PREFACE

In the auricular structure introduced by this University for students of Post- Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subject introduced by
this University isequally available to all learners. Instead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of alearner isjudged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping thisin view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholarsisindispensable
for awork of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing and devising of a proper lay-out of the materials.
Practically speaking, their role amountsto an involvement in invisible teaching. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more alearner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so mat they may be rated as quality self-
learning materials. If anything remains still obscure or difficult to follow, arrangements are
there to come to terms with them through the counselling sessions regularly available at the
network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in
certain areas. Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and further improvement in due course. On the
whole, therefore, these study materials are expected to evoke wider appreciation the more
they receive serious attention of all concerned.
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Vice-Chancellor
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Unit 1 O Analytic Continuation

Structure

1.0 Objectives of this chapter

1.1 Theidea of analytic continuation

1.2 Direct analytic continuation

1.3 Analytic continuation of elementary functions
1.4 Analytic continuation by power services

1.5 Analytic continuation along a curve

1.6 Multi-valued Functions and Analytic continuation

1.0 Objectives of this Chapter

In this chapter we shall introduce the idea of direct analytic continuation of an
analytic function. The concepts of analytic continuation by means of power series,
complete analytic function, natural boundary, analytic continuation along a curve will
be explained with the help of examples. Homotopic curves, analytic continuation of

multi-valued function and Monodromy theorem will also be discussed.

1.1 The idea of analytic continuation

The idea of analytic continuation rests on the notion of anaytic function. A
function f(z) is analytic at z = z;if it is differentiable in some O-neighbourhood of
zy or, equivaently if it can be expressed in the form of a Taylor series in a
neighbourhood of that point. The domain of convergence of this power series will be
the region of analyticity of the function f(z).

Following Uniqueness Theorem : “If two functions f(z) and g(z), analytic on a
region D, are such that f(z) = g(z) on a set ALID having a limit point in D, then f(z)
= g(z) Uz O D,” we know that if two analytic functions agree in some small

neighbourhood of a point situated in their common region of analyticity D, they
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coincide everywhere in D. We first introduce the idea of analytic continuation by the
following examples.

The geometric series
1+z+ 22+ ...

1
converges for |z| < 1 and its sum function 9(2) = 17 is an analytic function for
|z| < 1.
The geometric series diverges for |z| > 1.

However, the function

h(z) = rlz

Is analytic for all z except z = 1. But we observe that
h(z) =g(z) 04 {g 1NC\{B}
Thus, we may regard h(z) as determining an analytic continuation of g(z) from the
domain |z| < 1 into the domain ¢\{1}.
Example 1.1 Consider the Laplace transform of 1 in the z-plane,
F2)=£{3(2) = j: e 2t :%for Re z >0

We introduce a function

o=
which is analytic in the complex plance ¢ except the origin. Here
®2)=F(2)041 C/(®) Rexz O
and we consider @(z) as anaytic continuation of F(z) from the domain Re z > 0
into the complex plane with the point z = O deleted.

We put these ideas more precisely in the following discussion.

1.2 Direct analytic continuation

Let (1) f(z) and g(z) be analytic functions on domains D, and D, respectively.
(i) D,ND, @
(iii) f(2) = 9(2) for al z belonging to D,ND,

Then g (z) is called a direct analytic continuation of f(z) to D,, and vice versa.

8



Theorem 1.1. A direct analytic continuation, if it exists, isunique.

Proof. Let f(z) be an analytic function with domain of definition D, and let g(z), another
anaytic function with domain of definition D,, beits direct analytic continuation. We shal
show that g(z) is unique. On the contrary suppose ¢(z) be another analytic continuation of
f(z) into D,. Then

f(z) = 9(2) fordl zOD,ND, %

Z

Also, f(z) =@(2) for al zOD,ND, <
Fig. 1

and so @(2) coincides with g(z) in D, N D,. Thuswe have, by the Uniqueness theorem,
®(2) = 9(2) in D».

1.3 Analytic continuation of elementary functions

Thefunctions €%, sin z, cos z, sinh z etc are adready known to us. These functions are
regular in the entire complex plane. Let us assume, by definition, that

2] n
, _ y4

& n!

and observe that it coincides with eX, known earlier, for real values of z. Thuswe can
take e as the analytic continuation of ex from real axis into the entire complex plane.
Likewise introducing sin z, cos z sinh z, cosh z in the form of power series—

] B o _1 n22n+1 o (_1)n22n
Snz= —— X, COSz =
& (2n+1)! & (2n)!
o 2n+1 . 2n
snhz = and coshz =
nZo(2n+1)! r;)(2n)!

We can treat them as the analytic continuation of the functions sin x, cos x, sinh x and
cosh x respectively from the real axisinto the entire complex plane.



1.4 Analytic continuation by power series

We now explain the concept of analytic continuation by means of power series.
Suppose the initial function f;(z) is analytic a a point z;. Then f1(z) can be
represented by its Taylor series about z; as

_ < n _f"(z)
f.(z) = Zan(z—zl) ...(1), wherea, =

The circle of convergence y; of the series (1) is given by

Y.i|z—2z,|=R,, where

1. 1
= = L|mwp |an|n

1

Let D1 ={z:|z—2z| <Ry}. Then

Y1
f1(2) is analytic in D;. We draw a curve y from z; and perform analytic

continuation along y as follows :

We take a point z, on y such that the arC z; z, lies inside y;.
We then compute the values f1(z,), f11(zy),..., f1(M(z,) by successive term by term
differentiation of the series (1) and write

f,(2) = 2*3“ (z2-2,)"...(2) where b, = fl(n;('zz)

The circle of convergence y, of the series (2) is given by
1 . 1
Y,:lz—2,|=R,, where R, =limsup [b,[r

Let D, ={z[z—z,| <R,}. Then fy(2) is analytic in D,. By uniqueness theorem,
f1(z) = fy(2) for all zOD,ND,. If y, extends beyond y;, then f,(z) gives an analytic

continuation of f,(z) from D, to D,. Similarly, considering a point zz on y such that
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the arcz, z; lies inside y,, we get an analytic function f5(z) in a circular domain D3
such that f,(z) = f3(z) for all zOD,(1D,. If D3 extends beyond D, then f3(z) gives
an anaytic continuation of f,(z) from D, to D5. Repeating this process we get a number
of different power series representing analytic functions fi(z) in their respective
circular domains D; which form a chain of analytic continuations of the original
function f4(z) such that (f;, D;) is a direct analytic continuation of (f,_;, D;_y).

Note : We may obtain the series (2) from the series (1) in the following way :
We rewrite the series (1) in the form : Y a,{(z—=2,) +(z,~z,)}"
n=0

Using binomial theorem we then expand {(z-z,)+(z,—2)}" and collect the
terms in like powers of (z—z,) and obtain the series (2).
We give two examples.

Example 1.2 Thefunction

1

f(z) = 1+ 7

possesses two simple poles at z = + i; Otherwise it isregular throughout the whole
complex plane. We first choose a point, say z = 0 at which f(z) is analytic and obtain
its Taylor series expansion represented by g(z) as

9d2=1-22+24- .., |7 <1

The series fails to converge on and beyond the unit circle, as is clear from the
series for z = 1 even though the function (z) is
analytic at that point. We can in fact continue the
expansion from one region to another. Let us
consider a second expansion of f(z), this time

Za

4

: 3. . o
3 about a point Z:Z lying inside the unit circle
"2

(i.e. lying inside the region of convergence of the
former series). We form the expansion as follows

Fg. 2 1 1 1(1 1)

142  (z+1)(z=0) 2i
11

Z—i z+i



L)1 !
2i z—§+§—| z——+§+|
4 4 4
1] 1 ( 2—3/4)_1 1 ( 2—3/4)_1
== 1+ - 1+
21| 3_; 3/4—i 34 3/ 4+i
4
:zli[(3/4—i)‘{1—(z—3/4)/(3/4—i)+(z—3/4)2/(3/4—i)2—...}
—(3/4+i)‘i{l—(z—3/4)/(3/4+i)+(z—3/4)2/(3/4+i)2—...}],z—% <§,
16 3(16)2( 3) 11(16)3( 3)2 21(16)4( 3)“
it Il I IR Akl Euteod el I [P Anbonll B [l I [P i .. (2
25 2\ 25 4) 16\ 25 4 16\ 25 4
We denote this expansion by h(z), which converges in the right-hand circle
3 5
z 2 < 2 and coincides with g(z) in the shaded region. We see that h(z) is clearly

a direct analytic continuation of g(z).

Let us construct another analytic continuation of g(z). Now we consider a
neighbourhood of the point z = 1 (though it is a boundary point of the unit circle the
function f(z) is analytic there) and obtain an
expansion represented by

®(2) =%—%(z—1) +%(z—1)2—...

for z—-1<+42...(3

In this way we can determine all possible

direct analytic continuations of g(z) and then

continuations of these continuations and so on. A

complete analytic function is defined as consisting
of the original function and the collection of all the continuations so achieved.

Fig. 3

Here the complete analytic functionis
barring the points z = +i.

