappings during the years 1864-1869.

Theorem 5.6 [Schwarz and Christoffel] Let P be a polygon with vertices w1,
...wk in the anticlockwise direction and interior angles α1π, ..., αkπ respectively, where
–1 < α1, ..., αk < 1. Then there exists a one-to-one conformal mapping of the form

f z A s x s x s x Bk kz

z
( ) ( – ) ( – ) ...( – ) –– –

– –= +� 1
1

2
1

1 1
1 2

0

1α α α  ds (67)

I x

D

D*

z

Γ

z–

Fig. 54
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where A, B∈ /C , that maps the upper plane Im z > 0 onto the interior of P, with
f(x1) = w1........., f(xk–1) = wk–1, f(∞) = wk. (68)

Remarks : (i) We do not need to have specific information on wk and αk. While
travelling the polygon anticlockwise direction we made a left turn of an angle π–α jπ
at the vertex ωj.

(ii) Sometimes certain infinite regions can be thought of as infinite polygons. In
this case it is convenient to take wk as the point at infinity, as we need no information
on αk.

(iii) It can be shown that Schwarz-Christoffel transformation can be uniquely
determined by three points as in the case of bilinear transformation. One of these is
used by taking f(∞) = ωk. We can therefore have the freedom to choose two points
say, x1 and x2 satisfying –∞ < x1 < x2 < ∞.

(iv) Note that the integral involved may be impossible to calculate theoretically.
In practical problems numerical techniques are often used to evaluate the integral. In
first part of the proof we take f(xk) = ωk , xk = finite.

Proof. By Riemann mapping theorem such a mapping exists. We shall prove that
its form is given by (67). So f(z) is analytic for Im z > 0 and f1(z) ≠ 0 in the upper
half plane. From these it is clear that

d

dz
f z

f z

f z
log ( )

( )

( )
′ = ′′

′
is analytic in the upper half plane. To construct the function f(z) our aim is to

establish that f''(z)/f'(z) is analytic for Im z ≥ 0
save for the pre-image points of the vertices of
the polygon lying on the real axis.

Let l be a side of the polygon P, which
makes an angle θ (positive sense) with the real-
axis and ς be any point on l but not a vertex of
the polygon P. Then for any ω on l, (ω–ς)e–iθ is

real and there is a point z on the real axis of the z-plane so that f(z) = ω and a
corresponding point z = a for ς on the same line. Hence

{f(z) – ς}e–iθ

is real and continuous on the segment γ of the real axis of the z-plane corresponding
to the straight line l of the ω-plane. Moreover, this function is also analytic for
Im z > 0, thus following the Schwarz reflection principle we can continue this function
analytically across γ to the lower half plane Im z < 0. In particular, this function is
analytic in a neighbourhood of the point z = a and can be expanded in the form of
the Taylor series.

Fig. 55

a

θ

w-plane

l

�
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{ ( ) – } ( – )–f z e c z ai
k

k

k

ς θ =
=

∞

∑
1

where c1 = f ′(a) ≠ 0, maintaining the status quo that f(a) = ς and the function f
maps the segment γ  onto the straight line l. Now

f ′(z) = eiθ{c1 + c22(z – a) + ...}

and logf ′(z) = iθ + log{c1 + 2c2(z – a) + ...}

So, d

dz
f zlog ( )1  is analytic in a neighbourhood of z = a and real on a real line

segment intercepted by the neighbourhood.

Let us consider the case when the point ς is the corresponding point at infinity
on γ (in this case γ is divided into two parts, each of infinite lenght). Here the Taylor
series expansion in the neighbourhood of point at infinity

{ ( ) – } /–f z e c zi
k

k

k

ς θ =
=

∞

∑
1

where each cR is real and c1 ≠ 0 (with the same reason mentioned in the finite
case). So

′ =f z e
c

z

c

z

c

z
i( ) – – – –...– θ 1

2
2

3
3

4

2 3

′′ = + + +f z e
c

z

c

z

c

z
i( ) .....– θ 2 6 121

3
2

4
3

5

and we find that

′′
′

=
+ + +��	

���
+ +��	

���

= + +��	
���

+��	
���

f z

f z

z c
c

z

c

z

c z
c c

z
c

c
c

z

c c

z

( )

( )

...

–
/

...
– ... –

/
...

–3

–2

2
6 12

1
2

1
2

6
1

21
2 3

2

1
2 1 1

1
2 2 1

         = +
=

∞

∑–
~2

2z

c

z
k
k

k
(69)

d

dz
f zlog ( )1

 is analytic in a neighbourhood of the point at infinity and is real when

z is real.

In the polygon P, let �1  be an adjacent side to �  making on angle α1π at their

point of intersection ω1. The corresponding point of ω1 on the real axis is x1. Here
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the function f(z) is not analytic in a neighbourhood of x1, we choose the branch of the
argument so that

π π
2

3

21< <Arg z x( – )

introducing a branch cut along the axis {x1 + iy : y ≤ 0} [f'(z) is not continuous
on this branch cut].

Here Arg {(ω1 – ω)e–iθ} is equal to zero or α1π according as ω lies on �  or �1 .
So the function

[{ – ( )} ]– /ω θ α
1

1 1f z e i

is real and continuous on the segment of the real axis corresponding to the
consecutive sides �  and �1 . Again this function is analytic for Im z > 0 since
f(z) –ω1 is analytic and non zero there.

Expanding { – ( )} – /
ω θ α

1

1 1
f z e i in Taylor’s series in a neighbourhood of x1 we find

{ – ( )} ( – )– /
ω θ α

1

1

1
1

1
f z e c z xi

k
k

k=
=

∞

∑
where each ck is real and c1 ≠ 0. On simplifying, we find

f z e z x c z xi( ) – ( – ) [c ( – ) ... ]= + +ω θ α α
1 1 1 2 1

1 1

       = +
=

∞

∑ω θ α
1 1

1
1

0

1e z x c z xi
k

k

k

( – ) ( – )

where c0
1 is a constant multiple of c1, hence not equal to zero. Now we have

′ = + + +f z e z x c c z xi( ) ( – ) ( ) ( – ) ...–θ α α α1
1

1 0
1

1 1
1

1
1 1

= (z – x1)α1–1F(z)

Fig. 56 Fig. 57

new position after
rotation through an
angle θ clockwise

α 1
π

A

α 1
π

θ
A

�
�

w

α 1π

w1

1

1
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where F(z) is analytic and not zero in a neighbourhood of z = x1 and we obtain
d

dz
f z

z x

F z

F z
log ( )

–

–

( )

( )
1 1

1

11= +α
(70)

This shows that if the polygon P has an angle α1π at a point ω1 then 
d

dz
f zlog ( )1

will have a simple pole of residue α1–1 at its corresponding point x1.

Now if the point at infinity be the corresponding point to ω1 at which the polygon
P has an angle α1π, then we can express

ω θ α

1

1
1 2

2

1
– ( ) ....– /

f z e
c

z

c

z
i� � = + +

or, f z e
c

z

c

zc
i( ) – ...= �
��
�
�� + +
�
��

�
��

ω αθ
α

1
1

1
2

1

1

1

′ = + + +
�
��

�
��

�
��
�
��
�
��

�
��+f z e

c

z

c

zc
e

c

z

c

z c
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α

α
θ

α

α α α
1

1
1 1

2

1

1 1 2
2

1

1

1

1

1

      = + + +
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��+e c

z

c
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α
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1 1
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1

1

1
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′′ = + + + +
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�
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�
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z
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z
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α
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α
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1 1

2 1
2

1
1

1
1 1

2
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1
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1
1 1 1

     = + + + +


��



��+–
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( ) ...e c
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α
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1 1
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d

dz
f z

f z

f z z

c

zc

c

zc
log ( )

( )

( )
– ( ) ... – ( ) ....′ = ′′

′
= + + + +

�
�
	

�
�
�

+ +
�
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�
�
�

α α α1
1

2

1
1

2

1

1
1 2 1 1
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�
�
	

�
�
�

– ( – – ) ....
α α α1

1 1
2

1

1
1 2 1

z

c

zc

             =
+ +

=

∞

∑–
~α1

2

1

z

c

z
k
k

k
(71)

Now since x2, x3..., xk are the corresponding points lying on the real-axis of the
z-plane, to the vertices w2, w3, ...wk respectively of the polygon P with angles α2π,
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α3π, ... αkπ there, the function 
d

dz
f zlog ( )1

 will have simple poles with residue αj–

1 at xj, j = 2, ..., k. Thus we see that this function is analytic for Im z > 0 and continuous
on Im z = 0 except the points x1, x2, ..., xk and using the Schwarz reflection principle

it can be continued analytically across the real axis. Hence 
d

dz
f zlog ( )1

 possesses

only simple poles at x1, x2, ... xk as its only singularities and can be expressed as

d

dz
f z

z x z x z x
G zk

k

log ( )
–

–

–

–
...

–

–
( )1 1

1

2

2

1 1 1= + + + +α α α
(72)

where G(z) is a polynomial.

When |z| is large enough

α αi

i

i i i

z x z

x

z

x

z
i k

–

–

–
... , , ...,

1 1
1 1

2

2= + + +
�
��

�
��

=

So, 
d

dz
f z z x z x z G zi i

i

k

i

k

i

k

log ( ) ( – ) / ( – ) / ( – ) / ... ( )1
1

2

11
1

2
1

3

1

1 1 1= + + + +
== =
∑∑ ∑α α α

                = + +
=

∞

∑– ( )
2

2z

d

z
G zi

ii
(73)

Using the property of the sum of the exterior angles of a polygon, (1 – α1) π +
(1 – α2)π + ... (1 – αk)π = 2π. Comparing (73) with (69) we get G(z) identically zero.

Finally integrating equation (72), we find the desired mapping f(z) as

f z A s x s x s x ds Bkz

z
k( ) ( – ) ( – ) ...( – )– – ––1= +� 1

1
2

1 1

0

1 2α α α (74)

Role of constants A and B
(i) |A| controls the size of the polygon

(ii) Arg A and B help to select the position, if any, in determining orientation and
translation respectively.

An useful observation
In some occasions we urge to make the evaluation process of the integral in (74)

simple. For this sake, we consider the point at infinity corresponds to the vertex wk

where the polygon P has an angle αkπ. Then we can express [see eq. (71)]

d

dz
f z

z

c

z
k i

ilog ( )
– ~

1

2

1= +
∞

∑α
(75)
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in the neighbourhood of the point at infinity.

Again considering the expression of 
d

dz
f zlog ( )1

 in the neighbourhood of the

points corresponding to the vertices w1, w2 ..., wk–1 [see eq. (70)].
d

dz
f z

z x z x z x
G zk

k

log ( )
–

–

–

–
...

–

–
( )–

–

1 1

1

2

2

1

1

1 1 1= + + + +α α α
(751)

where G(z) is a polynomial. If |z| is large enough, proceeding as earlier

d

dz
f z z x z x z G zi i

i

kk

i i

k

ilog ( ) ( – ) / ( – ) / ( – ) / ( )
–– –

1
1

1

1
2 2

1

1
31 1 1= + + +∑∑ ∑α α α

        = + + +
∞

∑–
~

( )
α k i

z

d

z
G z

1
1

2
(76)

Comparing (76) with (75), G(z) turns out to be identically zero and hence
integrating (751) we obtain

f z A s x s x s x ds Bkz

z
k( ) ( – ) ( – ) ...( – )– –

–
–1–1= +� 1

1
2

1
1

1 2

0

α α α

where the role of the constants A and B remain as before.

5.4 Examples : Triangles / Rectangles
The Schwarz-Christoffel transformation is expressed in terms of the points xj, not

in terms of their images i.e., the vertices of the polygon. Not more than three points
(xj) can be chosen arbitrarily. If the point at infinity be one of the xj’s then only two
finite points on the real-axis are free to be chosen, whether the polygon is a triangle
or a rectangle etc.

Triangle
Let the polygon be a triangle with vertices w1, w2 and w3. The S-C transformation

is written as

w A s x s x s x ds B
z

z
= +� ( – ) ( – ) ( – )– – –

1
1

2
1

3
11 2 3

0

α α α
(77)

where α1, π, α2π and α3π are the internal angles at the respective vertices.

Fig. 58 Fig. 59

w-planez-plane

x1 x2 x3

w1

w2

w3
α3π

α 1π

α 2π
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Here we have chosen all the three finite points x1, x2, x3 on the real-axis.

The constants A, B control the size and position of the triangle respectively.

If we take the vertex w3 as the image of the point at infinity, the S-C transformation
becomes

w A s x s x ds B
z

z
= +� ( – ) ( – )– –

1
1

2
11 2

0

α α
(78)

Here x1 and x2 can be chosen arbitrarily.

Example 1 : Find a Schwarz-Christoffel transformation that maps the upper half-
plane to the inside of the triangle with vertices –1, 1 and √3i.

Solution :

Following our notation, we write w1 = –1, w2 = 1 and w3 = √3i so that α1 =
α2 = α3 = 1/3. We choose the form (78) of S-C transformation and consider the
mapping.

f z A s x s x ds B
z

( ) ( – ) ( – ) ,–2/ –2/= +� 1
3

2
3

0
 [here f(∞) = √3i]

We may choose x1 = –1 and x2 = 1, so that f(–1) = –1 and f(1) = 1. Therefore

f z A s s ds B 
z

( ) ( ) ( – )–2/ –2/= + +� 1 13 3

0

            = +�A s ds B
z
( – )–2/2 3

0
1

It then follows that

= + = + =� �A s ds B s ds B( – ) –1, ( – ) .–2/–1 –2/2 3

0

2 3

0

1
1 1 1 A

Rewriting these as

– –1 , ( – )–2/AL B B s ds+ = + = =� and AL  where L1 12 3

0

1

We obtain A
s ds

and B= =
�

1

1
0

2 3

0

1
( – )

.
–2/

 Hence

Fig. 60

Fig. 61

–1 1

√3i

–1 1
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f z
s ds

s ds
z

( )
( – )

( – ) .
–2/

–2/=
� �1

1
1

2 3

0

1
2 3

0

Example 2 : Using Schwarz-Christoffel transformation map the upper half-plane
onto an equilateral triangle of side 5 units.