1 >, defined in the whole complex plane
1+z

Example 1.3 Consider the function

12



f(z):i

1+z
Clearly this function is analytic everywhere except at z = — 1. We take afunction
Wz2)=1-z+7° - (4)

1
Then sum function @(z) is T+ in|z|<1 Takeapoint z=—1/4 inside the region

of convergence of @(z) and in a neighbourhood of this point

R

4

L1
z 252 .. (5
Fig. 4 It can be checked easily that @(z) and W(z) are direct
i analytic continuation of each other.

P Again in the neighbourhood of z = i/2 we obtain an

T expansion

—1&y1 @=L |1_(z712), z-i/2) _
1+i/2 1+i/2) \(1+i/2) 7
Fig. 5 i \/E

Z_E <7 ... (6)

In performing analytic continuations we notice that there
are certain points which always lie on the boundary of domains in which expansions
are not valid. These points are nothing but the singularities of the complete analytic
function. In example 1.2 these are z = + i whereas it is z = —1 for example 1.3.

Regular and Singular points .

Let f(z) be an analytic function defined in 4
the domain D, bounded by a smple closed %
curvel. A point ¢ [T iscaledaregular point
of the function f(z) if there exist a neighbourhood
| z—¢| < O of the point ¢ and an anaytic function
®(2) such that 0.(2=fx04O0d z <O .

The boundary point { which is not aregular Fig. 6
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point is called asingular point of f(z) i.e., in any neighbourhood of the point ¢, there
cannot be any analytic function coinciding with f(z) in the part common to the
neighbourhood of ¢ and the domain D.

Natural boundary

In examples 1.2 and 1.3 we have encountered with finite number of singular points
situated on the boundary of the region of analyticity of the given function. It might
happen that the boundary is dense with singular points. In this case analytic
continuation across the boundary of the region is not possible. Such a boundary is
caled anatural boundary.

Example 1.4 Test whether analytic continuation of the function f(z) = Z z”"
possible outside its circle of convergence.
Solution : Applying the ratio test we find that the given series
f@=z+22+22+ 28+ .. (7
converges for |z| < 1. The point z = 1 isasingular point of f(z) asit is seen for

real z that the sum $ x* increases indefinitely as x — 1. Now to test whether the

circle of convergence, the unit circle, is anatural boundary we examine the behaviour
of the given function at the points.

I2T[
—ezk s=1 2, 3 ..2¢
I2T[

(k is any natural number). For this sake we consider the points Z, , = re?" 2

0 <r < 1 and evauate f(z) at these points.

k-1 I2T[ on o I2T[ n

Thenf(zks)—Zr "e2 Zrz”ezk

and observe that the first term consists of a
finite number of terms and hence bounded in
absolute value, whereas the second term is absolute

value reducesto 2 2" . Cl early this sum increases
n=k

indefinitely as r — 1. This shows that the points
z,, (88 limZ =z, are singular points of the

14



given function f(z). Now as k — o these points form an everywhere dense set of
points on the boundary of the unit circle. Thus analytic continuation outside the circle
of convergence of the given function is not possible.

Example 1.5 Show that the function f(2) = lem has unit circle as its natural
boundary. -

Theorem 1.2 Every power series has at least one singular point on its circle of
convergence.

Proof. Let f(z) =, + a(z—z) + a(z—-z)* + ... be any power series with region
of convergence K:|z — z| < R. We
shall have to prove there lies at least
one singular point on the circle of
convergence |z — z| = R of the
function. Suppose, on the contrary,
that every point on I are regular
points. Let G, ... G,... be certain
number of regular points belonging to
M and N(g), N(g), ..., N(g)... be
their neighbourhoods respectively. The
points ¢'s are chosen in such a way
that N(g) has non null intersection
with N(¢ _,) and N(g , ,) and the
union of these neighbourhoods
completely cover the boundary I'. Let
D be the union of K and al these
neighbourhoods N(g). D is open since K and every N(¢) are open. D is also
connected since.

Fig.8

(i) any two points lying in KLID can be connected by a straight line segment lying
in K, since K is connected.
(ii) one point z,[IN(c,) and the other z,[1K can be connected by two straight line

segments z,Z, and Z,z, lying within N(c)UKD.
(iiiyone point z_ [IN(C ) and z [IN(C,) can be connected by a curve consisting of
Zolm +Cufn .2, 0D since 72 ONE,P D,{fj 0O D  and

,z, ON@,P D-
15



and finaly if two points lie in the same neighbourhood N(() it is aways
connected by acurvey [IN(¢,) O D. Now we introduce an analytic function y)(z) on the
open connected set D which satisfies

W(2) = @, (2), & NE)
f(2), zeK
where @.(2) isadirect anaytic continuation of f(z) in the neighbourhood N(¢;) of the
regular point ;.
We now prove that Y(z) is well-defined on D. Let a, 3 be any two points on
I such that H=N(a)N(B) Z¢@ and since a, [ are regular points there exist
functions @, (z) and ch(z) as direct analytic continuations of f(z) in N(a) and N()
respectively i.e.
@,(2) =f(2) Oz eN(d)NK
@ (2) =f(2) Oz eN(BNK
so that @,(2) = @ (2) =f(2) OzG= (N(9)NK)N(N(BNK)I H. Now since
cpa(z),ch(z) areandyticinH and G isapart of H, by the uniquenesstheorem @, (2) = qh(z)
Oz e H. Asa and (3 are arbitrary points of I' we conclude that (z) is a well-defined
analytic function on D. Let C be the boundary of D andlet p=z,¢, ¢ € C betheminimum
distance from z, to the boundary C of D. Then clearly p > R as ¢ lies outside the circle
. Thus we observe that W(z) coincides with f(z) on the disc
|z—z5| < R. Thenitis obviousto conclude that the radius of convergence of the given power
series Zoan(z— Z,)" isp, not R, which is acontradiction. Hence every point on I” cannot

be regular points, i.e., there must be at least one singular pointon I".

1.5 Analytic continuation along a curve

Earlier, analytic continuation by power series method, we have extended f(z) to a

16



where R > r-{zy — @ [(see Fig. 9), for example 1.2].
Then it converges to an analytic function g(z) defined on
D, which is equal to f(z) on DD, .

Analytic continuation along a curve is an extension
of this idea to the situation where a curve is covered by
an overlapping sequence of
discs and an analytic function
defined on the first disc, can
be extended succesively to
each disc in the sequence (see
figure 10). We will make this
idea more precise after
introducing the definition of
function element.

Definition 1. An ordered
pair (f, D), where D isaregion and f is an analytic function on D is called afunction
element. We say that it is a function element at z, if z, belongs to D. Two function
elements (¢, G) and (), H) are equal if and only if @(z) = Y(z), G =H.

Clearly a function element (f;, D;) is a direct analytic continuation of another
function element (f,, D,) when D, n D, # @and f; = f, in Dy n D,. In this case the
two function elements (f;, D) and (f,, D,) are said to be equivalent.

Definition 2. Let y: [0,1] —» € be a curve and (fo, Dg) be a function element at
Zy = Y(0). Suppose there exists

i larger domain considering its power series expansion
about a point a from its original circle of convergence
with centre at zy (—a # z) and radius r. We know, this

o power series converges in the disc D, :|z — @ < R,

Fig. 10

(i) apatition0=ty;<t; <..<t,=121of [0 1] and
(if) afinite sequence of function elements

(fO’ DO)! (fl’ Dl)! e (fn’ Dn)
with y([t;, ti,4]) O D and (iii) f(2) = f,1(z) on D; N Dyyy for j = 0, 1, ... 1.

Then (f,, D) is caled an analytic continuation of (fy, Dg) along y. Apparently,
it seems that the function element (f,, D,) of the above definition, depends on the
choice of partition0 =ty <t; < .. <t,=1of [0, 1] and the finite sequence (fy, Do),
(f1, Dy), ..., (f,, Dy) of function elements. It turns out that up to equivalence, it is
actually independent of these choices.
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Theorem 1.3 Given acurve y: [0,1] - € beginning at z, and ending at z, and
afunction element (fy, Do) at z,, any two analytic continuations of (fg, Do) along y give
rise to two function elements at z, that are direct analytic continuations of each other.
[Though the theorem can be proved by taking different partitions of [0, 1] for two
different analytic continuations of (fy, Dg) aong vy, here we prove the theorem taking
the same partition of [0, 1] for two analytic continuations along v].

Proof. Let (fo, Fo), (f1, F1), ... (fn, Fn) and (9o, Go), (91, G1), ---, (On, Gy) be two
analytic continuations of (fp, Dg) aong y, using the same partition,

O=tp<t <..<t,=1

where y(t) = z; and y ([t;, tj«a]) O F and y([t;, t.a]) O Gjforj =0, 1, ..., n.

By given hypothesis, (fo, Do) = (fo, Fo) = (do, Gg). Now we set E; = Fj n G for
]=1,2,..n and E; = Fy = Gy. Then each E; is a connected open set containing Y(t;)
and y(tj+1). To prove the theorem we show, by induction, that f, = g, on E,.

We have fq = g on Ey = Fy = Gy by definition. Suppose j < n and f; = g; on E;.
But we have

fl = fj+1 on fj N Fj+1

and gj=0+«x1 OnGn Gy

and y(tj41) is common to both the open sets FnFj,; and G;nG;,;. So it follows
that

fir1 = g1

in a neighbourhood of y(t;,;) and hence on E;,; by the uniqueness theorem. By
induction the proof is therefore complete.