Solution :

It is convenient to choose three arbitrary points x1 = –1, x2 = 1 and x3 =  ∞ which
are mapped into the vertices of the equilateral triangle, so we take S-C transformation
(78).

f z A s s ds
z

( ) ( ) ( – )–2/ –2/= +� 1 13 3

1

Here, f(–1) = w1 = 0 and f(1) = w2 = 5. So that

A s ds= �5 12 31
/ ( – )–2/

–1

Hence the desired transformation is

f z
s ds

s ds

z

( )
( – )

( – )

/

/

–1

= �
�
5 1

1

2 2 3

1

2 2 31

Alternative : We take z0 = –1, A = 1, B = 0 and find S-C transformation as,
(choosing one of xi's as point at infinity)

w s s ds= +� ( )( – )1 1 2 3

1

2
(79)

taking x1 = –1 and x2 = 1.

Then ~
( ) ~ ,f w1 2=  say, and the image of the point z = –1 is the point ~w1 0= . When

z = 1 in the integral we can write s = x, where –1 < x < 1. Then x + 1 > 0 and Arg
(x+1) = 0, while |x–1| = 1–x and Arg (x–1) = π. Hence

~ ( ) ( – )/

–1

/ –
w x x e dx

i

2
2 31 2 3 2

31 1= +� π

Fig. 62 Fig. 63
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w3

–π
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= =� �–
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t t
iπ 3
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1

1  substituting x = √t.
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��

�
��– , ./e Biπ 3 1

2

1

3  We choose w2 as, w kw2 2 5= =~  where

k e Bi= �
��

�
��–5 , .– / /π 3 1

2

1

3

To find w3 let us first calculate for ~ .w3

~ ( ) ( – )–2/ –2/

–1
w x x dx3

3 31 1= +
∞�

= + + +� �∞( ) ( – ) ( ) ( – )–2/ –2/

–1

–2/ –2/x x dx x x dx1 1 1 13 31 3 3

1

= �
��

�
�� + +

∞�– , –/ – –2/

–1
e B e x x dxi iπ π3 31

2

1

3
1 1� �

= �
��

�
�� + +

∞�– , –– / – –2/

–
e B e x x dxi i

i

π π3 31

2

1

3
1 1� �

= + ++ + ∞�— –– –2/ –

–1

– –2/ –2 /e x e x e dxi i i i iπ ππ π π2
3

2
3

2
31 1

3 3 3

= + +
∞�— ( ) ( – )/ –2/ –2/

–1

–
e x x dx1 3 3 31 1π

Now, the value of ~w3  can also be represented by the integral

( ) ( – )–2/ –2/

–

–
x x dx

i
+

∞� 1 13 3  when z tends to infinity along the negative real axis. Thus

from the above relation, we have

~ – , ~/ /w e B e wi i
3

3 3
3

1

2

1

3
= �

��
�
�� +π π

i.e.,
~ – ,/ /w e e Bi i

3
3 3 1

2

1

3
= ⋅ �

��
�
��

π π

So, w kw e
i

3 3 5 3= =~ π
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Therefore, the three vertices of the equilateral triangle are w1 = 0, w2 = 5 and
w3 = 5eiπ/3. Clearly each of it’s side is of length 5 unit. The desired transformation
is then

f z Kf z( )
~

( )=

    
= �
��

�
��

+�–5

,
( ) ( – )

– /
–2/ –2/

–1

e

B
s s ds

i zπ 3
3 3

1
2

1
3

1 1

which is same as obtained in the first process.

Remark : Following the above technique we can determine a S-C transformation
from Im z ≥ 0 onto a triangle, in particular, whose one side opposite to an angle is
given.

Rectangle :
Example 3 : Find a S-C transformation that maps the upper half of the z-plane

to the inside of the rectangle in the w-plane with vertices –a, a, a + ib and –a + ib
which are the preimages of –1, 1, α and –α respectively.

Solution :

Let us first make the identification of the vertices of the rectangle

w1 = –a + ib, w2 = –a, w3 = a, w4 = a+ib

α1 = α2 = α3 = α4 = 1/2

We choose

x1 = –α, x2 = –1, x3 = 1, x4 = α
where α > 1 will be determined later. We are attempting to benefit from the

symmetry here, which requires the image z = 0 to be w = 0. So taking z0 = 0 we get
B = 0 in the formula (74) for S-C transformation, which reduces to

f z A s s s s ds
z

( ) [ )( )( – )( – )]–1/= + +� α α1 1 2

0

Fig. 64 Fig. 65
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= ≡�A
ds

s s
z

z

[( – )( – )]
( ( , ))

1 2 2 20 α
φ α (80)

The constant A may be found by using the fact that f(1) = a i.e.,

a A
ds

s s
a

ds

s s
= =� �[( – )( – )]

/
[( – )( – )]1 12 2 20

1

2 2 20

1

α α
  or  A

                   = a/φ(α), say (81)

To find α, we apply f(α) = a + ib,

a ib
a ds

s s

a
+ = �φ α α( ) [( – )( – )]1 2 2 20

= +
�
��
	�

�
��
��

��a ds

s s
i

ds

s sφ α α α
α

( ) [( – )( – )] [( – )( – )]1 12 2 2 2 2 210

1

from which, equating imaginary parts, we arrive at

b
ds

s s
φ α α

α
α

( )
[( – )( – )]

= � 2 2 21 1

Since a and b are known, this equation determines α, which gives rise to the
evaluation of φ(α) i.e. A is completely known.

Note : The function φ(z, α), given in (80), which involves z as the upper limit
of an integral, is called an elliptic integral of the first kind and it is not an elementary
function. The real definite integral φ(α) in (81) is called a complete elliptic integral
of the first kind.

Example 4 : Find a Schwarz-Christoffel transformation that maps the upper half
of the z-plane to the vertical semi-infinite strip –π/2 < u < π/2, v > 0 of the w-plane.

Solution :

Fig. 66

Fig. 67

w-planez-plane

–1
�

1
� 0– –π2  –π2
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Here we take x1 = –1, x2 = 1 and x3 = ∞ and the image points are w1 = –π/2
and w2 = π/2 respectively, so that a S-C transformation can be written as

f z A s s ds B
z

z
( ) ( ) ( – )–1/ –1/= + +� 1 12 2

0

     = +�A
s

B
z

z 1

12 1 2
0 ( – ) /  ds

     = +~
log –

~
A iz z B1 2� �

Using f(–1) –= π
2

 and f ( ) ,1
2

= π
 we find

f z i iz z( ) – log – ,= + 1 2� �
Choosing a suitable branch of the logarithm.
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Unit 6 � Entire and Meromorphic Functions

Structure

6.0 Objectives

6.1 Entire function

6.2 Infinite Products

6.3 Infinite product of functions

6.4 Weierstrass Factorization

6.5 Counting zeros of analytic functions

6.6 Convex functions

6.7 Order of an entire function

6.8 The function n(r)

6.9 Convergence exponent

6.10 Canonical Product

6.11 Hadamard’s Factorization Theorem

6.12 Consequences of Hadamard’s Theorem

6.13 Meromorphic functions

6.14 Partial Fraction Expansions of Meromorphic Functions

6.15 Partial Fraction Expansion of Meromorphic functions Using Residue theorem

6.16 The Gamma Function

6.17 A few properties of ΓΓΓΓΓ(z)

6.0 The Objectives of the Chapter

In this chapter we shall study entire functions, their growth properties and meromorphic

functions. Infinite products and their convergence will be discussed. Properties of zeros of
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an entire function, convex functions, gamma function and its important properties will

also be discussed.

6.1 Entire function

A function f(z) analytic in the finite complex plane is said to be entire (or
sometimes integral) function. Clearly, the sum, difference and product of two or more
entire functions are entire functions.

Examples : The polynomial function P(z) = a0 + a1z + ... + anzn, exponential
function ez, sin z, cos z etc. are entire functions.

Let us consider the first example, the polynomial function. It is evident that P(z)
can be uniquely expressed as a product of linear factors in the form

A
z

z

z

z

z

zn
0

1 2
01 1 1 0−

�
��

�
�� −
�
��

�
�� −

�
��

�
�� ≠� ,  if a

or,

A z
z z z

a a ap
p

n p
p p1 1 1 0 0

1 2
0 1 1−

�
��

�
�� −
�
��

�
�� −

�
��

�
��

= = = ≠
−

−ς ς ς
� �, , , if a (82)

where A0(or, Ap) is constant and z = z1, z2, ..., zn(or, z = 0, ς1, ς2, ..., ςn–p) are
the zeros of P(z), multiple zeros are counted according to their multiplicities. There
arises a natural question : whether any entire function can be expressed in a similar
manner in terms of its zeros. The observations are as follows :

(i) There may exist entire function which never vanishes,

(ii) If an entire function possesses finite number of zeros, then it is always
possible to express it in the form (82) stated above. But when the number of zeros
are infinite the form (82) reduces to a product of infinite number of linear factors
which need not always be convergent. We first consider infinite products of complex

numbers and functions.

6.2 Infinite Products

An infinite product is an expression of the form

pn
n=

∞

∏
1

(83)
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where p1, p2, ..., pn, ... are non-zero complex factors. If we allow any of the

factors be zero, it is evident that the infinite product would be zero regardless of the

behaviour of the other terms.

Let Pn = p1p2...pn.

If Pn tends to a finite limit (non-zero) p as n tends to infinity, we say that the

infinite product (83) is convergent and write as

p pn
n=

∞

∏ =
1

(84)

An infinite product which does not tend to a non-zero finite limit as n tends to

infinity is said to be divergent.

To find the necessary condition for convergence for the infinite product pn
n=

∞

∏
1

, say

(84) holds, then writing pn as

p
P

Pn
n

n

=
−1

we conclude in view of (84) that lim lim
n n n

n

n

p
P

P
P
P→∞ →∞

−

= = =
1

1

Thus, lim
n

np
→∞

= 1 (85)

is a necessary condition for convergence of the infinite product (83). It is then

better to write the product as

( )1
1

+
=

∞

∏ an
n

(86)

so that an → 0  as n → ∞ is a necessary condition for convergence.

Theorem 6.1 : The infinite product (86) converges if and only if

log( )1
1

+
=

∞

∑ an
n

(87)

converges. We use the principal branch of the log function and omit, as usual, the

terms with an = –1.

Proof. Let P a an k
k

n

n k
k

n

= + = +
= =

∏ ∑( ) log( ).1 1
1 1

 and S

Then log Pn = Sn and Pn = eSn. Now if the given series is convergent i.e. S Sn →
as n → ∞, Pn tends to the limit P = eS (≠ 0). This proves the sufficiency of the condition.
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Conversely, assume that the product converges i.e. P Pn →  (≠ 0) as n → ∞ . We

shall show, by virtue of Pn = eSn, that the series (87) converges to some value of log

P, not necessarily the principal value of log P.

For n
P

P

P

P
n n→ ∞ → �

��
�
�� →, .1 0 and Log

Now there exists an integer Kn such that

Log
P

P
S Log P k in

n n

�
��

�
�� = − +2 π (88)

To establish the convergence of the sequence {kn}, we form the difference

( ) ( )k k i Log
P

P
Log

P

P
Log an n

n n
n+

+
+− = �

��
�
�� − �

��
�
�� − +1

1
12 1π

= �
�

�
� − �

�
�
� − +��	


��
+

+i Arg
P

P
Arg

P

P
Arg( an n

n
1

11 )

and that

kn+1 – kn = �
�

�
� − �

�
�
� − +��	


��
+

+
1

2
11

1π
Arg

P
P

Arg
P
P

Arg( an n
n )

tends to zero as n → ∞, and let the limit of the sequence {kn} be k.

Taking limit in (88), we find that

S LogP k in → − 2 π

and so the condition assumed is necessary.

Definition : An infinite product ( )1
1

+
=

∞

∏ an
n

 is absolutely convergent if and only

if log( )1
1

+
=

∞

∑ an
n

 is convergent.

Theorem 6.2 : The infinite product (86) converges absolutely if and only if the

series ∑ an  converges absolutely.

Proof : If ∑ an  converges absolutely, then in particular an → → ∞0 as n . Also,

if log( )1
1

+
=

∞

∑ an
n

 converges absolutely then log( ) .1 0 0+ → →an n and a  Thus in



109

either of the cases an → 0  and we can take | |a n ≤
1

2
 for sufficiently large n. Then by

elementary calculation,

1
1

2 3

2

− + = − +log( )a

a

a an

n

n n
�

≤ + + + ≤1

2

1

2
2 3

a a an n n �
 � ,  n = large enough. It follows that

1

2
1

3

2
a a an n n≤ + ≤log ( )

confirming the occurrence of the absolute convergence simultaneously for the two
series.

6.3 Infinite product of functions

So far we have considered infinite product of complex numbers. Now we shall

study infinite products whose factors are functions of a complex variable. Some of the
factors (finite in number) may vanish on a region considered. In that case we consider
the infinite product omitting those factors. The theorems proved earlier hold good in
this case too with some modifications.

Definition : (Uniform convergence of infinite products)

An infinite product

{ ( )}1
1

+
=

∞

∏ a zn
n

(89)

where the functions an(z) are defined on a region D, is said to be uniformly

convergent on D if the sequence of partial products

P z a zn k
k

n

( ) { ( )}= +
=

∏ 1
1

converges uniformly to a non-zero limit on D.

Theorem 6.3 : An infinite product (89) is uniformly convergent on a domain D

if the series a zn
n

( )
=

∞

∑
1

 converges uniformly and has a bounded sum there.

Proof : Let M be the upper bound of the sum a zn ( )∑  on D. Then

1 1 11 2
1 2+ + + < ≤+ +a z a z a z e en

a z a z a z Mn( ) ( ) ... ( ) | ( )| | ( )| ...| ( )|� � � � � � 
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Let us consider the sequence {Qn} with

Q z a zn k
k

n

( ) { | ( )|}= +
=

∏ 1
1

We observe

Q z Q z a z a z a z a zn n n n( ) ( ) ( ) ( ) ... ( ) ( )–− = + + +−1 1 2 11 1 1� �� � � �
                  < e a zM

n ( )

Now since the series ∑a zn ( )  is uniformly convergent, the series ∑ − −{ ( ) ( )}Q z Q zn n 1

is uniformly convergent. Thus the sequence {Qn} tends to a limit. Again

P z P z Q z Q zn n n n( ) ( ) ( ) ( ),− ≤ −− −1 1

so the result follows.