Homotopic curves. Two arcs y; and y,, with common end points, contained in
a region R are said to be homotopic if one can be obtained from the other by
continuous deformation where the process of continuous deformation must be confined
in R.

Y1

0

Ys
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In the given figure {y;, Y, and y3} is one set of homotopic curves while {v,, ys}
Is the other set. Here no curve of the first set is homotopic to any curve of the second
set. These are geometrical interpretations. We now explain such a deformation in an
analytical manner.

Let ussupposeyp:z=0p (1),0<t<landy,:z=0;(),0<t<1betwo
curves, lying in aregion R, having common end pointsaand b i.e., a= 0y(0) = 04(0)
and b = 0y(1) = 04(1) hold. We say that the curve y, can be continuously deformed
into the curve y; keeping the process confined to R, if there exists a function of(t, s)
which is continuous in the unit square 12 =1 x |, | =[O0, 1] and satisfies the following
conditions:

(i) for each fixed s€ [0, 1] thecurveys:z=0 (t,5),0<t< 1lliesinR.

(io(t,0)=0pt)ando (t, ) =0y (1),0<t <1

(i) (0,s)=aand o (1,9) =b,0<s< 1

Let o and ¢ be two points lying in a domain D and suppose that y, and y; are
two curves connecting a to ¢. Let there exist, as in definition 2, two finite sequences
of function elements (fo, Gp), (f1, Gy) ..., (fn, Gn) and (9o, Ho), (91, H1), -y (Om» Hm)
along the curves y, and y; respectively. We also suppose that the function elements
(fo, Go) and (9o, Ho) at the point a are equivalent. Then a question arises whether the
function elements (f,,, G,) and (g, Hy,) at the point ¢ are also equivalent? If yyand
y: are the same curve the Th. 1.3 confirms the answer for equivalence. However, if v,
and y; are distinct there is no definite answer. The reason behind thisisthe fact that the
regions enclosed by the curves yyand y; may contain points at which we can not find
any function element that can be included in the sequence of function elements from the
point a to ¢ along any curve passing through these points. Here we discuss a few
problems highlighting these facts :

Example 16 Let Q; ={ze ¢ | Re z
z> 0, Im z> 0} denote the first quadrant
and set f(z) = log z for all z € Q

Show that, if g; is the analytic
continuation to ¢\(—, 0] of f and
g, is the analytic continuation to
¢\[O, o) of f, then g; # g, throughout the
third quadrant, Qs = {ze ¢ | Rez <0,
Imz < 0}.

Proof. Clearly, g, isthe principa branch
of logz throughout ¢\(—, O] Fig. 10
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by the uniqueness theorem. That is
_( 9

9.2,
for al z barring the negative real axis including origin. We define
| _ do.
Q) gz(z)_j[_m ; +imtfor all z e C\[0, ]
and show that
(i) g2 (2) =91 (2) + 2 for al z € Q.
Let y be the closed curve (see figure) consisting of the line segments [1, Zz],

[z, —1] and a semi-circular path " with centre at the origin and radius 1, where z is
any point in Q.

Now we wish to calculate
[
S

By Cauchy’s Residue Theorem, it is equal to 21 origin is the only pole inside
y). So breaking up the contour y, we can equate

$+ dc+ dq

21 = 1¢c ¢
ng G FUC C
_ dc
=@, *im
dg .
e, 0.2)-],, c+in=0.
Hence g,(z) = g1(z) = log z for al z € Qq,
that is, the mapping g, defined in (i) is the
r unique analytic continuation of f to ¢\[0, ).
To prove (ii) Let z € Q; and y be the curve
joining the line segments [-1, z], [z, +1] and a
Q 0 unit semi-circular path I in the upper half plane.
L 1 Thus
210 = J% :J. % + % + %
p vg ¢ Jacg Jzug
4
: d
Fig. 11 =T+ j—91(2)

2 ¢
20



I.e., 9(2) = 01(2) + 2mu for all z € Qs.

Remark : The preceding example presents the following observation : If y; and
Y> be the two curves joining z; and ¢, (fy, Dg) be a function element at z,, then the
resulting function elements of (fo, Do) along the curvesy; and y, at ¢ may not be direct
analytic continuations of each other. We shall now discuss for what reasons such type
of situation occurs.

1.6 Multi-valued Functions and Analytic continuation

When we define both real and complex functions we always keep in mind that
for each value of the independent variables the value of the function must be unique.
For example, even Cauchy’s theorem is based on the assumption that a function can
be defined uniquely in the region under consideration. All the same, multivaluedness
often arises out of necessity in the actual construction of functions, the simplest
example is perhaps the logarithm :

In section 5.2 [14] we showed that if z is a non zero complex number, then the
equation z = e has infinitely many solutions. Since the function f(w) = € is a many-
to-one mapping, its inverse (the logarithm) is multi-valued.

Definition 3 : [Multi-valued logarithm] : For z # O, we define the function
log z as the inverse of the exponentia function; that is,
log z = wif and only if z = e (8
If we go through the same steps as we did to obtain (5.5) [14], we find that, for
any complex number z # 0, the solutions w to equation (8) take the form
w=logz=1log |zl +i6, forz# 0 9)
where 8 € arg z and log |z| denotes the natural logarithm of the positive number

|z|. Because arg z isthe set arg z = Arg z + 2n1t, where n is an integer, we can express
the set of values comprising log z as
log z = log |z| + i (Arg z + 2nm), where n = integer (10)

or log z=1log |z| + i arg z for z # O, (11)

where it is understood that the identity (11) refersto the same set of numbers given
in identity (10).

We call any one of the values given in identities (10) or (11) a logarithm of z.
Notice that the different values of log z al have the same real part and that their
imaginary parts differ by the amount 2ntt, where n is an integer. Regarding analytic
continuation, we treat log z for complex valued z as the extension of log x from
positive real domain to complex domain. Consider the Taylor series expansion of
log x :
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logx = log{1+(x —-1)} :i(_l—r)]n_l(x—l)“,o <x <2 (12)

We take this series for complex valued z and write

fo(2) = Z _];,)]n_l

which converges in the disc K : [z-1| < 1 so that fp(x) = log x for 0 < x < 2.
Thus fo(z) and log x are direct analytic continuations of each other.

(z-1" (13)

Our object is to specify the curves along which the analytic continuation of the
function element (fp, Ko) is possible. For this purpose it is advantageous to apply the
integral representation.

Iogx:Lx%S,O<x<oo (14)

Lemma 1.1. The following formula

@)= 15

holds for z € Ky where the integral is taken along any path lying completely
within Kg.

Proof. The function fy(z) given by (13) is regular in Ky and following Theoren
3.2[14] the integral on the r.h.s of (15) is also regular in K,. But we see that this
integral coincides with log x in (14) for 0 < x < 2. By the uniqueness theorem.

—_ - (_1)“—1 n — ch
fo(2) = nZ:JT(Z—l) _jl o ze K.

In continuing fo(z) analytically to an arbitrary point w we isolate a single-valued
piece of log z, as we shall do later for other multivalued functions, called a branch
of the function. The standard way to isolate single-valued branches is by the use of
branch cuts to different branches. For log z the question of multivaluedness arises
when z goes around the origin, as a result argument changes by 2r. Such a point is
called a branch point. If we do not allow the paths to travel around a branch point
of a multi-valued function then certainly we would not face varied values at a point
lying in the domain of definition of the function.
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Let C be any simple curve from O to o, so that z cannot go around the origin
crossing C.

The above consideration shows that if analytic continuation along a given curve
I is possible, then one can get from afunction element at the initial point of the curve
another function element at the terminal point of the curve by a finite number of
applications of direct analytic continuation. If thereis no function element at the initial
point of " that can be continued along I', then there exists a definite point on the curve
" which is a singular point at which the process of analytic continuation must stop.

The following question immediately arises : if w is some non-singular point
outside the disc D,, then there may two or more chains of function elements which
eventually continue analytically fy (z) onto a disc D containing w. For example, let
(f;, D;) be the function element of one chain and (f, Dy) be the function element of
a different chain and that w € D; n Dy; will then f; (2) = f () O z € D?

The Monodromy Theorem

The above question is answered by the Monodromy theorem, which, simply
stated, is : if there are no singular points in between the two paths of analytic
continuation, then the result of analytic continuation is the same for each path. Another
way of stating the theorem is:

Theorem 1.4 [Monodromy Theorem] Let (fy, Do) be afunction element at z, and
R be asimply connected region containing D, ¢ be any point lying in R. We suppose

(i) (fo, Dy) can be analytically continued along every curve in R.

(i) Yo and y; are homotopic curves from z, to ¢.

Then the continuations of the function element (fy, Dg) adong yp and y; at ¢ are
equivalent.
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Proof. A homotopy from vy, to y; determines a continuous one parameter family
of curves {y¢, 0 < s< 1 from z, to ¢ given by the equations z = o(t), 0 <t < 1

By hypothesis, the function element (fo, Dg) has an analytic continuation along each
of the curves, ys. Denote the terminal function element at ¢ for the continuation along
Vs by @. We claim that, for each k € [0, 1], thereisa d > 0 such that ¢ is equivaent
to @ whenever |sk| < &.