Theorem 6.4 : An infinite product { ( )}1
1

+
=

∞

∏ a zn
n

 converges uniformly and

absolutely in a closed bounded domain D if each function an(z) satisfies a z Mn n( ) ≤
for all z ε D and Mn is independent of z and moreover ΣMn is convergent.

Proof : Given ΣMn is convergent, so the infinite product M Mn
n

= +
=

∞

∏ ( )1
1

 converges

by theorem 6.2
Now, for n > m

Q z Q z Q z a zn m m k
m

n

( ) ( ) ( ) { ( )}− = + −
+

∏ 1 1
1

(90)

Again,

{ ( )} ( ) ( ) ( ) ( ) ( ) ( )
, , ,

1 1
1 1

+ − = + +
+ = +

∏ ∑ ∑ ∑a z a z a z a z a z a z a zk
m

n

k
k m

n

i
i j

n

j i
i j

n

j
l

l

       + + + +. .. ( ) ( ).. . ( ).a z a z a zm m n1 2

Taking moduli

{ ( )}
, , ,

1 1
1 1

+ − ≤ + + +
+ = +

∏ ∑ ∑ ∑a z M M M M M Mk
m

n

k
k m

n

i
i j

n

j i
i j

n

j
l

l

+ + + +. .. . ..M M Mm m n1 2

= + −
+

∏ ( )1 1
1

Mk
m

n

Utilising this in (90) we obtain
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Q z Q z M Mn m k
k

m

k
m

n

( ) ( ) ( ) ( )− ≤ + + −��	

��= =

∏ ∏1 1 1
1 1

= + − +
= =

∏ ∏( ) ( )1 1
1 1

M Mk
k

n

k
k

m

(91)

Now as the infinite product ( )1
1

+
∞

∏ Mk  is convergent, we choose m large enough so

that r.h.s in (91) is less than ε and hence

|Qn(z) – Qm(z)| < ε, when n > m

Thus the sequence {Qn(z)} converge uniformly, since m depends only on ε.

Finally, absolute convergence of the infinite product follows on utilising Th. 6.2

Example 1 : Test for convergence of the infinite product

1
2

2
1

−�
��

�
��=

∞

∏ z

nn

Solution : The terms of the product vanish when z = ± ±1 2, ,. . . etc.

Here a z
z
n

a z z
nn n( ) ( )= − ≤

2

2
2

2

1
 and 

Now since the series ∑ 1
2n

 is convergent, the given infinite product is uniformly and

absolutely convergent in the entire plane excluding the points z = ± ±1 2, , etc.

Example 2 : Discuss the convergence of the infinite product

1
1

1
1

1
2

1
2

−�
�

�
� +�
�

�
� −�
�

�
� +�
�

�
�

z z z z
�

Solution : Let P z
z

kn
k

n

( ) = −�
��

�
��=

∏ 1
2

2
1

 and we consider a bounded closed domain D

which does not contain the points z = ± ±1 2, , .. . . The sequence {Pn(z)} converges
uniformly in D (see example 1). Again let

F z
z z z z z

n

z

nn2 1
1

1
1

1
2

1
2

1 1( ) = −�
�

�
� +�
�

�
� −�
�

�
� +�
�

�
� −�

�
�
� +�
�

�
��

F z F z
z

nn n2 1 2 1
1+ = −

+
�
�

�
�( ) ( ) ,

then F z P z z
z

n
P zn n n n2 2 1 1

1
( ) ( ) ( ) ( )= = −

+
�
�

�
�+ and F
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and obviously the sequences F2, F4, F6, ... and F1, F3, F5 ... converge uniformly in D.
Hence the given infinite product converges uniformly in D.

To test for the absolute convergence of the given product we notice that

a zn
i

∞

∑ = + + + + + +��	

��

1 1
1

2

1

2

1

3

1

3
�

and it is divergent since the series on the right is divergent and |z| is finite. Therefore
the given product does not converge absolutely.

Considering the theorem 4.4 on uniformly convergent sequence of analytic functions
[(14) Page-72] we get the following theorem :

Theorem 6.5 : If an infinite product Π{1 + fn(z)} converges uniformly to f(z) in a
bounded closed domain D and if each function fn(z) is analytic in D, then f(z) is also analytic
in D.

6.4 Weierstrass’ Factorization

Theorem 6.6 : If f(z) is an entire function and never vanishes on C/ , then f(z) is of the
form f(z) = eg(z), or, more generally, f(z) = ceg(z), c ≠ 0, constant.

where g(z) is also an entire function.
Proof : Since f is entire and never vanishes on C/ , f1/f is also entire and is thus the

derivative of an entire function g(z). [follows from Result 1, PG(MT) 02-complex analysis

[14, page-54]. Then

    
′ = ′f

f
g

i.e.     ′ = ′f fg

Now, ( )fe f e fg eg g g− − −′ = ′ − ′ = 0

Hence, f(z) = ceg(z) proving the result.
Assume now that f possesses finitely many zeros, a zero of order m > 0 at the origin,

and the non-zero ones, possibly repeated are a1, ... an. Then

f z z
z

a
em

nk

n
g z( ) ( )= −

�
��

�
��=

∏ 1
1

where g is entire.
This is clear, since if we divide f by the factors which produce zero at the points z =

0, a1, ..., an we get an entire function with no zeros.
However we cannot expect, in general, such a simple formula to hold in the case of

infinitely many zeros. Here we have to take care of convergence problems for an infinite
product. In fact the obvious generalization.
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f z z
z

a
em

kk

n
g z( ) ( )= −

�
��

�
��=

∏ 1
1

is valid in a bounded closed domain D if the infinite product converges uniformly
in D.

Theorem 6.7 (Weierstrass’ Factorization Theorem) :—

Let {an} be a sequence of complex numbers with the property an → ∞ → ∞ as n .
Then it is possible to construct an entire function f(z) with zeros precisely at these
points.

Proof : We need Weierstrass’ primary factors to construct the desired function.

The expressions E(z, o) = 1 – z, E(z, p) = ( )1

2

2−
+ + +

z e
z

z z

p

p
�

, p = 1, 2 ..., are called
Weierstrass’ primary factors. Each primary factor is an entire function having only one
simple zero at z = 1.

Now, when |z| < 1 we have, log E(z, p) = log (1–z) + z + 
z z

p

p2

2
+ +�

= − − − − −
+

−
�
��

�
�� + + + +

�
��

�
�� = −

+
−

+
−

+ + +

z
z z

p

z

p
z

z z

p

z

p

z

p

p p p p p2 1 2 1 2

2 1 2 1 2
... ... ... ...

Here we have taken the principal branch of log (1 – z).
Hence if

z E z p z z z z z
p p p≤ ≤ + + = + + ++ + +1

2
1

1 2 1 2, log ( , ) ... ... � �

≤ + + +�
��

�
�� =+ +

z z
p p1

2

1
1

1

2

1

2
2... ... (92)

We may suppose that the origin is not a zero of the entire function f(z) to be
constructed so that an ≠ 0 for all n.

For, if origin is a zero of f(z) of order m we need only multiply the constructed
function by zm. We also arrange the zeros in order of non-decreasing modulus (if
several distinct points an have the same modulus, we take them in any order) so that
|a1| ≤ |a2| ≤ ... . Let |an| = rn.

Since rn → ∞  we can always find a sequence of positive inegers

m1, m2, ... mn, ... such that the series 
r
rnn

mn�
��

�
��=

∞

∑
1

 converges for all positive values

of r.
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In fact, we may take mn = n since for any given value of r, we have 
r
rn

n

n

�
��

�
�� < 1

2
 for

all sufficiently large n and the series is therefore convergent. Next we take an arbitrary

positive number R and choose the integer N such that r R rN N≤ < +2 1 . Hence, when

z R≤  and n > N we have,

z

a

R

r

R

rn n N

≤ ≤ <
+1

1

2
 and so by (92),

log ,E
z

a
m

R

rn
n

n

m n�
��

�
�� ≤

+

2
1

 By Weierstrass’ M-test the series log ,E
z

a
m

n n
n

=

∞

∑ �
��

�
��1

converges absolutely and uniformly when z R≤  and so the infinite product E
z

a
m

n n
n

=

∞

∏ �
��

�
��1

,

converges absolutely and uniformly in the disc z R≤ , however large R may be. Hence
the above product represents an entire function, say G(z).

Thus, G z E
z

a
m

n n
n( ) ,=

�
��

�
��=

∞

∏
1

(93)

With the same value of R, we choose another integer k such that r R rk K≤ < +1.

Then each of the functions of the sequence E
z

a
m m k k

n

m

n
n

=
∏ �

��
�
�� = + +

1

1 2, , , , . . . ,

vanish at the points a1 ..., ak and nowhere else in z R≤ . Hence by Hurwitz’s theoroem

the only zeros of G in z R≤  are a1, ... ak. Since R is arbitrary, this implies that the only
zeros of G are the points of the sequence {an}.

Now, if origin is a zero of order m of the required entire function f(z), then f(z) is of
the form f(z) = zmG(z). Again, for any entire function g(z), eg(z) is also an entire function
without any zero. Hence the general form of the required entire function f(z) is

f z z e G zm g z( ) ( )( )=

=
�
��

�
��=

∞

∏z e E
z

a
mm g z

n
n

n

( ) ,
1

(94)

= −
�
��

�
��=

∞ +
�
��

�
�� + +

�
��

�
��∏z e

z

a
em g z

nn

z

a

z

a m

z

an n n n

mn

( )
...

1
1

1

2

1
2

(95)
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Remark : As there are many possible sequences {mn} in the construction of the
function G(z) and ultimately of f(z), the form of the function f(z) achieved is not unique.

6.5 Counting zeros of analytic functions

The rate of growth of an entire function is closely related to the density of zeros. We

have a quite effective formula in this regard due to J.L.W.V. Jensen, a Danish mathematician

who discovered it in the year 1899.

Theorem 6.8 [Jensen’s Formula] :—

Let f(z) be analytic on |z| ≤ R, f(0) ≠ 0 and f(z) ≠ 0 on |z| = R. If a1, ..., an be the

zeros of f(z) within the circle |z| = R, multiple zeros being repeated according to their

multiplicities, then

log ( ) log (Re ) logf f d
R

a
i

k

n

k

0
1

2 0

2

1

= −
�
��

�
��� ∑

=π
θθπ

� (96)

Proof : Let φ( ) ( ).
( )

z f z
R a z

R z a
k

kk

n

= −
−=

∏
2

1

� (97)

The zeros of the denominator of φ(z) are also the zeros of f(z) of the same order.

Hence the zeros of f(z) cancels the poles an in the product and so φ(z) is analytic on

|z| ≤ R. Also, φ( )z ≠ 0 on |z| ≤ R. For, if R a zk
2 0− =  then z

R

ak

=
2

 is the inverse

point of ak with respect to the circle |z| = R and so lies outside the circle. Again,

φ( ) ( )
( ) ( )

.z f z
R a z

R z a

R a z

R z a
n

n

= −
−

−
−

 
2

1

1

2

�  Now, when |z| = R

we have, 
R a z

R z a

zz a z

R z a

z

R

z a

z a
k

k

k

k

k

k

2

1
−
−

= −
−

= −
−

=
( ) ( )

Hence, |φ(z)| = |f(z)| on |z| = R.

Since φ(z) is analytic and non-zero on |z| ≤ R, log φ(z) is also analytic on |z| ≤ R and
consequently Re log φ(z) = log |φ(z)| is harmonic on |z| ≤ R. Hence by Gauss’ mean value

theorem,

log ( ) log Reφ
π

φ θθπ
0

1

2 0

2
= � i d� � (98)
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From (97) we have, φ( ) ( ) .0 0
1 2

= ⋅f
R

a

R

a

R

an

��

Hence from (98) we get,

log ( ) log log (Re )f
R

a
d

kk

n
i0

1

21
0

2
+

�
��

�
��

=
=

∑ �π
φ θθπ

i.e. log ( ) log (Re ) log
| |

f f d
R

a
i

kk

n

0
1

2 0

2

1

= −
�
��

�
��� ∑

=π
θθπ

(since |φ(z)| = |f(z)| on |z| = R)

Note : We observe that Jensen’s formula can also be expressed as

log
...

log (Re ) log ( )......
R

a a
f d f

n

n

i

1
0

21

2
0= −�π

θθπ

(99)

or as, log
...

log (Re ) log| ( )|......
R

r r
f d f

n

n

i

1
0

21

2
0= −�π

θθπ
(100)

where |ai| = ri, i = 1, ..., n.

Theorem 6.9 (Jensen’s inequality) :— Let f(z) be analytic on |z| ≤ R, f(0) ≠ 0 and
f(z) ≠ 0 on |z| = R. If a1, ..., an be the zeros of f(z) within |z| = R, multiple zeros being

repeated according to their multiplicities, and |ai| = ri, i = 1, ..., n, then

R f

r r
M R

n

n

( )

...
( )

0

1

≤ (101)

where M R f z
z R

( ) max ( ).
| |

=
=

 

Proof : As in Jensen’s formula (theorem 6.8) we have, |φ(z)| = |f(z)| on |z| = R and
so by the maximum modulus theorem, |φ(z)| ≤ M(R) for |z| ≤ R. In particular,

|φ(0)| ≤ M(R)

i.e. 
R f

r r
M R

n

n

( )

...
( ).

0

1

≤

Theorem 6.10 (Poisson-Jensen formula) :- Let f(z) be analytic on | z | ≤ R, f(0) ≠ 0
and f(z) ≠ 0 on |z| = R. If a1 ... an be the zeros of f(z) within the circle | z | = R, multiple

zeros being repeated according to the their multiplicities, then for any z = reiθ, r < R,

log ( )
cos( )

log (Re )f re
R r

R r Rr t
f dti itθ π

π θ
= −

+ − −�1

2 2

2 2

2 20

2
− −

−=
∑ log

( )
.

k

n
k

i

i
k

R a re

R re a1

2 θ

θ
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Proof : Let φ( ) ( ).
( )

.z f z
R a z

R z a
k

kk

n

= −
−=

∏
2

1

 Then, as in Jensen’s formula we have, |φ(z) |

= | f(z) | on |z | = R. Since φ(z) is analytic and non-zero on |z | ≤ R, log φ(z) is also analytic

on | z | ≤ R and consequently log |φ(z) | is harmonic on | z | ≤ R.

So, by Poisson’s integral formula,

log ( )
cos( )

log (Re )φ
π θ

φθ π
re

R r

R r Rr t
dti it= −

+ − −�1

2 2

2 2

2 20

2

(102)

Now, log ( ) log ( ) log
( )

φ θ θ
θ

θre f re
R a re

R re a
i i k

i

i
kk

n

= + −
−=

∑
2

1

Since log|φ(z) | = log| f(z) | on | z | = R we get from (102)

log ( )
cos( )

.log (Re )f re
R r

R r Rr t
f dti itθ π

π θ
= −

+ − −�1

2 2

2 2

2 20

2

− −
−=

∑ log
( )

R a re

R re a
k

i

i
kk

n 2

1

θ

θ (103)

6.6 Convex functions

The property of convexity plays an important role in function theory because in several

cases some lead factors associated with entire, meromorphic and subharmonic functions

appear to be convex functions.

A real-valued function φ defined on the interval I = [a, b] is said to be convex if for

any two points s, u in [a, b]

φ λ λ λφ λ φ λ( ( ) ( ) ( ) ( )u s u s+ − ≤ + − ≤ ≤1 1 0 1   for (104)

Geometrically, the condition (104) is equivalent to the condition that if s < x < u, then

the point (x, φ(x)) should lie below or on the chord joining the points (s, φ(s)) and (u, φ(u))

in the plane.

Analytical condition for φφφφφ(x) to be convex in [a, b] :- Let the coordinates of the

points A, B, C on the curve y = φ(x) as shown in the adjoining figure be (s, φ(s)), (u, φ(u))

and (x, φ(x)) respectively where s < x < u.
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Equation of the chord AB is y – φ(x) = 
φ φ( ) ( )

( ).
u s

u s
x s

−
−

−

or, y s
u s

u s
x s= + −

−
−φ φ φ

( )
( ) ( )

( )       (105)

Let the coordinates of any point D on the

chord AB be (x, y). According to definition φ(x)

will be convex if and only if CN ≤ DN. i.e., if and

only if φ(x) ≤ y; i.e. if and only if

φ φ
φ φ

( ) ( )
( ) ( )

( );x s
u s

u s
x s≤ +

−
−

−  i.e., if and only if

φ φ φ( ) ( ) ( )x
u x

u s
s

x s

u s
u≤

−
−

+
−
−

(106)

for s < x < u.

We now state two results on convex functions without proof.

Result 1. A differentiable function f(x) on [a, b] is convex if and only if f'(x) is

increasing in [a, b].

Result 2. A sufficient condition for f(x) to be convex is that f"(x) > 0.

The maximum modulus function : Let f(z) be a non-constant analytic function in |z |
< R. Then for 0 ≤ r < R we define the maximum modulus function M(r, f) or, simply M(r)

by M r f z
z r

( ) max ( ).
| |

=
=

  By maximum modulus theorem we can also write

M r f z
z r

( ) max ( ).
| |

=
=

 

Result : Let f(z) be a non-constant analytic function in |z | < R. Then M(r) is a strictly

increasing function of r in 0 ≤ r ≤ R.

Proof : Let 0 ≤ r1 < r2 < R. Since f(z) is analytic in | z | ≤ r2, the maximum value of

| f(z) | for | z | ≤ r2 is attained on | z | = r2. Let  z2 be a point on | z | = r2 such that | f(z2) |
= M(r2). Similarly, the maximum value of | f(z) | for |z | ≤ r1 is attained on | z | = r1. Let z1

be a point on | z | = r1 such that | f(z1) | = M(r1).

Since r1 < r2, z1 is an interior point of the closed region |z | ≤ r2. Hence by maximum

modulus theorem,

|f(z1)| < M(r2); i.e. M(r1) < M(r2).

This proves the result.

y

xso N u

C  (x, φ(x))
(s,φ(s))

D(x,y)

B(u, φ(u))

A
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Corollary : Let f(z) be a non-constant entire function. Then its maximum modulus

function M(r) → ∞ as |z| = r → ∞. For, if M(r) is bounded, then by Liouville’s

theorem f(z) would be a constant function.

Theorem 6.11 [Hadamard’s three-circles theorem].

Let 0 < r1 < r < r3 and suppose that f(z) is analytic on the closed annulus r1 ≤ |z| ≤

r3. If M r f z
z r

( ) max ( ) ,=
=

, then

M r M r M r
r

r
r

r

r

r( ) ( ) . ( )
log log log3

1

3

1
1 3

�
��

�
��

�
�

�
�

�
��

�
��≤ (107)

Proof : Let us consider the function φ(z) = zαf(z), where α is a real constant to be
chosen later. If α ≠ an integer, φ(z) is
multi-valued in r1 ≤ |z| ≤ r3 and so we
cut the annulus along the negative part
of the real axis. Thus we obtain a
simply connected region G in which
the principal branch of φ(z) is analytic.
Hence the maximum modulus of this
branch of φ(z) in G is attained on the
boundary of G. Since α is real, all the
branches of φ(z) have the same
modulus. If we consider another
branch of φ(z) which is analytic in
another cut annulus it is clear that the
principal branch of φ(z) can not attain
its maximum value on the cut. Hence
maximum of |φ(z)| is attained on at least one of the bounding circles |z| = r1 or, |z| = r3.

Thus,

z f z r M r r M rα α α( ) max ( ), ( ) .≤ 1 1 3 3� �  Hence on |z| = r,

r M r r M r r M rα α α( ) max ( ), ( )≤ 1 1 3 3� � (108)

We now choose α such that r M r r M r1 1 3 3
α α( ) ( )= . Then

α = − log( ( ))/ ( ))

log( / )

M r M r

r r
3 1

3 1

. Substituting this value of α in (108) we get,

x

y

M N o

|z| = r1

|z| = r

|z| = r3



120

M r
r
r

M r( ) ( )≤
�
��

�
��

−

1
1

α

=
�
��

�
��

�
��

�
��

�
��

�
��r

r

r

r
M r

M r

M r

1

3

1
1

3

1

log
( )

( )

log . ( )

and so M r
r
r

M rr r

M r M r

r r( ) . ( )log( / )

log( ( )/ ( ))

log( / )3 1

3 1

3 1

1
1≤

�
��

�
��

That is, M r
M r

M r
M rr r

r r

r r( )
( )

( )
. ( )log( / )

log( / )

log( / )3 1

1

3 13

1
1≤

�
��

�
��

 [since alog b = blog a]

= M(r1)log(r
3
/r).M(r3)log(r/r

1
).

Note : Equality in (107) occurs when φ(z) is a constant, i.e. when f(z) is of the form

czα for some real α and c is a constant.

Corollary : log M(r) is a convex function of log r.

Proof : Let f(z) be analytic in the closed annulus 0 < r1 ≤ |z| ≤ r2.

If r1 < r < r2 we have, by Hadamard’s three-circles theorem,

M r M r M rr r r r r r( ) ( ) . ( ) .log( / ) log( / ) log( / )2 1 2 1
1 2≤  Taking logarithms we get

(log log ) log ( ) (log log ) log ( )r r M r r r M r2 1 2 1− ≤ − +
(log log ) log ( ).r r M r− 1 2  That is,

log ( )
log log
log log

log ( )
log log
log log

log ( )M r
r r
r r

M r
r r
r r

M r≤ −
−

+ −
−

2

2 1
1

1

2 1
2 (109)

The inequality (109) shows that log M(r) is a convex function of log r.

6.7 Order of an entire function

An entire function f(z) is said to be of finite order if there is a positive number
A such that as |z| = r → ∞, the inequality M(r) < erA holds.

The lower bound ρ of such numbers A is called the order of the function.

f is said to be of infinite order if it is not of finite order. From the definition it
is clear that order of an entire function is non-negative.

Result : Let f be an entire function of order ρ and M(r) = max{|f(z)| : |z| = r}.

Then
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ρ =
→∞

lim sup
log log ( )

logr

M r

r (110)

Proof : By hypothesis, given ε > 0 there exists r0(ε) > 0 such that

M r e for r rr( ) < >
+ρ ε

0

while M r er( ) >
+ρ ε

 for an increasing sequence {rn} of values of r, tending to infinity.

In otherwords,

log log ( )

log

M r

r
r r< + ∀ >ρ ε  0 and (111)

log log ( )

log

M r

r
> −ρ ε (112)

for a sequence of values of r → + ∞
(111) and (112) precisely means

ρ =
→∞

lim sup
log log ( )

logr

M r

r
Example 3 : Determine the order of the functions.

(i) p(z) = a0 + a1z + ... + anzn, an ≠ 0. (ii) ekz, k ≠ 0.

(iii) sin z (iv) cos z

Solution :

(i) p z a a z a z a a z a zn
n

n

n
( ) ... ...= + + + ≤ + + +0 1 0 1

Hence, M r p(z a a r a r
z r

n
n( ) max ) . ..

| |
= ≤ + + +

= 0 1

           ≤ + +r a an
n0 . . .� � (choosing r ≥ 1. Since ultimately r → ∞, the choice is

justified).

= Brn, where B a an= + +0 ... .  Hence

log M(r) ≤ log B + n log r ≤ log r + n log r (Taking r sufficiently large).
= (n + 1) log r. Now,

ρ = ≤ + + =
→∞ →∞

lim sup
log log ( )

log
lim sup

log( ) log log

logr r

M r

r

n r

r

1
0

i.e. ρ ≤ 0. But by definition ρ ≥ 0. Hence ρ = 0
(ii) Here M(r) = e|k|r and hence

ρ = = =
→∞ →∞

lim sup
log log ( )

log
limsup

log

logr r

M r

r

k r

r

� �
1
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(iii) We know that

sin
! !

z z
z z= − + −

3 5

3 5
�

and so

sin
! ! ! !

sinh .z z
z z

r
r r

r on z r≤ + + + = + + + = ≤
3 5 3 5

3 5 3 5
� �

= − −e er r

2
. Also at z = ir, sin z

e e

i

r r

= −−

2
 and so sin z

e er r

= − −

2
.

Hence M r
e e e er r r r

( )
( )= − = −− −

2

1

2

2

log ( ) log logM r r
e

r
r

er r

= + −�
��

�
�� = + −�

��
�
��

�
�
	



�
�

− −1

2
1

1 1

2

2 2

Therefore,

lim
log log ( )

log
lim log log /log

r r

rM r

r r

e
r

→∞ →∞

−

= + + −�
��

�
��

�
�
	



�
�

�
�
��

�
�
��

=1 1
1 1

2
1

2

So order of sin z is 1.

(iv) Following as in (iii) we find that the order of cos z = 1/2.

Let f z a zn
n

n

( ) =
=

∞

∑
0

 be an entire function. We now state a theorem which will give us

order of f(z) in terms of the coefficients an of the power series expansion of f(z).

Theorem : Let f z a zn
n

n

( ) =
=

∞

∑
0

 be an entire function of finite order ρ. Then,

ρ = − = −
→∞ →∞

lim sup
log

log
lim sup

log

log/
n n

n
n n

n

a

n n

a1

6.8 The function n(r)

Let f(z) be an entire function with zeros at the points a1, a2, ..., arranged in order of

non-decreasing modulus, i.e. a a1 2≤ ≤�, multiple zeros being repeated according to
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their multiplicities. We define the function n(r) to be the number of zeros of f(z) in z r≤ .
Evidently n(r) is a non-decreasing, non-negative function of r which is constant in any
interval which does not contain the modulus of a zero of f(z). We observe that if f(0) ≠
0. n(r) = 0 for r a< 1 . Also, n(r) = n for a r an n≤ < +1 .

Jensen’s inequality can also be written in the following form involving n(r).
Theorem 6.12  (Jensen’s inequality) : Let f(z) be an entire function with f(0) ≠

0, and a1, a2, ... be the zeros of f(z) such that a a1 2≤ ≤ �,  multiple zeros being

repeated according to their multiplicities. If a r aN N≤ < +1 , then

log
( )

log ( ) log ( )
r

a a

n x

x
dx M r f

N

N

r

1
0

0
��

= ≤ −� (113)

Proof : Let |ai| = ri, i = 1, 2, ..., and r be a positive number such that r r rN N≤ < +1.

Let x1..., xm be the distinct numbers of the set A = {r1, ..., rN} where x1 = r1, ..., xm

= rN. Suppose xi is repeated pi times in A. Then, p1 + ... + pm = N. Also let ti = p1

+ ... + pi, i = 1, ..., m.

We now consider two cases.

Case 1) Let rN < r. Then,

n x

x
dx

n x

x
dx

n x

x
dx

n x

x
dx

n x

x
dx

x

x

x

x

x

x

x

rr

m

m

m

( )
lim

( ) ( )
...

( ) ( )= + + +��	

��

+
→

−−−

−
��� �� ε

εεε

00 12

3

1

2

(since 
n x

x
dx

x ( ) =
−� 0

0

1 ε
 as n(x) = 0 for 0 ≤ x < x1).

= + + +��	

��

+
→

−
−−−

−
��� �lim

ε

εεε

0

1 2 1

12

3

1

2 t

x
dx

t

x
dx

t

x
dx

N

x
dxm

x

x

x

x

x

x

r

t

m

m

N

�

= + + + +
→

− −
−

−

−
lim [ log log log log
ε

ε ε ε

0 1 2 1
1

2

1

1

1
t x t x t x N x

x

x

x

x

m x

x

r

r

m

m

N
� � �

= − − + − − +
→

lim[ {log( ) log } {log( ) log }
ε

ε ε
0 1 2 1 2 3 2t x x t x x

�+ − − + −− −t x x N r rm m m N1 1{log( ) log }] (log log )ε
= t1 (log x2 – log x1) + t2 (log x3 – log x2) +...