Let0O=ty<t; <..<t,=1Dbeapartition and (f,, Dgy), (f;, Dy), ..., (f,, D,) be
a finite sequence of function elements defining @, = (f,,, D,) as the terminal function
element at ¢ for the analytic continuation of (fy, Dg) along yi. Then

Ej = Ok ([tj, tj+1]) 0 DJ forj =01 .,n1

For eachj =0, 1, ... n—1, let € be the minimum distance from the compact set
E; to the boundary of the D;. If |o4(t)—ok(t)| < g, t € [0, 1], then it will also be true
that a5 ([tj, tj+1]) O D;. Thus, if € = min {¢&, €y, .... €44} and we choose d > 0 such
that |o4(t) — 0y (t)| < € whenever |sk| < 9, then for each swith |s—k| < &, the partition
0=ty <ty <..<t,=1and sequence of function elements (f,, Do), (f1, D1), ...,
(f,, D) aso defines (f,, D,) as the terminal function element at ¢ for the analytic
continuation of (fy, Dg) aong vs. Since, by the previous theorem 1.3, any other
continuation of (fy, Do) aong ys results function element equivalent to this one, we
conclude that @ is equivalent to @. This provesthat ¢sis equivalent to @, whenever
|sk]| < 8.

Fig. 14

This means that for every s € | = [0, 1] there is a positive d(s) such that if s
liesin theinterva I = (s-9(s), s+ &(S)), then the analytic continuation of fy(z) along
all such curves y,, result equivalent function elements at the point ¢. Now by the
Heine-Borel theorem, we can always choose a finite number of intervals 15, 0 = s
<g <...<s,=1that cover the segment | and are such that the intervals l§ and
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l§.1, 0 <] < n-1 have a non-empty intersection. Then, if se€ Ig n lg;, the analytic
continuation of fy(z) result equivalent function elements at the point ¢. The sameistrue
for se Iy n ls, and so on. Continuing in this way we observe that the analytic
continuation of the function element (f,, D) along all the curvesy,, 0 < s< 1 produce
equivalent function elements at the point ¢. This completes the proof of the theorem.

The above theorem leads us to the following most important corollary.
Corollary. Let R be a ssimply connected region and

() (fo, Dg) be a function element at z, belonging to R

(i) (fo, Dg) admit analytic continuation along every curve in R.

Then there is a function F which is analytic on R and coincides with fo on Dy,

Proof. Let z; be apoint in R. Then, since R is simply connected any two curves
from z,, to z; are homotopic in R. The Monodromy theorem implies that any two
terminal function elements of analytic continuations of (fo, Dg) along curves from z,
to z; in R will be equivalent and hence, will determine afunction F; analytic in some
neighbourhood of z;, say Q.

Clearly, F1(z) =fy(2) on Dg, F1(2) =f1(z) on Dy, ..., etc for the continuation along
the curve y; from z, to z;.

Agan let z, be apoint in R, and y, be a curve in R joining z, to z, and let (g,,
E,) be the function element at z, continuing along the curve y, with f; = gy on Dy =
Eo,. We simply join z, to z; by acurvey and claim that continuation of (F4, Q,), along
the curve y to z,, will be equivaent to (g, E,) (since the curves y;[y and y, are
homotopic), which gives rise to the fact that there is a function F, analytic in some
neighbourhood of z,, say Q,, which coincides with F; On Q.

Clearly, F,(z) possesses larger domain of analyticity than F;(z). Proceeding in this
way finite number of times we can achieve afunction F analytic throughout the region
R.
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Unit 2 O Harmonic Functions

Structure

2.0 Objectives

2.1 Harmonic Function

2.2 Gauss Mean Value Theorem for harmonic

2.3 Inverse point of a given point with respect to a circle
2.4 TheDirichlet Problem

2.5 Subharmonic & Superharmonic Functions

2.0 Objectives

In this chapter we shall mainly study harmonic functions and their basic properties.
Gauss mean vaue theorem, Poisson’ sintegral formula, Dirichlet’ s problem for adisc and
Harnack inequality for harmonic functions will be discussed. Subharmonic and super

harmonic functionswill be explained through examples.

2.1 Harmonic Function

A function u(x, y) of two real variables x and y defined in an open set D is said to
be harmonic in D if it has continuous derivatives of the second order and satisfies the
equetion

2 2
a_‘: + a_‘: -0 (16)
ox° oy
known as Laplace' s equation.
2 2
The differential operator % + % is called the Laplacian and is denoted by [12.
X y
We introduce the differential operators
0o _1(o .0 0 _1(o0 .0
—=—|—-I—|ad —==| —+i— (17)
0z 2{0x oy 0z 2(0x oy
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in order to achieve a condition equivalent to (16) for f(z). If we write

1, . 1, .
x=2(@z+z)andy =—(2-2) (18)

of _of ox of gy _1of | 10f
0z 0x 0z 0y 0z 20x 2iody

then

(19ab)
of _oft px ot gy _1of 101
0z 0x 0z 09y 0z 20x 2iody
2 2 2 2 2
of _1 6faiz+ 0 G@_i o°f G%Jrﬂé?l
020z 2|0x* 0z o0xdy 0z| 2i|oxdy 0z dy*> 0z
1 1 1 1 1
="f +f —-——f +>f ="(f +f
4 XX 4| Xy 4| Xy 4 yy 4(XX )’)’)
and consequently the condition equivalent to (16) is
0°f
0= 4
020z (20)

A function f(z) issaid to be harmonic in D if f has continuous second derivativesin

D and satisfies

0%= 00 zeD (21)

o . . of
Result 1 : If f = u + iv is analytic in a domain D, then £=0, LzeD,
Proof : uand v satisfy the Cauchy-Riemann equations and using (19b) we have,

1 , 1 ,
==(u, +iv,) ——(u, +iv
5 (U v, =2 (U, +iv,)
1 . 1 : . ,
= E(uX +iv,) _E(_VX +iu, ), using C-R equations

=0

Result 2: Thereal and imaginary parts of an anaytic function are harmonic.

Proof : Letf =u+iv beanalyticin adomain D. By Cauchy-Riemann equations
Uy = vy and Uy, = —V,

.. Uy = Vyy and Uy, = -V, [SINCe V,y, = Vy,, partial derivatives being continuous]

and on addition it provesthat uisharmonic in D. Likewise v isaso harmonic in D.

Harmonic conjugates : Let u (X, y) and v(X, y) be two harmonic functionsin a

domanp [ C.
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If they satisfy the Cauchy-Riemann equations :

WU N W N e
ox dy oy ox
we say that v is a harmonic conjugate of u. It follows that f(z) = u(x, y) +1 v
(%, y) isanayticin adomain D if and only if v(X, y) is a harmonic conjugate of u(x,
y) in D.
Remark : We know that the real part as well as the imaginary part of an analytic
function are harmonic. Now the questions arise :

1. Can any real harmonic function be the real part of an analytic function?
2. Whether every real harmonic function has a harmonic conjugate?
Existence of Harmonic conjugates

Theorem 2.1 Let u(x, y) be areal-valued harmonic function in a simply connected
domain D O ¢. Then there is an anaytic function f in D such that u = Re f (or,
equivalently thereis afunction v, a harmonic conjugate of u) which isunique to within
addition of an arbitrary real constant.

Proof. Since the function u(x, y) is harmonic in a simply connected domain D,
we have

0°u . d°u

- 4+ -

x> oy’
which can be rewritten as

=0

0 Ou)_ 0 (0u ou ou
—| - where ——— and — are given functions with continuous
ay ay “oax\ox) ay ox

first partial derivatives. This implies that

(au)d +(6u)dy
oy ox
Is exact. So there is a single-valued function v(x, y) which is unique to within an
additive arbitrary constant, i.e.
(xy) ou
vy = *d X+ dy +K (22)
K = real constant,
where (Xq, Yo) is an initial point and (x, y) is any variable point lying in D and the
integral on the curve connecting (Xo, Yo) to (X, y) is path independent.
From (22) we find that
ov_ Ou ov _ Jdu

ox  oy'dy  ox
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which in turn ensures that v(X, y) is harmonic in D and harmonic conjugate to u(x, y)
i.e. f = u+ iv forms an analytic function in D.

Observation : If D is multiply connected then the integral in (22) may take
different values for different paths connecting (X, Yo), to (X, y) giving v(X, y) as a
multi-valued function, unless the paths are restricted to a simply connected sub domain
contained in D.

Example 1. Let D be the whole plane cut along the negative rea axis including
the origin (y = 0, x < 0). Show that u(x, y) = sin x cosh y is harmonic in D, and find
its harmonic conjugate. Also find the corresponding analytic function.

Solution : Here u(x, y) possesses continuous second order partial derivatives in
D and also satisfies the Laplace equation : U,y + Uy, = 0. Hence u(x, y) is harmonic
in D.