+ tm–1 (log xm – log xm–1) + N(log r – log rN)

= p1 log x2 – p1 log x1 + (p1 + p2) log x1 – (p1 + p2) log x2 +...+ (p1 +...+ pm – 1)

log xm – (p1 +...+ pm – 1) log xm – 1 + N log r – (p1 +...+ pm) log xm

= N log r – (p1 log x1 + p2 log x2 +...+ pm log xm)
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= − =log log logr x x x
r

x x x
N p p

m
p

N

p p
m
p

m

m
1 2

1 2

1 2

1 2
�

�

= log
r

r r

N

N1�
 Thus,

n x

x
dx

r

a a

N

N

r ( )
log=�

1
0

�

(114)

Case 2). Let rN = r. As before,

n x

x
dx

t

x
dx

t

x
dxm

x

x

x

xr

m

m( ) lim= → + +��	

��

−
−−

−
��� ε

εε

0
1 1

0 11

2

�

= − + −+
=

−

∑ t x x t r ri i i m N
i

m

(log log ) (log log )1
1

1

= log
r

a a

N

N1�
 (Proceeding as in case 1).

Thus in any case,

n x

x
dx

r

a a

N

N

r ( )
log .=�

1
0

�

 But Jensen’s inequality gives us

r

a a

M r

f

N

N1 0�

≤ ( )

( )
.  Hence,

n x

x
dx

r

a a
M r f

N

N

r ( )
log log ( ) log ( ) .= ≤ −�

1
0

0
�

Theorem 6.13 : If f(z) be an entire function with finite order ρ, then n(r) = O(rρ + ε)

for ε > 0 and for sufficiently large values of r.

Proof : By Jensen’s inequalilty,

n x

x
dx M r f

r ( )
log ( ) log ( )≤ −� 0

0
(115)

We replace r by 2r in (115) and obtain

n x

x
dx M r f

r ( )
log ( ) log ( )≤ −� 2 0

0

2

(116)

Since order of f(z) is ρ we have for any ε > 0,

log M(2r) < (2r)ρ + ε = Krρ + ε for all large r, K being a constant. Hence from (116).
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n x

x
dx Ar

r ( ) < +� ρ ε
0

2

 for all large r, A being a constant independent of r. Since n(x)

is non-negative and non-decreaing function of x, 
n x

x
dx

n x

x
dx

r

r

r ( ) ( )≤ <�� 0

22

Arρ + ε and also 
n x

x
dx

n r

x
dx n r

r

r

r

r ( ) ( )
( )log≥ =�� 2

22

Hence, n r
n x

x
dx Ar

r

r
( ) log

( )
,2

2
≤ < +� ρ ε

i.e., n r
A

r( )
log

< +

2
ρ ε  for all large r. Hence, n(r) = O(rρ + ε).

6.9 Convergence exponent (or, exponent of Convergence)

Let f(z) be an entire function with zeros at the points a1, a2, ..., arranged in order

of non-decreasing modulus, multiple zeros being repeated according to their

multiplicities and |ai| = ri, i = 1, 2, ..., We define convergence exponent ρ1 of the zeros

of f(z) by the equation

ρ1 =
→∞

limsup
log

logn n

n

r (117)

or, equivalently by ρ1 =
→∞

limsup
log ( )

logn

n r

r (118)

The convergence exponent has the following property.

Theorem 6.14 : Let f(z) be an entire function with zeros at a1 a2, ..., arranged

in order of non-decreasing modulus, multiple zeros being repeated according to their

multiplicities and |ai| = ri. If the convergence exponent ρ1 of the zeros of f(z) is finite,

then the series 
1

1 rnn
α

=

∞

∑  converges when α > ρ1 and diverges when α < ρ1.

If ρ1 is infinite, the above series diverges for all positive values of α.

Proof : Let ρ1 be finite and α > ρ1. Then, ρ ρ α1 1

1

2
< +( ).

Hence, 
log

log
( )

n

rn

< +1

2 1ρ α  for all large n.
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or, log log ,
( )

n rn<
+1

2 1ρ α  i.e.

n r or
n

r i en n< <
+

+

1

2 1

1

2( )
; , . .,

ρ α

ρ α

r
n

n n where pn
pα

ρ α

α ρ
α ρα α ρ

α ρ
> = = = −

+
>

+

+ −
+ +2

0
1

1

1

1
1 1

1

, .

Hence, 
1 1

1r nn
pα

<
+

 for all large n. Hence,

1

1 rnn
α

=

∞

∑  converges.

Next, let α < ρ1. Then, 
log

log

n

rn

> α  for a sequence of values of n, tending to infinity.

That is, log logn rn> α

or, 
1 1

r nn
α

> (119)

for a sequence of values of n tending to infinity.

Let N be such a value of n for which (119) holds and m be the least integer > 
N

2
.

Then, as rn is non-decreasing,

1 1 1 1 1 1

1r r r r r rn N m N m N N Nn N m

N

α α α α α α
= + + + ≥ + +

− − += −
∑ � �

= + > > >m

r

m

r

m

NN N

1 1

2α α
.  Since N may be as large as we please, by Cauchy’s principle

of convergence, the series 
1

1 rnn
α

=

∞

∑  diverges.

If ρ1 is infinite, then for any positive value of α, log

log

n

rn

> α  for a sequence of values
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of n tending to infinity; i.e., n rn> α  for a sequence of values of n tending to infinity. Hence

as before, the series 
1

1 rnn
α

=

∞

∑  diverges for any positive α.

Note 1. Observe that ρ1 may also be defined as the lower bound of the positive

numbers α for which the series 
1

1 rnn
α

=

∞

∑  is convergent. If f(z) has no zeros we define

ρ1 = 0 and if 
1

1 rnn
α

=

∞

∑  diverges for all positive α, then ρ1 = ∞.

Note 2. If ρ1 is finite, the series 
1

1
1 rnn

ρ
=

∞

∑  may be convergent or divergent. For

example, if rn = n, then ρ1 1= =
→∞

limsup
log

logn n

n

r

and 
1 1

1
11 r nn nn

ρ
=

=

∞

=

∞

∑∑  diverges. Again, if rn = n(log n)2,

then, ρ1 2
1=

+
=

→∞
lim sup

log

log log log
,

n

n

n n
 and

1 1
1 2

11 r n nn nn
ρ

=
=

∞

=

∞

∑∑
(log )

 converges.

Theorem 6.15 : If f(z) is an entire function with finite order ρ and r1, r2, ..., are the

moduli of the zeros of f(z),

then 
1

1 rnn
α

=

∞

∑  converges if α > ρ.

Proof : We choose β such that ρ < β < α. Since for any ε > 0,

n(r) = 0 (rρ + ε), n(r) < Krβ (120)

for all large r, K being a constant.

Putting r = rn, n large, (120) gives n Krn< β ,  i.e.,

r
n

kn >
1

1

/

/

β

β  or, 
1

r

B

nn
α α β

<
/  for all large n, B being a constant. Since 

α
β α

>
=

∞

∑1
1

1

,
rnn

converges.



128

Corollary : Since convergence exponent ρ1 is the lower bound of positive numbers

α for which 
1

1 rnn
α

=

∞

∑  is convergent, it follows that ρ1 ≤ ρ.

Note : ρ1 may be 0 or ∞. For example if rn = en, ρ1 = 0 and if rn = log n, then
ρ1 = ∞. For the function f(z) = ez, ρ = 1 and ρ1 = 0 so that ρ1 < ρ. But for sin z or
cos z, ρ = ρ1 = 1.

Result : If the convergence exponent ρ1 of the zeros of an entire function f(z) is
greater than 0, then f(z) has infinite number of zeros.

Proof : If possible, suppose f(z) has finite number of zeros with moduli r1...., rN. The

series 
1

1 rnn

N

α
=

∑ ,  being of finite number of terms, converges for every α > 0. Hence

ρ1 = 0, a contradiction. Hence f(z) has infinite number of zeros.
Note : For an entire function with finite number of zeros, ρ1 = 0.

Example : Find the convergence exponent of the zeros of cos z.

Solution : First method : The zeros of cos z are 
π π π π
2 2

3

2

3

2
, , , ,....− −

Now, 
1 2 2 2 1

31 rnn
α

α α α

απ π π
= �

��
�
�� + �

��
�
�� + �

��
�
�� +

=

∞

∑ . �

= �
��

�
�� + + +�

��
�
�� + + +2

2
1

1

3

1

5

1

1

1

3

1

5π

α

α α α α α� �. The series

converges when α > 1 and diverges when α < 1. Hence the lower bound of the

positive numbers α for which 
1

1 rnn
α

=

∞

∑  converges is 1 i.e., ρ1 = 1.

Second method : The zeros of cos z are (2n + 1)
π
2

,

n e= ± ± − −0 1 2
2 2

3

2

3

2
, , , ; . . , , , ,    i      � �

π π π π

Let a a a1 1 2 22 2

3

2

3

2
= ′ = − = ′ = −π π π π

, , , , ,  a   �

a n a nn n= − ′ = − −( ) , ( ) , ,2 1
2

2 1
2

π π
   �  Hence,

r a a a a a an n n1 1 1 2 2 22

3

2
= = ′ = = = ′ = = = ′ =π π

, , , r  r�
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( ) ,2 1
2

n − π
�  Hence, ρ1 =

→∞
lim sup

log

logn n

n

r

=
− +

=
−�

��
�
��

��	

��

+→∞ →∞
limsup

log

log( ) log
limsup

log

log log
n n

n

n

n

n
n

2 1
2

2
1

2

π π

=

+
−�

��
�
��

+

=
→∞

limsup
log

log

log /

log

.
n

n
n n

1

1
2

1
2

1

π

6.10 Canonical Product

Let f(z) be an entire function with infinite number of zeros at an, n = 1, 2, ... an ≠ 0.

If there exists a least non-negative integer p such that the series 
1

1
1 rn

p
n

+
=

∞

∑  is convergent,

where rn = |an|, we form the infinite product G z E
z

a
p

n n

( ) ,=
�
��

�
��=

∞

∏
1

. By Weirstrass’ factor

theorem G(z) represents an entire function having zeros precisely at the points an. We call

G(z) as the Canonical product corresponding to the sequence {an} and the integer p is

called its genus. If z = 0 is a zero of f(z) of order m, then the canonical product is zmG(z).

Observe that if the convergence exponent ρ1 ≠ an integer, then p = [ρ1] and if ρ1 =

an integer, then p = ρ1 when 
1

1
1 rnn

ρ
=

∞

∑  is divergent and p = ρ1 – 1 if 
1

1
1 rnn

ρ
=

∞

∑  is convergent.

In any case, ρ ρ ρ1 11− ≤ ≤ ≤p ,  where ρ = order of f(z).

Examples : (i) Let an = n. Then 
1 1
2

1
2

1r nnn n=

∞

=

∞

∑ ∑=  is convergent while 
1 1

1 1r nnn n=

∞

=

∞

∑ ∑=

is divergent. So, p = 1.

(ii) Let an = en. Then p = 0.

We now state an important theorem without proof. The proof can be found in any

standard book.
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Borel’s theorem : The order of a canonical product is equal to the convergence
exponent of its zeros.

Example : Find the canonical product of f(z) = sin z.

Solution : f(z) is an entire function with infinite number of zeros at z = nπ, n being an
integer. First we consider the zeros of f(z) excluding the simple zero at z = 0. Let an = nπ,

n = ±1, ±2, ...

|an| = rn. Then, rn = |nπ|. Now, 
1 1

1 1r nnn n=

∞

=

∞

∑ ∑=
π

=
=

∞

∑1 1

1π nn

 is divergent, but 
1 1 1
2

1
2 2

1r nnn n=

∞

=

∞

∑ ∑=
π

 is convergent. Hence genus of the

required canonical product p = 1.

Hence the canonical product G(z) is given by

G z E
z

ann

( ) , ,=
�
��

�
��=− ∞

∞

∏ 1  where ′
=− ∞

∞

Π
n

 means n = 0 is excluded in the product.

= −�
��

�
�� = −�

��
�
�� ⋅ −�

��
�
��

�
�
	



�
�=− ∞

∞ −

=

∞

∏ ∏1 1 1
1

z

n
e

z

n
e

z

n
e

n

z

n

z

n

z

n

nπ π π
π π π

= −
�
��

�
��=− ∞

∞

∏ 1
2

2 2

z

nn π
.  Since origin is a simple zero of sin z, the required canonical

product of sin z is given by

sin .z z
z

nn

= −
�
��

�
��=

∞

∏ 1
2

2 2
1 π

Exercises

1. Find the order of the entire functions :

(a) sinh z (b) ez sin z, (c) ezn

, (d) eez

, (e) cos z, (f) ep(z), where p(z) =

a a z a z an
n

n0 1 0+ + + ≠� , ,  (g) z

n

n

n ( !)
,α α

=

∞

∑ >
0

0 , (h) 
e

n
z

n

n
nα α

α�
��

�
�� >

=

∞

∑
0

0
/

,

2. Given f1(z) and f2(z) are two entire functions of orders ρ1 and ρ2 respectively, show
that (i) order of f1(z) f2(z) is ≤ max (ρ1, ρ2) (ii) order of f1(z) + f2(z) is ≤ max
(ρ1, ρ2), and equality occurs if ρ1 ≠ ρ2.

3. Find the convergence exponent of the zeros of sin z.

′

′ ′
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4. Find the canonical product of cos z.

5. Show that if a > 1, the entire function 1
1

−�
��

�
��=

∞

∏ z

na
n

 is of order 
1

a
.

6.11 Hadamard’s Factorization Theorem

Before taking up Hadamard’s factorization theorem we state a theorem due to Borel

and Caratheodory.

Borel and Caratheodory’s theorem : Let f(z) be analytic in

z R M r f z r f z
z r z r

≤ = =
= =

, ( ) max ( ) , ( ) max{Re ( )}. A

Then for 0 < r < R,

M r
r

R r
A R

R r

R r
f

R r

R r
A R f( ) ( ) ( ) ( ) ( )≤

−
+ +

−
< +

−
+2

0 0� � (121)

Proof : Omitted (cf. Theory of entire functions–A.S.B Holland- p. 53).

Corollary : max ( )
. !

( )
( ) ( )

| |

( )

z r

n
n

n
f z

n R

R r
A R f

=

+

+≤
−

+2
0

2

1 � � (122)

Hadamard’s Factorization Theorem 6.16 :

If f(z) is an entire function of finite order ρ with infinite number of zeros and f(0) ≠ 0,
then f(z) = eQ(z) G(z), where G(z) is the canonical product formed with the zeros of f(z)
and Q(z) is a polynomial of degree not greater than ρ.

Proof : By Weierstrass’ factor theorem we already have

f(z) = eQ(z)G(z) (123)

where G(z) is the canonical product with genus p formed with the zeros a1, a2, ... of
f(z) and Q(z) is an entire function. Since ρ is finite we need to show that Q(z) is a
polynomial of degree ≤ ρ. Let m = [ρ]. Then, p ≤ m. Taking logarithms on both sides of

(123) we have,

log ( ) ( ) log ( )f z Q z G z= +

         = +
�
��

�
�� + +

�
��

�
�� + +

�
��

�
��

�
��
	�



��
��=

∞

=

∞

∑ ∑Q z
z

a

z

a

z

a p

z

ann n n n

p

n

( ) log – ...1
1

2

1

1

2

1
(124)

Differentiating both sides of (124) m + 1 times,
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d

dz

f z

f z
Q z m

a z

m

m
m

n
m

n

1
1

1
1

1( )

( )
( ) !

( )
( )�

��
�
�� = −

−
+

+
=

∞

∑ (125)

[Since p m
d

dz

z

a

z

a p

z

a

m

m
n n n

p

n

≤ +
�
��

�
�� + +

�
��

�
��

�
��
	�



��
��

=
+

+
=

∞

∑, ...
1

1

2

1

1

2

1
0

and 
d

dz

z

a

d

dz
a z m

a z

m

m
n

m

m n
n

m

+

+

+

+ +−
�
��

�
�� = − = −

−

1

1

1

1 11
1

log log( ) !
( )

]

Now, Q(z) will be a polynomial of degree m at most if we can show that
Q(m+1)(z) = 0.

Let g z
f z

f

z

aR
na Rn

( )
( )

( )
.

| |

= −
�
��

�
��≤

−

∏
0

1
1

 Then gR(z) is an entire function and gR(z) ≠ 0 in

|z| ≤ R. [Since f(z) is entire, f(0) ≠ 0 and 1
1

−
�
��

�
��≤

−

∏ z

ana Rn| |

 cancels with factors in f(z)].

For | z | = 2R and | an | ≤ R we have, 1 1− ≥z

an

.  Hence,

g z
f z

f
AeR

R( )
( )

( )
( )≤ <

+

0
2 ρ ε

 for | z | = 2R (126)

By maximum modulus theorem, g z AeR
R( ) ( )<

+2 ρ ε
(127)

for |z| < 2R. Let hR(z) = log gR(z) such that hR(0) = 0.

Then hR(z) is analytic in |z| ≤ R. Hence from (127)

Re hR(z) = log | gR(z) | < KRρ+ε, K = Constant (128)

Hence from the corollary of the theorem of Borel and Caratheodory we have

h z
m R

R r
KRR

m
m

m
( ) ( )

( ) !

( )
.+

+

+
+≤

+
−

1
3

2

2 1 ρ ε  for | z | = r < R

Hence for z r
R= =
2

,

h z RR
m m( ) ( )+ + − −=1 10 ρ ε� � (129)
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But h z g z f z f
z

aR R
a R nn

( ) log ( ) log ( ) log ( ) log= = − − −
�
��

�
��≤

∑0 1

Hence h z
d

dz

f z

f z
m

a zR
m

m

m
n

m
a Rn

( )( )
( )

( )
!

( )
+

+
≤

= ′�
��

�
�� +

−∑1
1

1

= +
�
��

�
��

+ − −
+

>
∑0 0

11
1( )R

a
m

n

m
a Rn

ρ ε
(130)

for z
R=
2

 and so also for z
R<
2

 by maximum modulus theorem. The first term on

the right of (130) tends to 0 as R → ∞  if ε > 0 is small enough since m + 1 > ρ. Also

the second term tends to 0 since 
1

1
1 an

m
n

+
=

∞

∑  is convergent.

In fact, 
1

1
an

m
a Rn

+
>

∑  becomes the remainder term for large R.

Hence Q(m+1) (z) = 0 since Q(m+1) (z) is independent of R.

Thus, Q(z) is a polynomial of degree not greater than ρ.

6.12 Consequences of Hadamard’s Theorem

Theorem 6.17 : An entire function of finite order admits any finite complex number
except, perhaps, one number.

Proof. Let us suppose that f does not admit two finite values a and b. Then
f(z) – a ≠ 0 for all z in C/ and hence there exists an entire function g(z) such that

f(z) – a = eg(z)

The function f(z) – a is of finite order since f(z) has finite order. Following Hadamard’s
factorization theorem g(z) must be a polynomial. Now eg(z) does not assume the value b
– a i.e. g(z) ≠  log (b – a) for any z in C/. As because g(z) is a polynomial it contradicts
the essence of the Fundamental Theorem of Algebra [(14), Th. 3.11, page-65].

Theorem 6.18 : An entire function of fractional order possesses infinitely many
zeros.

Proof. Let f be an entire function of fractional order ρ. If possible, suppose the zeros
of f(z) are {a1, a2, ... an), finite in number, counted according to their multiplicity. Then f(z)
can be expressed as
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f(z) = eg(z) (z – a1) (z – a2) ... (z – an)

where g(z) is an entire function. Applying Hadamard’s factorization theorem, the
degree of the polynomial g(z) ≤  ρ. It is easy to check that f(z) and eg(z) are of same order.
But we have already seen that the order of eg(z) is exactly the degree of g(z), which is an
integer. This implies ρ is an integer. This contradiction completes the proof.

6.13 Meromorphic Functions

The term meromorphic comes from the Ancient Greek “meros” meaning part, as
opposed to “holos” meaning whole. This function is analytic on a domain D except a set
of isolated points, which are poles for the function.

Definition : A function f(z) analytic in a domain D except for poles is said to be
meromorphic.

Theorem 6.19 : A rational function is meromorphic.

Proof : Let f(z) = p(z)/q(z) where p and q are polynomials with no common zeros. If
the degree of p is less than or equal to the degree of q, then f has only a finite number of poles
and the point at infinity is not a pole. On the otherhand, if the degree of p is greater than the

degree of q, then (taking degree of p(z) = m and degree of q(z) = n).

f z
a z a z a z a

b z b z b z b
m

m
m

m

n
n

n
n

( )
...

...
= + + + +

+ + + +
−

−

−
−

1
1

1 0

1
1

1 0

    = + + + + +−
−

− −
− −c z c z c z c

r z

q zm n
m n

m n
m n

1
1

1 0...
( )

( )

where degree of r(z) ≤ n – 1. This shows that the point at infinity is a pole of order
(m – n) and there lie a finite number of poles in the unextended plane. These establish that
f(z) is meromorphic.

Theorem 6.20 : [Partial fraction decomposition]. Let p(z), q(z) be two polynomials
with no common zeros and that 0 ≤ deg (p) < deg (q). Let a1, ... ak be the zeros of q(z)

with multiplicities α1, ..., αk. Then p(z)/q(z) can be expressed uniquely as

p z

q z

c

z a
ij

i
j

ji

k i( )

( ) ( )
=

−==
∑∑

11

α

(131)

Proof. The decomposition is unique. We assume that the relation (131) exists. Let r
> 0 be small enough. Then for z ε N (ai, r), (131) can be rewritten as
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p z

q z
g z

c

z a
ij

i
j

j

i( )

( )
( )

( )
= +

−=
∑

1

α

(132)

since N(ai, r) does not contain any zero of q(z) other than ai, g(z) is analytic at
z = ai.

Multiplying both sides of (132) by (z – ai)α
i, we obtain

p z

q z
z a g z z a c z ai i ij i

j

j

i i i
i( )

( )
( ) ( )( ) ( )− = − + − −

=
∑α α α
α

1

(133)

Now the function 
p z

q z
z ai

i
( )

( )
( )− α  is analytic for all z belonging to N(ai, r) and hence

can be expanded in a Taylor series in a neighbourhood of ai in N(ai, r)

p z

q z
z a c z ai n

n
i

ni
( )

( )
( ) ( )− = −

=

∞

∑α

0

(134)

Combining (133) and (134), we write

c z a g z z a c c z an i
n

n
i i i i

i

i i
( ) ( )( ) ( ) ...− = − + + − + +

=
∑ −

0
1

α
α

α α

                      + − −c z ai i
i

1
1( )α

Comparing the coefficients we find

c c c c c ci i i ii i
α α α= = =− −0 1 1 1 1, , ... ,  uniquely

Existence of the decomposition.

The principal part associated to each pole ai is

c

z a
ij

i
j

j

i

( )−=
∑

1

α

Now if we subtract all the principal parts we find the function

f z
p z

q z

c

z a
ij

i
j

ji

k i

( )
( )

( ) ( )
= −

−==
∑∑

11

α

is analytic in the extended plane. Now each of the terms

c

z a
ij

i
j( )−

converges to zero for z → ∞ , and also p(z)/q(z) converges to zero for z → ∞  since
deg(q) > deg(p). This shows that f(z) →  0 for z → ∞ . But then f is necessarily
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bounded and hence constant by Liouville’s theorem. A constant function tending to zero
as z → ∞  must be identically zero.

Example 4 : Consider the rational function

p z

q z

z i z i

z

( )

( )

( ) ( )= + + + −
−

2 5 3 3 5

1

3 2

4

We can write this as

p z

q z z z z i z i

( )

( )
=

−
+

+
+

−
+

+
α β γ δ

1 1
(135)

      = +
−

g z
z1 1

( )
α

considering z belonging to |z – 1| < 1. Then

p z

q z
z g z z

( )

( )
( ) ( )( )− = − + ⇒ =1 1 21 α α

6.14 Partial Fraction Expansion of Meromorphic Functions

Let f(z) be a meromorphic function and z0 be a pole of order m with the

principal part

p z
c

z z

c

z z

c

z z
m m

m( )
( ) ( )

...=
−

+
−

+ +
−

− − +
+

−

0

1

0
1

1

0

Then f(z) can be written as [see § 6.2, (14)]

f(z) = p(z) + g(z)

where g(z) is an entire function. Now if, in general, z1, z2, ..., zn are the poles of a
meromorphic function f with the corresponding principl parts P1, P2 ..., Pn then f can be

expressed as

f z P z zj
j

n

( ) ( ) ( )= +
=
∑ ψ

1

(136)

where ψ(z) is an entire function.

But the question arises whether it is possible to construct a meromorphic function

possessing poles at the sequence of points {zn} with corresponding principal parts P1, P2...

Because in this case the series ΣPj(z) in (136) turns out to be an infinite series P zj
j

n

( )
=
∑

1

,

which needs to be convergent.
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Gösta Mittag Leffler (1846-1927), German in origin but his several generations

lived in Sweden, overcame this difficulty by introducing a polynomial pn(z) dependent on

zn and Pn(z) so that the series { ( ) ( )}P z p zn n
n

−
=

∞

∑
1

 is uniformly convergent in any compact

set K not containing any points of the sequence {zn}.

Theorem 6.21 [The Mittag Leffler Theorem] : Given a sequence of distinct

complex numbers {zn},

z z z
n

n1 2≤ ≤ = ∞
→∞

... , lim

and a sequence of rational functions {Pn(z)},

P z
c

z zn
nk

n
k

k
n( )

( )
, , , , . ..

ln

=
−

≥ =
=

∑
1

1 1 1 2  n  (137)

there exists a meromorphic function f(z) having poles at the points zn and only there

with Pn(z) as its principal part at zn and can be represented in the form of an expansion

f z P z p z h zn n
n

( ) [ ( ) ( )] ( )= − +
=

∞

∑
1

where h(z) is an arbitrary entire function and pn(z) is suitable partial sum of

Taylor’s expansion of the singular part which is analytic in the open disc |z| < |zn|.

Proof. Without loss of generality we assume that z = 0 is not a pole of f(z). Now

Pk(z) is analytic for |z| < |zk| and can be expanded in this neighbourhood of z :

P z c zk j
k

j

j( ) ( )=
=

∞

∑
0

and hence this series converges uniformly in the disk z zk≤ 2 . Let

p z c zk j
k

j

j
k

( ) ( )=
=
∑

0

α

 be a partial sum of this expansion such that

P z p z
kk k( ) ( )− < 1

2  for z zk≤ 2 .

Let R be an arbitrary large positive number and since zn → ∞  as n → ∞  we can

find an N(R) so large that |zn| > 2R when n ≥ N(R). Therefore in the circle z R
zN< <
2

P z p z P z p z P z p zn n
n

n n
n

N R

n n
n N R

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

− = − + −
=

∞

=

−

=

∞

∑ ∑ ∑
1 1

1
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the first sum in the r.h.s is finite and the second sum ∑
∞

N R( )
 is absolutely and uniformly

convergent by comparison with the convergent series ∑
=

∞
−

n N R

n

( )
2 . Therefore

∑ −
=

∞

n
n nP z p z

1
[ ( ) ( )]  is analytic in |z| < R except at the poles belonging to the sequence {zn}.

It is thus a meromorphic function with the poles at z1, z2, ... and with the principal parts
P1(z), P2(z), ... at each point zn respectively. Now if f(z) possesses the same poles only
with the same principal parts then

f z P z p zn n
n

( ) [ ( ) ( )]− −
=

∞

∑
1

is an entire function h(z), say. This completes the proof.

Example 5 : Prove that

π πcot z
z z n nn

= +
−

+��	

��=− ∞

∞

∑1 1 1
'

Solution : The given function π cot πz has simple poles at z = 0, ±1, ±2, ... with
residue 1.