Let v(x, y) beits harmonic conjugate. Then according to the formula (22), we have

Y) = J(( y)(——d +—dYJ+K K = rea constant,

1,0)
where M(1, 0) is the initia point.
Qx,Y) Here, u(x, y) = sin x cosh y
Q. Y) N U, = COS X cosh y
U, =sinx sinhy
Now let the point Q(x, y) lie in the 1st
quadrant of the right-half plane. Then

O | M0 N integrating along MNQ, we find that
ou ou
Fig. 15 V(X’ y) = IMN _Fydx +INQ _& dy +K1

—Lxsinxsinhodx +Joycosxco§1 y dy +K;

=cosx sinhy + K,
Again, if thepoint (x, y) liesinthe2nd quadrant of theleft-half plane, thenweobtain
_ ou ou
V) = [ g B+ g g ¢ ¥K

[¥ cos 1 coshydy + [* —sin x sinh y dx + K,

cos1lsinhy +cosx sinhy —cos1snhy + K,

cosx sinhy + K,

The expression for v(X, y) in both the cases turns out to be the same apart from
an additive constant. It results from the fact that the two paths in determining the
29



integral liein asimply connected domain. Thus, v(Xx, y) = cosx sinhy + K at al points
of D. Therefore, an analytic function with the given real part will be of the form

f(z) =sinx coshy +icos x sinhy + iK, K = real constant
sin(x + iy) + iK

=snz+iK

Asfor uniqueness, if two analytic functionsin D have the samerea part, then their
difference has derivative zero, by the Cauchy-Riemann equations. In that case the
functions differ by a constant.

2.2 Gauss Mean Value Theorem for harmonic functions

Let u(z) = u(x, y), z = x + iy, be harmonic in the disk K : |z — z5| < R and
continuous on the closed disk K. Then
_ 1 pon i0
U(Z) = - jou(zO +Re®) do (23)
Proof. Let f(z) be an analytic function defined in K such that Re f (z) = u(z). It
follows from Cauchy’s integral formula that

1 f(2)

f(z,)=—"— dz, 0<r<R
(20) 211 Yzl z - 7,

using the parametric form of the circle |z — zg| = .
z=z,+re® 0<6<2m sothat dz=ire®d6. The integral then gives
l 2n i
f(z,) = ETIO f(z, +re®)dd, 0 <r <R
Equating the real parts, we obtain
U(zo) = [ ulz, +1€) do

2m
whence taking thelimit r — R, we obtain the desired result (23)

2.3 Inverse point of a given point with respect to a circle

Lety: |z—a] = R and z, be a given point. Let z; be another point on the radius
through z, such that |z, — a| [z, — a| = R2. Then either of the points z; and z; is called
the inverse point of the other with respect to y. The centre of the circleyis caled the centre
of inversion.

It follows from the definition that (i) if z, liesinsidey, then z; must lie outside
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y, (i) if zg lies on vy, then z; must also lie on y and it coincides with z, (iii) if z,
lies outside y, then z; must lie inside y.

Every point, except the centre of the circle, on the plane has a unique inverse point
with respect to the circle. We associate the point at infinity to the inverse point of the
centre.

Result : Lety: |z| = R and z be a given point. Then the inverse point of z, with
respect to y is given by 2—2

Proof : Let z, =re®. 'I?hen itsinverse point with respect to y is given by z; = r,€9,
where rr; = R2. Hence ry = Tz and so

R2 &ie B R2 _ R2

-9
r re Z,

Z =

Poisson’sintegral formula: Theorem: Let u(x, y) be aharmonic functionin asmply
connected region D and y : |¢| = R be acircle contained in D. Then for any z = rel®,
i'[Zn (R* - r®).u(R,p)d@

r < R, u can be written as u(r, 6) = >
217 R? +r% - 2Rrcos( - 6)

, Where Re?isa

point on y.

Proof : Since u(x, y) isharmonic in D, there exists a conjugate harmonic function
V(X,y) in D sothat f(z) = u(x, y) +iv(x, y) isanaytic in D. Then f(z) is anaytic within
and on y and so for any z within y, by Cauchy’s integral formula,

_ 1 (9
(@)= jy c_ch (24)
2
The inverse point of z with respect to y lies outside y and is given by RT Hence
Z
by Cauchy-Goursat theorem,

1 _f© 25
Comi Y R? dc (23)
C——
Z

Subtracting (25) from (24) we get,

1J~ 1 1

21 |-z R?

¢ C——
Z
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1 (2-RA)ds

2

2m y(c - z)(c —Ff]
Z

Let ¢ = Re%. Also, Z = re . Then (26) becomes

2

re’® - Rr e‘“’]f (Re'®)i Re'®do

. 1 2n(
f(re®)=—
( ) 2T[I J-O i0 i0 i R2 i 0
(Re®-re”) Re“’——r e

_ 1'[211(r2 - R?)€@ 9 (Re' " do
21’ (Re’-re®)(re’ — Re®)

_ 1 2 (RE=r)f(Re?)do
21’0 (Re’-re®)(Re - re ™)
_ 1 e (R*-r?)f(Re¥)do
21 R* +r? —2Rrcos(¢ - 6)
f(re®) = u(r, 8) + iv(r, 8). Then (27) becomes

. 1 en(RP=r){uR, @) +iv(R, ¢}
u(.r,e)+|v(|r,e)_§[jO R? + 1 — 2R cos(@ — ) 0

Let

Equating real parts in (28) we get,
2 _ 2
u(r.0) _ 1 m : (R2 rJu(R, ) do
211°° R +r° —2Rrcos(p - 6)

Formula (29) is known as Poisson’s integral formula.

R? —r?
Note : Let =P(R,r,q-6). Then,
R* +r? — 2Rr cos(¢ - 6) (Rre-9

(26)

(27)

(28)

(29)

the function P(R, r, @ — 0) is called the Poisson Kernel. Hence we can write (29) in

the form
1 e2n
u(r.8)=—~ | "PR.o- Qu(R, 9d ¢
T[O
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We can aso get aformula similar to (29) for the imaginary part of f(z) by equating
the imaginary part in (28). The corresponding formula is

1 en  (R*-r’)V(R,@)do 1 (2n
,0)=— =— | PR,r,p- R, ¢d
v(r.6) 2n’ R®+r> —2Rrcog(@p—-6) 2mP° Rr.e-9vR 9de (31)

Remark : Cauchy’sintegral formula expresses the values of an analytic function
inside a circle in terms of its values on the boundary of the circle whereas Poisson’s
integral formula expresses the values of a harmonic function inside a circle in terms
of its values on the boundary of the circle.

l 21
Result 3. — | P(R,r,p—-6)dop= 1.
ols PRo-8de

Proof : By Poisson’s integral formula we have,

1 con
u(r,8) = - ["P(R1,0 - G U(R, §d @Taking u(r, 6) = 1 we get,

1 r2n
— | P(R,r,o-6do=1
ool P(RITO=Odo

4
Proof : Let ¢ = Re®, z = re®, r < R. Then,

Result 4. P(R,r,0— 6) = Re(c * Zj

¢+z _Re*+re® (Rcos@+rcos@ +i(Rsin @+rsin
¢-z Re’-re® (Rcos@-rcos6) +i(Rsin @-rsn §
_{(Rcos@+rcos6) +i(Rsn ¢+rsin §}{(Rcos @-rcos § —i(Rsn @-rsn B
(Rcos@—rcos6)? +(Rsin ¢p-rsin §°
2 _ .2
C+z|_ : 2R r - P(R.I,0-0).
(-2 R* +r° —2Rr cos(¢p — 6)
Result 5. Poisson Kernel P(R, r, @ — 8) is harmonic in |z| < R.

Simplifying we get, Re(

Proof : Let f(2) = S2. Then f(2) is andlytic in |z] < R. By result 4, P(R, 1 @-
C-2

8) = Re f(z). Hence the Poisson Kernel isthe rea part of an analytic function. Hence
P(R, r, @-9) is harmonic in |z| < R.

R? - 12 R -7
R +r% —2Rrcos(@—6) ‘Re""— 2‘2

Note : We can easily show that
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where z = re®, r < R. Hence Re( and Poisson’s integral

c] R -2

| <w2) [rer-4
formula (29) can be written as

1 @R[

ur8)=_" [~ " uR @do (32)

2190 |Regi®

Re?-2
-

The function is the Poisson Kernel.

‘Re“"— 2‘2
Theorem 2.2 Let u(x, y) # constant be harmonic on a simply connected domain
D. Then u(x, y) has neither a maximum nor a minimum at any point of D.

Proof. Let zy = Xg + iyg be an arbitrary point of D. Then following theorem 2.1
there is an analytic function f(z) in a neighbourhood N(z) of z, such that Re f = u.
Then

9 = e
is analytic on N(zg) and not equal to constant since u(x, y) # constant and
lo@)| = ext<y)

Again exponential function is strictly increasing, so a maximum for u at (X, Yo)
isalso amaximum for ey, and hence also a maximum of |ef| i.e. of [g(z)| at zo. The
function u(x, y) cannot have amaximum at (Xo, Yo), Since otherwise |g(z)| would have
a maximum at z,, thereby contradicting the maximum modulus principle. Likewise,
following the minimum modulus principle |g(z)| cannot have a minimum value at z,
since |g(z)] # 0 on D. Therefore u(x, y) cannot possess minimum value at (Xq, Yo)-

Corollary. Let u(x, y) be harmonic on a domain D and continuous on D . Then
u(x, y) attains its maximum and its minimum on the boundary of D.

Proof. Since u(x, y) is continuous on the compact set D, it attains both its

maximum and its minimum on D, but u(X, y) cannot possess a maximum or a minimum
at a point of D. Therefore the corollary follows.

Example 2. Given u(x, y) harmonic in the disk [z| < R and A(r;) its maximum value
on thecircle |z] =, rj <R, j = 1, 2, 3. Prove that

Ar) < logr, —logr, AL + logr, —logr,
logr, —logr, logr, —logr,
for O<r<r,<rz<R
Solution. Sinceu(x, y) isharmonicin |z] <R, u(x,y) +alogr, r = /x? +y?, a=a
real constant to be fixed later, is also harmonic in the annulus 1, <|Z|< r,. Hence its
34
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maximum is attai ned on the boundary of theannulusi.e. on|z| =r, or, |z] = r3 or, on both.
Either A(r) + a logry or, A(r3) + a log rz is maximum. We define a so that

A(r) + a log ry = A(rz) + a log r3

o = Al -A(r)

or,
logr, —logr,

Thecircle |z] =1, liesinsidetheannulusr, < |z| < r; and according to corollary of the
theorem 2.2 regarding maximum val ue of theharmonicfunctionu(x, y) + a logr wehave

A(rp) + a log rp < A(r) + o log r3

or, A(ry) < A(rz) + a(log rz — log r»)
A(r) = A1)
=A(r) + —2 (1 =1
(5) + ot ~Togy, (9% ~1o9r.)
_logr, —logr, logr, - logr,
=22 FIA(r)+—3 S 2A
logr, - logr, (ts) logr, —logr, ()

2.4 The Dirichlet Problem

Let D be adomain with boundary I and let | (X, y) be a continuous real function
defined on I'. The Dirichlet problem is to find a function u(x, y), harmonic on D and
continuous on D, which coincides with |J (x, y) at every point of T.

Existence of a solution of Dirichlet’s problem for a disc

Theorem 2.3 Let D be the disc |z| < R with boundary T : |z] = R and let U(¢)
be a continuous real function on theinterval [0, 2m] such that U(0) = U(2m). Then the
function u(r, 6) defined by the integral

2 _ 2
ey = L VO
211°° R +r° —2Rrcos(p - 6)
for any point (r, 8) on D any by u(R, @ = U(g) (34)
for any point (R, @) on T, solvesthe Dirichlet problemfor thedisc D. In otherwords,

do (33)

(i) uisharmonicon D and continuouson D and(ii) ,elim,% u(r,8) = U(gy),
re'” - Re'

where Re™ isany fixed point on .
Proof : Toprovethat u(r, 8) defined by (33) on D isharmonic on D weobservethat
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R2 —r?

=P(R,r,0- 6
R* +r? — 2Rr cos(¢p — 6) (Rre-9

= Re(c—u], where P (R, r, ¢-0) is the Poisson Kernel and ¢ = Rel¢, z = re®, r <R.

¢-z
The r.h.s. is the real part of the function Ctz

¢-z2
Poisson Kernel P(R, r, -0) is harmonic in D. So, differentiation under the sign of
integration is valid. Applying the Laplacian 2 in (r, 0) to both sides of (33) we get,

which is analytic in D. Hence the

0%u= %Tj;”U(ch ‘PR, 9dw O [Since PR, r, ¢-6)

is harmonic in D OO 2P(R, r, @ — 6) = Q].

[J u is harmonic on D.

Next we prove that the function u(r, 8) defined by the integral (33) approaches
U(@) as the point (r, 8) in D tends to any fixed point (R, @) on I.

Let (r,, 6,) be an arbitrary sequence of points in D converging to the boundary
point (R, @). We now consider the difference

u(r, 8,) = U(@) == [ P(R.1,. 9~ 8,)U(9d 0-U( @)
= U@ -U@)PR, ¢ 8)d 0 (@)

1 (on
Since — | P(R,r,,0-6,)do=1
(Since | "P(R.1,, ¢~ 8)dg=1)
Since U(g) is continuous on I, for given [ > O there exists a o([J) > 0 such that

U@ - @) < (36)

Whenever  |p- @| <295 (37)
we choose d so small that (36) is satisfied and @y — 20 > 0, @, + 20 < 21t We
break the integral on r.h.s. of (35) as

U 8,) ~U@) = = [ PR 1,0~ 8MU() -UC @)d ¢

L

4+ —
211

1 e2n _
+2T[J¢;;'ZJ =[1] 1] 1 (38)

@20
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1 +20
Now, al< [, IP(R T, 0= 8)IU(9 - U(@)ld 0

01 g £
<-B=| IPRr1,@-6,)|de="
> 2T[Jo IP(R.1, 0= 8)ld o= (39)

To estimate the other two terms we choose n so large that

g — 6l <& Then, -8 [=]o—@,+ @ -0 |2 00—l -|p,-86)>25
— 0 = d since |@ — @, > 20 whenever ¢ belongs to either of the intervals [0, @, —
20] or, [@, + 20, 2m].
R2 _ r2

1 @25 21
Then, [1|+]l;]|<2M.—. +
en, | 1| | 3| 2_,_[ R2 + rnZ _2an cos 6(-[0 d(p J.(p0+26d(g

R*—r?

< 2M 2 2
R° +r; —2Rr, cosd

—»Oasrn - R,

where M = ll[/lo%w((p) - U(¢,)| and cos(¢p— 8)) <cos d
®e Y,
Thus, for sufficiently large n, |I1|+|I3|<§ (40)

Using (39) and (40) in (38) we get,
lu(r,,8,) — U(q,)|< € for sufficiently large n;
i.e. limu(r,,8,) = U(g,) (41)

where (r,, 6,,) is an arbitrary sequence of points in D approaching (R, ).

Equation (41) still holds if some or all the points (r,, 6,) lieon I' since in that
case we can directly use the fact that U(g) is continuous on I'. This implies u(r, 0)
is continuous on D. This completes the proof.

Uniqueness of the solution to the Dirichlet problem for a disc.

Let u; and u, be two solutions of the Dirichlet problem. Then their difference u;
— U, = hiis harmonic in D and continuous in the closed disk and takes the value zero
on the boundary. Hence h attains its upper bounds at some points of the closed disk.
If | >0, the upper bound will occur in the open disk, since on the boundary " h is
zero. This contradicts the conclusions of theorem 2.2. So then | = 0. In the same way
we can show that the lower bound of h on D is zero. Thus there is no alternative
but h to be zero on D.
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Theorem 2.4 Any continuous function u(z) possessing the mean-value property in
a domain D is harmonic in D.

Proof. Let K be a closed disk contained in D. By hypothesis of the theorem u
satisfies the mean value property in K. We shall prove that u is harmonic in K. By
the theorem 2.3 on the Dirichlet problem for a disk there exists a continuous function
U(z) in K, which is harmonic in the interior of K and coincides with u(z) on the
boundary of K. The difference u—1u is continuous and satisfies the mean-value
property in K. By the corollary to the theorem 3.7 [(14) page-58] u - U satisfies the
maximum modulus prnciple in K. Now as u - U is zero on the boundary of K, it will
be identically zero in K. Therefore u coincides with the harmonic function U in the
interior of K and since K is arbitrary, u is harmomic in the domain D.

TheHarnack Inequality : Let u be anon-negative Harmonic function on a closed
disk D (0, R). Then, for any point z € D(0, R)

R-|Z R+|Z
Rt |z| u(0) < u(z) < . |z| u(0) (42)

where D(0, R) denotes a disk with centre 0 and radius R.
Proof. From the Poisson’s integral formula for uon D (0, R) :

u(2) = %Tjoz”u(Re"P) Sl

‘Re“p z‘
R*-|2" _R*-|2° R+\Z\
Now, ‘Re“"— 2‘2 ‘Z‘) ‘Z‘
Combining these two, we see that
u(z)— 7 2m ol (Re"")d<p—R  u(0),

where we make use of the mean value theorem. Similarly, the other inequality in

(42) will follow from R ‘_‘Z‘ > _‘2‘2 _R-lz
Re*-7" (R+[z)" R+ b4
Corollary Let u be anon-negative harmonic function on aclosed disk D(c, R). Then
forany ze D (g, R)

R+|z—¢q
R+| — |U(C)SU(Z)— = u(c) (43)
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2.5 Subharmonic & Superharmonic Functions

Definition : A real-valued continuous function u(x, y) in an open set D of the
complex plane C is said to be
(i) subharmonic if, for any ¢ € D

1 eon 0
uc) < — | u(c+re®)do
©=_J, uc+re?)

hold for sufficiently small r > 0.
(i) superharmonic if, for any a€ D

l 21 0
u@=—| u(a+re®)dd
@2 ], ul )

hold for sufficiently small r > O.

From the definition it follows that every harmonic function is subharmonic as well
as superharmonic.

Example 3. If f(z) is analytic on a domain D, then [f(z)| is subharmonic but not
harmonic in D unless f(z) = constant.