Here,
1 1 1

1

1
1

2

2z n n z
n

n

z

n

z

n
z n

−
= −

−�
��

�
��

= − + + +
�
��

�
�� <... ,

(138)

Let |z| < R and N(R) be so large that R
n<
2

 when n ≥ N(R). Then from (138), we

find

1 1 2
2z n n

R

N
n N

−
+ ≤ ≥,

Now, since Σ1/N2 is convergent, the series

'
1 1

z n nn −
+��	


��=− ∞

∞

∑

converges uniformly on any compact set (lying in |z| < R) not containing any of the
points z = ±1, ±2, ... Therefore applying the Mittag-Leffler theorem we can express

π πcot ( )z
z z n n

h z
n

= +
−

+��	

��

+
=− ∞

∞

∑1 1 1
' (139)
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where h(z) is an entire function. Differentiating term-wise, we obtain

π π2 2
2 2

1 1
cosec z

z z n
h z

n

= +
−

−
=− ∞

∞

∑ ' '
( )

( )

             =
−

−
=− ∞

∞

∑ 1
2( )

( )
z n

h z
n

'

and h z
z n

z f z z
n

' ( )
( )

( ) ( ),=
−

− = −
=− ∞

∞

∑ 1
2

2 2π π ψcosec say (140)

We notice that the functions f(z) and ψ(z) are both periodic with period 1 and
consequently h'(z) is also periodic with the same period.

Let z = x + iy. Consider the strip 0 ≤ x ≤ 1. In fact, the convergence of the series
in (140) is uniform for y ≥ 1, say and the limit tends to 0 as y → ∞  (this can be seen
on taking the limit in each term of the series).

Again, sin(x + iy) = sin x cos (iy) + cos x sin (iy)

= sin x cosh y + i cos x sinh y

and so

sin sin ( )π πz x iy
2 2= +

= +sin cosh cos sinh2 2 2 2π π π πx y x y

= −cosh cos2 2π πy x

which establishes that π2 cosec2 πz tends uniformly to zero as y → ∞ . From these

we conclude that h'(z) is bounded in the period strip 0 ≤ x ≤ 1 and due to its periodicity
it is bounded in the entire plane. By Liouville’s theorem it then reduces to a constant. Now
since

lim ( ) lim ( ) lim ( )
y y y

h z f z z
→∞ →∞ →∞

′ = − = − =ψ 0 0 0

h' (z) is indeed zero and h(z) = c, a constant. Then from (139),

π πcot z
z z n n

c
n

= +
−

+�
��

�
�� +

=− ∞

∞

∑1 1 1
'

For, z = 1

2

0 2
2

1 2

2

1 21

= +
−

+
+

�
��

�
�� +

∞

∑ k k
c
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= +
−

+�
��

�
�� + − +�

��
�
�� + − +�

��
�
�� +��	


��
+2 2

1

1

1

3

1

3

1

5

1

5

1

7
... c

= 2 – 2 + c

⇒  c = 0 i.e. h(z) ≡ 0. Finally we obtain

   π πcot  z = +
−

+��	

��=− ∞

∞

∑1 1 1

z z n nz

'

Now since the series on the r.h.s is uniformly convergent on any compact set not
containing the points z = 0, ±1, ±2 ..., rearrangement of the terms are permissible and
hence

π πcot  z  = +
−=

∞

∑1 2
2 2

1z
z

z nn

(141)

Remark : Here it is proved incidentally that

π π2 2
2

1
cosec  z  =

−=− ∞

∞

∑
( )z nn

(142)

[see equation (140)]

We can now utilize the identity (141) to calculate easily some familiar sums. Here the
l.h.s of (141) has the Laurent series expansion in the neighbourhood of z = 0.

π π π π π
cot ...z

z

z z z= − − − −1

3 45

2

945

2 4 3 6 5

Note that the series on the r.h.s of (141) converges uniformly near z = 0. By Th. 4.14
[14] it converges uniformly together with all derivatives. Again

2
22 2 2

3

4

5

6

z

z n

z

n

z

n

z

n−
= − + + +

�
��

�
��...

and we obtain easily,

1

6

1

90

1

9452
1

2

4
1

4

6
1

6

n n nn n n≥ =

∞

=

∞

∑ ∑ ∑= = =π π π
, ,  (143)

Example 6. Prove that

π πtan z
z n nn

= −
− +�

��
�
��

+
+

�

�

�
�
�
�

�

�

�
�
�
�

=− ∞

∞

∑ 1
1
2

1
1

2
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[or, equivalently, π πtan z z n z
n

= +�
��

�
�� −

�
�
��

�
�
��=

∞
−

∑2
1

2

2
2

0

1

]

Solution : Here the given function π tan πz possesses simple poles at

z = ± ±1

2

3

2
, ,  �  with residue –1.

Then,   
−

− +�
��

�
��

=

+�
��

�
�� −

+

�

�

�
��

�

�

�
��

=
+

+
+

+
+

�

�

�
��

�

�

�
��

+

�

�

�
�
�
�

�

�

�
�
�
�

1
1
2

1

1
2

1
1
2

1
1
2

1
1
2

1
2

2

z n
n

z

n

n

z

n

z

n
�

and the series

−

− +�
��

�
��

−
+

�

�

�
�
�
�

�

�

�
�
�
�

=− ∞

∞

∑ 1
1
2

1
1

2
z n nn

converges uniformly on any compact set not containing any of the poles of the given
function. By Mittag-Leffler theorem,

π πtan ( )z
z n n

h z
n

= −
− +�

��
�
��

+
+

�

�

�
�
�
�

�

�

�
�
�
�

+
=− ∞

∞

∑ 1
1
2

1
1

2

where h(z) is an arbitray entire function. Now proceeding as in example 5, we can
have the desired result.

Example 7 : Establish that

1

1

1

2

1 2

42 2 2
1e z

z

z nz
n−

= − + +
+=

∞

∑ π

Solution : We rewrite 1/ez – 1 as

1

1

1

2

1

2

1

2 2

2

2 2

2 2 2 2

2 2e

e

e e

e e e e

e e

z
z

z

z z

z z z z

z z−
=

−
= − + +

−
= − +

−

−

− −

−

/

/ /

/ / / /

/ / coth
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But coth
cosh

sinh

cos

sin
cot

z
z

z

i i
z

i
z

i i
z

2
2

2

2

2
2

= =

�
��

�
��

�
��

�
��

= �
��

�
��

Now utilising (141) we get the result.

6.15 Partial Fraction Expansion of Meromorphic Functions

Using Residue theorem

Let us suppose f to be a meromorphic function whose only singularities are simple

poles z1, z2, ... with increasing moduli 0 1 2< ≤ ≤z z ... ,

lim
n

nz
→∞

= ∞ and Res (f(z); zn) = An. Suppose there exists a sequence {Cn} of simple

closed contours such that

(i) Cn does not contain any of the poles zk

(ii) each Cn lies inside Cn+1

(iii) min
z C

n
n

z R
∈

= → + ∞ → + ∞ as n

(iv) length of Cn is 0(Rn)

(v) max ( ) ( )
z C

n
n

f z R
∈

= 0

Then f z f A
z z zk

k k k

( ) ( )= +
−

+
�
��

�
��=

∞

∑0
1 1

1

(144)

The series (144) converges uniformly in any bounded domain not containing the poles
of f(z).

To prove the above result we consider the integral

I z
i

zf

zn Cn
( )

( )

( )
=

−�1

2π
ς

ς ς
ς d (145)

where z ∈  Int Cn and z ≠ zk (k = 1, 2, ...)

Here the integrand in (145) possesses simple poles at ς = 0, ς = z and

ς = zk∈  Int Cn. Then using the Residue theorem, we find from (145) that

I z
zf

z

zf

z
s f zn

z z

k

k

( )
( ) ( )

( )
Re ( ( ); )=

−
�
��

�
��

+
�
��

�
��

+
−

�
��

�
��= = =

ς
ς

ς
ς ς ς

ς
ς ς ς0

1
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= − + +
−∈

∑f f z
zA

z z z
k

k kz tCk n

( ) ( )
( )ln

0

Thus,

f z f A
z z z i

zf

z
dk

k kz tC
C

k n
n

( ) ( )
( )

( )ln

= +
−

+
�
��

�
�� +

−∈
∑ �0

1 1 1

2π
ς

ς ς
ς (146)

We now show that lim ( )
n

nI z
→∞

= 0 for |z| < R.

I z
z f

z
d

R f

R
dn C Cn n

( )
| | ( ) ( )

≤
−

<
−

→� �2 2
0

π
ς

ς ς
ς

π
ς

ς ς
ς

as n → ∞  by the given conditions (iii), (iv) and (v).

Then (144) follows from (146) considering all the contours C1, C2, ... etc.

Example 8 : If αn are positive roots of the equation tan z = z, show that

z z

z z z z

z

z nn

sin

sin cos−
= +

−=

∞

∑3 2
2 2

1 α

where n nn−�
��

�
�� < < +�

��
�
��

1

2

1

2
π α π.

Solution : Given αn are positive roots of tan z = z, so ± αn are roots of sin z – z
cos z = 0. To check whether the function f(z)/g(z), where f(z) = z sin z and g(z) = sin
z – z cos z, has any pole at z = 0 we notice that

′ = +f z z z z( ) sin cos ′ = =g z z z f z( ) sin ( )

′′ = −f z z z z( ) cos sin2 ′′ = ′g z f z( ) ( )

′ = ′′ ≠f f( ) ( )0 0 0 0 but ′′ = ′′′f z g z( ) ( )

so g g g, ( ) ( ) ( )  but ′ = ′′ = ′′′ ≠0 0 0 0 0

Thus origin is the double zero of f(z) and triple zero of g(z). As a result the given
function f/g possesses a simple pole at z = 0. To find its residue at z = 0 we note that

′′
′′

= ′′′
′′′

=f z

z

g z

z

( )

( )

( )

( )2 31
1

3
 and 

and so residue there is 3. Thus the function F z
z z

z z z z
( )

sin

sin cos
=

−
− 3

 has the
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simple poles at z = ± αn as its only singularities and Res (F(z); ± αn) = 1 and F(0) = 0
since F(z) = –F(–z).

Since n nn−�
��

�
�� < < +�

��
�
��

1

2

1

2
π α π, we consider the sequence of contours {Cn},

formed by the straight lines x = ± bn, y = ± bn with bn = n +�
��

�
��

1

2
π, n = 1, 2...,

AnBnPnQn shown below :

We find that when z ∈  BnPn, z = bn + iy,
where – bn ≤ y ≤ bn.

Hence,

cot

cos

sin

z

n iy

n iy

=
+�

��
�
�� +��	


��
+�

��
�
�� +��	


��

1
2

1
2

π

π

= = −
+

−

−

sin( )

cos( )

iy

iy

e e

e e

y y

y y              (147)

Same result holds when z ∈  AnQn. Now when z lies on either of the lines AnBn or

QnPn, z = x ± i n +�
��

�
��

1

2
π

cot

cos

sin

sinh

cosh
z

x i n

x i n

n

n
=

± +�
��

�
��

��	

��

± +�
��

�
��

��	

��

≥
+�

��
�
��

+�
��

�
��

1
2

1
2

1
2
1
2

π

π

π

π

= −
+

≥ −
+

− +

− +

1

1

1

1

2 1

2 1

e

e

e

e

n

n

( )

( )

π

π

π

π (148)

The given function can be rewritten as

z z

z z z
z

z

sin

sin cos cot−
=

−

1
1

BnAn

PnQn

x

y

o

bn

–bn

–bn
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I. Bound on the sides AnQn & BnPn of the square Cn : Using (147), we obtain

1
1

1
1

1

1
1

2 2z
z z

z
e e

e e b y

y y

y y

n

−
≤

−
=

−
+

−
+

→ → ∞
−

−
cot cot

. as n

II. Bound on the sides AnBn & QnPn of Cn : Here we apply (148) to achieve

1
1

1
1

1
1

1

1
1

1
2 2z

z z
z

e

e b y

e

e

n

−
≤

−
≤

−
+

−
+

→ +
−

→ ∞
cot cot

.π

π

π

π  as n

Thus,

z z

z z z

e

e
z C nn

sin

sin cos
, , , , ...

−
≤ +

−
∈ =

π

π

1

1
1 2

This shows that the function F(z) is bounded on the sequence of contours {Cn} and
we can apply (144) to prove

z z

z z z z zn n n nn

sin

sin cos−
= +

−
+ +

+
−

�
��

�
��=

∞

∑3

2

1 1 1 1

1 α α α α

               = +
−=

∞

∑3

2

2
2 2

1

z

z nn α

Exercises
1. Obtain partial fraction expansion of cosec z.

2. Prove that

sec ( )
( )

z
n

z n

n

n

= − −

− −�
��

�
��

=

∞

∑ 1
2 1

1
2

2
2

21

π

π

3. Show that

tan z
z

z n
n

= −
− −�

��
�
��

=

∞

∑ 2

1
2

2
2

21 π
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and hence deduce

1
1

3

1

5 82 2

2

+ + + =�

π

6.16 The Gamma Function

The gamma function Γ(z) was introduced by Swedish Mathematician L. Euler (1707-

1783), in 1729 while he was seeking for a function of a real variable x which is continuous
for positive x and reduces to x! when x is a positive integer. Gamma function is widely used
in the fields of probability and statistics, as well as combinatorics.

Gamma function Γ(z) can be introduced in either of the ways :

(i) in terms of infinite product

(ii) in the form of infinite integral

(iii) in limit formula

We establish the form (i) first considering the fact that it possesses simple poles at z
= 0, –1, –2, ... and nowhere vanishes in the entire plane and satisfies

zΓ(z) = Γ(z + 1), Γ(1) = 1 (149)

To construct Γ(z) we claim that f(z) = 1/Γ(z) is entire with simple zeros at z = –n
(n = 0, 1, 2, ...).

Again we know that k = 1 is the largest non-negative integer for which

1

1 nk
n=

∞

∑
diverges. Then utilizing the Weierstrass Factorization theorem f(z) can be represented

as

f z ze
z

n
eg z

n

z

n( ) ( )= +�
��

�
��=

∞ −

∏ 1
1

where g(z) is an entire function, so that gamma function will be of the form

Γ ( ) ( )

/

z e
z

z
n

e

g z

z n

=
+�

��
�
��

−

−
∞

∏
1

1
1

(150)

Now we find g(z) so that (149) hold. We write (150) in the form
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Γ( ) lim
( )

z
e

z
z
m

e
n

g z

z

m
n

=
+�

��
�
��

→∞

−

−

∏ 1
1

=
− +�

��
�
��

+ +
=

→∞ →∞

∑
lim

!exp ( )

( ) ( )
lim ( ),

n

n

n
n

n g z
z
m

z z z n
z1

1 ��

Γ  say (151)

z z

z

n z g z
z
m

z z z n

z z z n

n g z
z
m

n

n

n

n

Γ
Γ

( )

( )

! exp ( )

( ) ( )

( )( ) ( )

!exp ( )
+

=
− +

�
��

�
��

+ +
+ + + +

− + + +�
��

�
��

∑

∑
1 1

1 2 1

1
1

1

1

��

��

= + + + − −�
��

�
��∑( ) exp ( ) ( )z n g z g z

m

n

1 1
1

1

= + +�
��

�
�� + − − ∑

�
�
�
�

�
�
�
�

1
1

1
1

1

z

n
n g z g z

m

n
exp ( ) ( )

= + +�
��

�
�� + − − +�

��
�
��∑1

1
1

1

1

z

n
g z g z

m
n

n

exp ( ) ( ) log

Now from the relation 
z z

z

z z

zn

n

n

Γ
Γ

Γ
Γ

( )

( )
lim

( )

( )
,

+
=

+→∞1 1
 we find that

z z

z

z

n
g z g z

m
n

n

nΓ
Γ

( )

( )
lim exp ( ) ( ) log

+
= + +�

��
�
�� + − − +�

��
�
��→∞ ∑1

1
1

1
1

1

= + − −exp ( ) ( )g z g z1 γ

where γ = −�
��

�
�� = ⋅

→∞ ∑lim log
n

n

m
n

1
0 57722

1
(152)

is known as the Euler’s constant.

Thus in order that the conditions in (149) to hold, we should have

g(z + 1) – g(z) = γ + 2kπi (k ≡ integer) (153)

and
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1 1 1
1

1

1

1
1

= = =
∑

+
=

→∞ →∞

− + −

− +Γ Γ( ) lim ( ) lim

( ) log

( )

n
n

n

g
z

m
n

ge

n

e

n

γ

so that g(1) = γ + 2jπi (j ≡ integer) (154)

The simplest entire function satisfying (154) is given by

g(z) = γz

Finally from (150),

Γ ( ) /z
e

z

z

n
e

z
z n= +�

��
�
��

− −∞

∏
γ

1
1

1

(155)

Gauss’s Formula

From (151) we have the representation

Γ( ) lim

!exp

( ) ( )
z

n
m

z

z z z nn

n

=
−

�
��

�
��

�
��

�
��

+ +→∞

∑ 1

1
1

γ

��

=
− −

�
��

�
�� +

�
�
	



�
�

�
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�
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+ +→∞

∑
lim

!exp log log

( ) ( )n

n

n
m

n n z

z z z n

1

1
1

γ

��

=
+ +

− −�
��

�
�� =

→∞ →∞
∑lim

!

( ) ( )
, lim log

n

z

n

nn n

z z z n m
n

1

1
0

1��

since γ (156)

The above expression for Γ(z), z ≠ 0, – 1, – 2, .... is termed as Gauss’s formula,

though it was first derived by Euler.

In many places it is known as Euler’s limit formula.

Example 9 : Let

Γ ( , )
!

( ) ( )
z n

n n

z z z n

z

=
+ +1 ��

Prove that

Γ Γ Γ
Γ

( , )
( ) ( )

( )
z n

n n z

n z

z

= +
+ +

1

1
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and hence deduce that

n n

n z
as n

zΓ
Γ

( )

( )+
→ → ∞1

Solution :

Γ(n + z + 1) = z(z + 1)(z + 2)......(z + n) Γ(z)

so, 
n n z

n z

n n

z z z z n

n n

z z z z n
z n

z z zΓ Γ
Γ

Γ Γ( ) ( )

( )

( )

( )( ) ( )

!

( )( ) ( )
( , )

+
+ +

= +
+ + +

=
+ + +

=1

1

1

1 2 1 2�� ��

Now,

n n

n z

n z z n

n z

zΓ
Γ

Γ
Γ

( )

( )

( ) ( , )

( )+
= +

lim
( )

( )
lim

lim ( , )

( )n

z

n

nn n

n z

z

n

z n

z→∞ →∞

→∞

+
= +�

��
�
�� =Γ

Γ

Γ

Γ
1 1 by Gauss’s formula.

In the expression (155) for Γ(z) the infinite product is uniformly convergent on every

compact subset of /C  – {0, –1, ......}. So calculating Γ′ (z)/Γ(z) we find that

′ = − − + −
+

+�
��

�
��=

∞

∑Γ
Γ

( )

( )

z

z z n z nn

γ 1 1 1

1

This function 
′Γ

Γ
( )

( )

z

z
 is denoted by ψ(z) and named as Gaussian psi function and it is

seen from its expression that ψ is meromorphic in /C  with simple poles at z = 0, –1, –

2, ... and Res(ψ; –n) = –1 for n = 0, 1, 2, ...

Example 10 : Show that

(i) ψ(1) = –γ

(ii) ψ ψ( ) ( )z z
z

+ − =1
1

(iii) ψ ψ π π( ) ( ) cot .z z z− − = −1

Solution :

(i) ψ γ( )z
z n z nn

= − − + −
+

+�
��

�
��=

∞

∑1 1 1

1
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so, ψ γ( )1 1
1

1

1

1

= − − + −
+

+�
��

�
��=

∞

∑ n nn

= − − + − + − + −�
��

�
��γ 1 1

1

2

1

2

1

3

1

3
�

= –γ.

(ii) ψ ψ γ γ( ) ( )z z
z n z n n z n znn

+ − = − −
+

+ −
+ +

+�
��

�
�� − −

+
+�

��
�
�� + +

=

∞

=

∞

∑∑1
1

1

1

1

1 1 1 1

11

= −
+

+
+

−
+ +

�
��

�
��=−

∞

∑1 1

1

1 1

11z z n z n zn

= −
+

+
+

−
+

+
+

−
+

+�
��

�
��

1 1

1

1

1

1

2

1

2

1

3z z z z z z
�

= 1

z
.

(iii) ψ ψ( ) ( )z z
z z n n z n n z

− − = − +
−

+ −
+

�
��

�
�� − −

+ −
�
��

�
��

∞∞

∑∑1
1 1

1

1 1 1 1

111

= − −
−

+
+ −

−
+

�
��

�
��

∞

∑1 1

1

1

1

1

1z z n z n z

= − −
−

−
+

−
−

−
+

−1 1

1

1

1

1

2

1

2z z z z z
�

= − −
−

+
+

�
��

�
�� −

−
+

+
�
��

�
��−1 1

1

1

1

1

2

1

2z z z z z
�

= − −
−

= −
∞

∑1 2
141

2 2
1z

z

z n
z byπ πcot , ( )

6.17 A Few Properties of ΓΓΓΓΓ(z)

We have
1

1
1Γ ( )

/

z
e z

z

n
ez z n= +�

��
�
��

∞
−∏γ

Hence,
1

12
2

2
1Γ Γ( ) ( )z z

z
z

n−
= − −�

��
�
��

∞

∏
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= − −�
��

�
��

∞

∏z
z

z

nπ
π 1

2

2
1

= − z
z

π
πsin

or,
1

Γ Γ( )[ ( )]

sin

z z z

z

− −
= π

π

i.e.
1

1Γ Γ( ) ( )

sin
,

z z

z

−
= π

π   [using zΓ(z) = Γ(z + 1) i.e., – zΓ(–z)

= Γ(1 – z)] (157)

In particular, Γ 1

2

2�
��

�
��

�
��

�
��

= π and Γ 1

2
�
��

�
�� = π (minus sign is excluded since Γ

1

2
�
��

�
��  is

positive by (155)). Likewise using

Γ(z + 1) = zΓ(z)

we find

Γ Γ3

2

1

2

1

2

1

2
�
��

�
�� = �

��
�
�� = π

Γ Γ5

2

3

2

3

2

3

2

1

2
�
��

�
�� = �

��
�
�� = . π

Γ Γ7

2

5

2

5

2

5

2

3

2

1

2
�
��

�
�� = �

��
�
�� = ⋅ ⋅ π

and in general

Γ n
n

nn+�
��

�
�� = − =1

2

13 2 1

2
1 2

. ( )
, ( , ,

��

�π

i.e. Γ n
n

n n
+�

��
�
�� =1

2

2

2 2
/

( )!

!( )
π (158)

If n is a positive integer repeated use of (149) produce

Γ ( ) !n n+ =1

The Γ-function can therefore be considered as an extension of the factorial

function to the complex plane.
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Legendre’s Duplication Formula

Let us consider the Gauss’s formula

Γ Γ( ) lim
!

( ) ( )
lim ( , ),z

n n

z z z n
z n

n

z

n
=

+ +
=

→∞ →∞1 ��

 say

Then,

Γ ( , )
( )!( )

( ) ( ) ( )
2 2

2 2

2 2 1 2 2 2

2

z n
n n

z z z n n z

z

=
+ + +� ��

=
+�

��
�
��

+ + +

−
2

1
2

2

2 2 1 2 2 2 2

2
1

2n zn n n

z z z z n

! ( )

( )( ) ( )

Γ π�  
��

 [Replacing (2n)! by (158)]

=
+�

��
�
��

+ + + +�
��

�
�� +�
��

�
�� + −�

��
�
��

−2
1
2

1 2
1
2

3
2

1
2

2 1 2z zn n n

z z z z n z z z n

!( )

( )( ) ( )

Γ

π � �

= +�
��

�
��

+�
��

�
�� +�
��

�
�� + −�

��
�
��

−2 1

2

1
1
2

3
2

1
2

2 1z

z n n
z z z nπ

Γ Γ( , )
�

= +�
��

�
��

+�
��

�
�� + +−2 1

2

1

2
1

2
2 1

1 2

z

z n n
z n

n n

z n

nπ
Γ Γ

Γ

Γ
( , )

,

( )/

and Γ Γ Γ Γ
Γ

Γ
( ) lim ( , ) ( ) lim

( )/2 2 2
2 1

2

1

2
1

2
2 1

1 2z z n z z
n

n n

z n

nn

z

n
= = +�

��
�
��

+�
��

�
�� + +

�

�

�
�
�
�

�

�

�
�
�
�

→∞

−

→∞π

= +�
��

�
��

−2 1

2

2 1z

z z
π

Γ Γ( )  [using example 9]

So that

πΓ Γ Γ( ) ( )2 2
1

2
2 1z z zz= +�

��
�
��

−
(159)
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This is known as Legendre’s duplication formula.
Residue of ΓΓΓΓΓ(z) at its poles
Γ(z) is analytic throughout the complex plane except at its only singularities which are

simple poles situated at z = 0, –1, –2, .... That is Γ(z) is analytic in the right half of the
complex plane Re z > 0. Using the fact that zΓ (z) = Γ (z + 1), we have

Γ Γ( ) ( )( )( ) ( ) ( ),z n z n z n z n z z z n+ + = + + − + − + ≡1 1 2 1�  positive integer and

Γ Γ
( )

( )

( ) ( )( )
z

z n

z z z n z n
= + +

+ + − +
1

1 1��

Res ( ( ); ) lim ( ) ( )
–

Γ Γz n z n z
z n

− = +
→

= + +
+ + −→

lim
( )

( )....( )–z n

z n

z z z n

Γ 1

1 1

= − =( )

!
, , , ,...

1
0 1 2

n

n
n

Integral representation of ΓΓΓΓΓ(z)

Theorem : Prove that

Γ ( )z e tt z= − −
∞� 1

0
 dt for Re z > 0.

Proof. Let

F z
n n

z z z nn

z

( )
!

( )....( )
=

+ +1
We prove the theorem in the following two steps :

(i) F z
t

n
t dtn

n

z
n

( ) = −�
��

�
��

−� 1 1

0

(ii) lim
n

n
z t zn t

n
t dt e t dt

→∞

− − −∞
−�

��
�
�� = �� 1 1 1

00

To establish (i) we change the variable t to ns in

1 1

0
−�

��
�
��

−� t

n
t dt

n
zn

to obtain

1 11 1

0

1

0
−�

��
�
�� = −− −�� t

n
t dt n s s ds

n
z z n zn

( )
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Now integrating by parts we find the right hand side is equal to

n
z

s s
n

z
s s dsz z n n z1

1 10
1 1

0

1
( ) ( )− + −�

��
�
��

−�
= − −�n

n
z

s s dsz n z( )1 1

0

1

= −
+ + −

+ −�n
n n

z z z n
s dsz z n.( )....

( )....( )
1 1

1 1
1

0

1

 [Integrating by parts (n – 1) times]

= + + =n n
z z z n

F zn

!
( )....( )

( )
2

1

Now to prove (ii)we show that

lim ,–

n

t
n

z
n

e
t

n
t dt

→∞

− − −�
��

�
��

�
�
��

�
�
��

=� 1 01

0
 Re z > 0 (161)

For this, note that

1
1

1
+ ≤ ≤

−
<t

n
e

t
n

for t n
t
n (162)

Then, 1 1+�
��

�
�� ≤ −�

��
�
�� ≤ −t

n
e and

t
n

e
n

t

n

t ;

Consequently,

0 1 1 1 1 1
2

2≤ − −�
��

�
�� = − −�

��
�
��

�
�
��

�
�
��

≤ − −�
��

�
��

�
�
�
�

�
�
�
�

− − −e
t
n

e e
t
n

e
t
n

t

n

t t

n

t

n

= + −�
��

�
��+ + −�

��
�
��

�
�
�
�

�
�
�
�

≤−
−

−e
t
n

t
n

t
n

e
t
n

t

n

t
2

2

2

2

2

2

1 2

1 1 1� .

Therefore,

e
t

n
t dt

n
e t dtt

n
z

n
t z

n− − − +− −�
��

�
��

�
�
��

�
�
��

<� �1
11

0

1

0

Re
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which approaches zero as n → ∞ because the integral on the right converges. This

completes the proof of (ii). Finally combining the results (i) and (ii) with the Gauss’s formula

(156) we get

Γ ( ) lim ( ) limz F z
t

n
t dt e t dt

n
n

n

n
z t zn

= = −�
��

�
�� =

→∞ →∞

− − −∞�� 1 1 1

00
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