Solution : Using the Cauchy’s integral formula

21

NwS;wa“fme (44)

for every a€ D and r (> 0) is small enough. Here equality holds only if f(z) =
constant. We now show that the integral

_ 1 pon i0
I(r)—E[.[O ‘f(a+re ) do

Is a strictly increasing function of r, if f(z) # constant. Let 0 <r; <r, < k(a) and
9(8) be continuous on [0, 21 and F(z) be defined by

(i) 9(O)f (a+re®) =f(a+re®),0<0<2m

(i) F(2)= %[J.oznf(a+ z€®)g(0)dd, |7 <r,

(iii) k(a) = minmum distance between a and the boundary of D.

F(z) is regular for |z| < r, and attains its maximum of the boundary of the disc,
say at z = r,e®. Then

_ 1 on i
I(r,) 'Erjo f(a+re®)dd
_ 1 pn i0
= jo f(a+re®) g(0)de
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= F(rp)
<|F(r,e®)

= %['[:nﬂp‘f(aﬂze““)‘ dy, taking @ + 6 = Y
1 21 [0] 210+ @
= 2-'-[{.[0 _J.o +-[2n

1 pon i - _ )
:Er.[o fa+re")dy, (substituting ¢ = 2 + © in the third

f(a+r,e¥ )‘dLIJ}

integral, we find that it cancels the second term)

=1 (rp). Hence equality in (44) is possible if and only if f(z) = constant. Therefore
[f(z)| is subharmonic but not harmonic in D unless f(z) = constant.

Example 4. If f(z) # 0 is analytic in a domain D, then log [f(z)| is subharmonic
in D.

Solution : Let d(z) = log|f(z)|. Here at the zeros of f(z), P(z) has poles and takes
the value — « there. In every closed disk contained in D there are at most a finite
number of points where log f(z) = — .

Now let a € D be any point a which f(z) is distinct from zero. Since f(2) is
analytic and not identically zero, there exists a small neighbourhood of a where f(z)
is distinct from zero. We find that

log f(z) = log [f(2)| + i arg f(2)
is anaytic in this neighbourhood and hence log [f(z)| is harmonic there and we
have the equality

Pd(a) = %T '[Ozn d(a+re)do (45)

for al sufficiently small valuesof r. On the otherhand, if aisazero of f(z), we have

d(a) = - o < i'[zn ®(a +re)do (46)
2m-°

Combining (45) with (46) we obtain ®(z) is subharmonic in D.
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Unit 3 O Conformal Mappings

Structure

3.0 Objectives of this Chapter

3.1 Conformal Mappings

3.2 Basic Propertiesof Conformal Mapping

3.0 Objectives of this Chapter

This chapter deals with conforma mappings and their basic properties. Many
examples are given to explain different concepts on conformal mappings. The inverse
function theorem is also discussed.

3.1 Conformal Mappings

Let X bean open set in ¢ and suppose afunctionf : X - ¢ isgiven. We know
from functional analysis that if f is continuous, a compact set of X is mapped onto a
compact set in f(X) and a connected set of X onto a connected set of f(X). If moreover,
f is single-valued and analytic there occur several interesting results. In this chapter
we study mappings which transform different curves and regions from one complex
plane to other complex plane with reference to magnitude and orientation. Such type
of mappings play an important role in the study of various physical problems defined
on domains and curves of arbitrary shape.

Level Curves
Let w = f(z) withz=x + iy and w = u + iv where f(z) is analytic. u = u (x, y)

vV = V(X, y) satisfy Cauchy-Riemann equations u(x, y) = constant
V/ V(X, y) = constant

U = Vy, Uy = = Vy
from which it follows that

Ugy + Uy =

Vyx = Vyy

Also, O, - Oy = 0, where Fig. 16
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L (00
ox oy

So that the level curvesu (X, y) = constant and v (X, y) = constant are orthogonal .
Now  fi(2) = uy +ivy = Uy — iUy = vy + iy,
so that |f1(z)|2 = U2 +uZ =v2 +v2,
Two basic results :

No. 1 :
Z=X+1y
w=f(2) W=u-+iv
e
Xy plane
yP Fig. 17
uv plane

Suppose that w = f(z) maps D into D1.
Let (u, v) = ((u (X, ¥), vV (X, ¥) = @ (X Y).
To prove @ + @y = [f1 (2 P (Yuu + W)
we calculate @ = YU + Py
(pXX = Lpuuui + l'IJVVV§ +2 l‘IJUVu)(VX + LIJUuX)( + l'l"llVXX
(pyy = LIJuuu§ + quvV§ +2 ll-’uvuyvy + LIJuuyy + quVyy
Thus, @, + @, = (U5 +uy) W, +(vy +vi) W, +2 4, 0,0,
since u, v satisfy Laplace equation. Again, [, . [, =0,
so we obtain @y + @y = [fA2) [ (Yuu + Pw)
Therefore if fi(z) # 0 inside D we have @, + @, = 0 imples ), + Y, = 0 and

vice-versa.
w = f(2)
P e

G+ @y =0inD Fig. 18
qJUU+qJW:0inD1
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No. 2. Consider a level curve F(x, y) = Oupon ¢ .n=0.
Let under the analytic mapping w = f(z) the level curve map to G(u, v) = 0
We shall show that [ .n=0o0n G(u, v) =0

1=
1=

(

F(x,y) =0 Fig. 19 Cn
Fig. 20 G(u,v) =0

Consider the map w =f(z) - w=u+iv, sou = u(x, y), v =V(X,Y).
Suppose f(z) is analytic. Then,

¢, = l'|Juux + l'I"vvx} ((pxj %wuj . (uxvxj
- S0, = with S=
(py - l'|Juuy + l'IJny (py qu uva

Then, [ = SO, OF = SOG and clearly, STS = |[f{(z)[? 1

W _ o OF _SD(SG)_ (W)SHG _ (» )D Gf'(2)
Now, gn O 806 {soeye 6))”  {oe)h 6}~
(where the usual vector operations, ab = a™b and (a.a)¥2 = (a'a)¥2 = |a| have

been used)

an
= D f f
So, n=® |DF| =[f*(2)| W |DG| =| ()\
. 0 oy _
This shows that if an 0 on the boundary of D then o 0 on the boundary

of D2, provided |fi(z)| # 0 on the boundary of D.

Note : These give us a means of transforming the domain over which the
Laplace's equation is to be solved comfortably. Such type of things is usually dealt
in solving boundary value problems in potentia theory.

Angle of Rotation
Given a function of a complex variable w = f(z) analytic in a domain D. Let z,
be any point lying within D, y: z = o(t), a< t < b, o(tp) = z, be a curve passing
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through z, (and lying within D). The function o(t) has a non zero derivative o(ty) at
the point z, and the curve y has atangent at this point with a slope equal to Arg o(ty).

v
y

0 z-plane w-plane
Fig. 21 Fig. 22
Under the mapping w = f(z) the curve yistransformed into acurve I' : w = f(a(t))
= u(t), ast < b, u(ty) = f(zg) = wp in the w-plane. p(t) is differentiable at t = ty and
the curvel™ has atangent at wg = f(zy). Then following the chain rule for differentiation
of composite functions, assuming f1(zy) # 0

Hi(to) = f1(a(to) o'(to)
It follows that
Arg pl(to) = Arg fi(zg) + Arg o'(to)
e, Arg pl(ty) = Arg ol(ty) + Arg fi(zp) (47)
This implies that change in slope of a curve at a point under a transformation
depends only on the point and not on the particular curve through that point.

Example 1. Verify the result given in equation (47) for the curve y = x2 under
the transformation f(z) = z22at z =1 + i.

Solution. First we calculate the change in slope of the curve 'y = x2 at the given
point under the transformation w = f(z) = z2. Following the formula given in eq. (47)

Arg fi(1 +i) =Arg21 +i) =tanrl 1
A parametric form of the given curve y = x2 is given by
Y:zZ=t+it2 —oo <t < oo,
Herezyp =1+ i at tyg=1and zZ4(1) = 1 + 2i, so that slope of the curve y is
tanl 2.
Now we find slope of the transformed curve.
w="f(2 0 u+iv=(x+iy)?
So,u=x2—-y2and v = 2xy = 2X . x2 = 2x3.
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2/3 4/3
v v

Then, u=x*-x* :(E) _(E) » which is the equation of the transformed
curve I'. The image of the point (1 + i) of z-planeis the point 2i in the w-plane and

the slope of the curve I at w = 2i is

ﬂ =-3
dU w=2i
Thus the change in slope of the curve y under the transformation is

tan™(-3) —tan*(2) =tan‘1% =tan?1
which is the same as obtained earlier following equation (47).

Definition : A mapping w = f(z) is said to be conformal at a point z = z, if it
preserves angles between oriented curves, passing through z,, in magnitude and in
sense of rotation.

Theorem 3.1 : Let f(z) be an analytic function in a domain D containing z,.

If fi(zo) # O, then f(z) is conformal at z,.

Proof. Let C; : z = z(t) and C, : z = z,(t), t = parameter, be two curves which
intersect at some t = ty where z;(tg) = z,(tg) = 2o, Ci,C; are their images under the
mapping w = f(2).

A
A
= =
0 0
z-plane w-plane
Fig. 21 Fig. 22
tangent lines are tangent lines are

2 = Z4l(ty), 28 = Mty at =t wil(ty) = Fz4(to) 1Y (to)

Woll(te) = F1(Za(to)Zt0) Z (ko)
Then following the result given in eq. (47)
Arg(wi(t,)) —Arg(zi(t,)) = Arg(f*(z(t,)) =Arg(f'z,))
and Arg(w3(t,)) —Arg(z;(t,)) = Arg(f1(z,(to)) =Arg(f'z,)).
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Subtracting, Arg(wi(t,)) = Arg(ws(t,)) ~{Arg(zi(t,)) ~Arg(z(t,))} =0
i.e, 6 = @ where 0 = angle between the curves C; and C, at z; and
@ = angle between the curves C! and C} at wy,.
Observation : From the basic results proved earlier we learn that if f is a
conformal mapping, then orthogonal curves are mapped onto orthogonal curves.

3.2 Basic Properties of conformal Mappings

Let f(z) be an analytic function in adomain D, and let z, be a point in D. If f(zp)
= 0, then we can express f(z) in the form
f(2) = f(z0) + (z — 20)fY(20) + (z — ZON(2),
wheren(z) - Oasz - z, If zis near zp, then the transformation w = f(z) has
the linear approximation
G(z) = A + B(z — zy).
where A = f(zp) and B = f1(zp). Asn(z) - 0 when z - zp, for points near z,
the transformation w = f(z) has an effect much like the linear mapping w = G(z). The
effect of the linear mapping G is a rotation of the plane through the angle a = Arg
(f1(zp)), followed by a magnification by the factor |f(zp) |, followed by atranslation by
the vector A + BZ,,.
Remark : If f1(zy) = 0, the angle may not be preserved.

Let us consider, w = f(z) = z2, then we have f}(0) = 0 and

/////
e /
|
S ‘ II
;/////////// ‘H \\ II/\\
NI %4//M
0 z-plane Wplane
Fig. 23 Fig. 24

the angle a z = 0 is not preserved but is doubled.

Definition : Let f(z) be a nonconstant analytic function. If f1(zg) = 0, the z, is
caled a critical point of f(z), and the mapping w = f(z) is not conformal at z,. We

shall see afterwards what happens at a critical point.
46



The Inverse Function theorem 3.2 Let f(z) be analytic at z; and f1(zy) # 0. Then
there exists a neighbourhood N(wg, €) of wy = f(zg) in which the inverse function
z = F(w) exists and is analytic.

Moreover, Fi(wg) = 1/fl(z). (48)

Proof : Givenw = f(2), (z=x +iy, w =u +iv)

isanalytic in a neighbourhood of zy, K : |z — zy| < p. We shall show that for each
wiL : |w — wg| < O there is a unique solution z = F(w), where z[OK.

We express the mapping w = f(z) in terms of the set of equations

u=u(x,y)andv =v(,Yy) (49)
which represents a transformation from the xy plane to the uv plane, u, v, possess
continuous first-order partial derivatives satisfying C-R equations. The Jacobian
determinant J(X, y), is defined by

u, u,

J(x,y) = Vv
Xy

(50)

The transformation in equations (49) has alocal inversein L provided J(x, y) # 0
in K [(3) pp. 358-361]. Expanding r.h.s. of equation (50) and using the C-R equations,
we obtain

‘](XO’yO) = ui(XO’yO) +V§ (XO’yO)
= |fYz0) (51)
# 0, by the given hypothesis.
Utilising the continuity of J(x, y) in asmall neighbourhood of (X, Yo), equations (49)
and (51) imply that alocal inverse z = F(w) exists in a neighbourhood of the point
wWq = f(zp). The derivative of F(w) is given by the familiar expression
Fw +Aw) - F(w) _ Az . Az

F'(w) = lim = lim =lim
Aw -0 Aw aw-0 AW  8z-0f(z+ Az) —1(2)

_ Iiml/(f(z+Az) —f(z)) =1/(Iim f(z+ A2) —f(z))

Az-0 JAVA Az-0 Nz

1

f'(z)

holds in a neighbourhood of the point wy, asf(z) isanayticin K.
ar, PWo) = -

I i iy

n pal’tICU ar, 0 fl(zo)

e, Fi(w)=

Theorem 3.3 Let f(z) be analytic at the point z,. If fi(zg) = 0O, fi}(z) =0, ...,
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fk=1)(z5) = 0 and f(zp) # O, then the mapping w = f(z) magnifies angles at z, by
k times.

Proof. By the given hypothesis, f(z) has the Taylor expansion in a neighbourhood
of 7 in the form
f(2) =f(zg) tc(z — )k + e+ 1(z—Zg)k*1 +..., ¢ 20
so that we can express
f(2) — f(z0) = (z — z)* + h(2) (52)
where h(z) is analytic at z; and h(zg) # 0. Now let w = f(z) and wq = f(zg) and
we obtain from (52)
Arg(w — wg) = k Arg(z — z) + Arg(h(2))
Letz » zyaong acurvey. Thenw — wgaong theimage curve " and the slope

of tangent to the curvey at z, and that of the tangent to the curveI” at w, are connected
by the relation

lim Arg(w -w,) =k limArg(z —z,) +lim Arg(h(z))
z-2, zZ-2,

e, 0y = kgy + Arg(h(2))

Thus, if y; and y, be two curves passing through z, and their images ', and I
under the mapping w = f(z), pass through wy, the difference of slopes of the curves
y1 and y, at z; and that of the curves I'; and I', at w, are related as

0, — 6; = k(g — @)
with the sense remain unchanged.

Example 2. Show that the mapping w = f(z) = z2 maps the rectangle

R={x+iy:-1<x <1, 0<y s%} of unit area onto the region enclosed by the
parabolas
vZ = u+411 and v? = 4(u -1).
Solution : Here f1(z) = 2z and the mapping w = z2 is conformal for al z # 0.

We note that the right angles at the verticesz; = 1,2z, =1+ 1/2,zz=-1+i/2 and

. . : 3 .. 3 .
z, = — 1 are mapped into right angles at the vertices w, =1, w, :Z+I’ W, :Z =i

and w, = 1 respectively.
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Hlw

+ i
) y
i12
v2:u+£1—1
s
X
110 3 J1u 1 ©
4 4
Fig. 26
vZ=—4(u-1)
<

Fig. 25 3_;
g A i

The parabolas shown in the figure are obtained as follows :

Letw=u+iv. Thenu=x2-y2 v =2xy}.. (53)

The line x = 1 corresponds to the curve u = 1 —y2, v = 2y. Eliminating y, we
get v2 = — 4(u — 1), which is a parabola with vertex (1, 0) and opens towards the
negative side of the u-axisin the w-plane. Also, the part of the line x = 1 lying above
the real axis corresponds to the part of the parabola lying above the u-axis in the
w-plane. The same parabola in the w-plane is the image of the line x = — 1. In this
case, the part of the line x = — 1 lying above the real axis corresponds to the part
of the parabola lying below the u-axis in the w-plane.

Again, when y:Z_ZL’ from (53) we get u = x? _411 and v = x. Eliminating x we

i . 1 :
get, V2 =u +Z which is also a parabola with vertex (—4, O) and opening towards

the positive side of the u-axis in the w-plane. By similar argument as before we can
say that the mapping w = z2 maps the rectangle R :{x +iy:-1<x <1, 0<y s%}

onto the region enclosed by the parabolas v2 = u +Zl1 and v2 = -4(u -1).

Note: It is not hard to prove that the parabolas intersect each other orthogonally
at w, and wa.

At the point zg = 0, we have fl(zg) = f4(0) = 0 and f11(zy) = 2 # 0. Hence the
angles at the origin z, = 0 are magnified by the factor k = 2. In particular the straight
angle at z; = 0 is mapped onto 21t angle at wy = 0.
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Unit 4 O Multi-valued functions and

Surface

Riemann

Structure

4.0
41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Objectives of this Chapter
Multi-valued functions

Thelogarithm function

Properties of log z

Branch, Branch point and Branch cut
Integrals of Multi-valued function
Branch pointsat infinity

Detection of branch points

The Riemann Surface for w = z12
Concept of neighbourhood

4.10 The Riemann Surface for w = log z

4.11 Thelnverse Trigonometric Functions

4.0 Objectives of this Chapter

In this chapter we shall study multi-valued functions and their Riemann surfaces. In

particular, multi-valued logarithm function, the power function z* both z, a complex
numbers, z # 0 will be discussed. The ideas of branch, branch point, branch cut, branch
point a infinity will be explained by means of different examples. A few contour integrations
of multi-valued functionswill be performed. Also Riemann surfaces for different multi-
valued functions will be constructed.

4.1 Multi-valued functions

So far we have considered single-valued functionsi.e., one-to-one mapping or, many-

to-one mapping. In the later case, under certain restrictions, inverse mappings giveriseto
multi-valued functionsi.e., one-to-many.

For example,
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Z=€% z=0w4,Z=SNWw Z=COSW
For each of these functions, a given value of z corresponds to more than one value
of w.

Fig. 27
w-plane

w = f1 (2) is multi-valued and z = f(w) is single-valued, given w, there is a
unique value of z.

The aim of this chapter is as follows :

(i) To determine all possible values of the inverse function w and (ii) To construct
an inverse function which is single-valued in some region of the complex plane.

Let w =f(z) beamulti-valued function. A branch of f isany single-valued function
fo that is continuous in some domain (except, perhaps, on the boundary). At each point
z in the domain, it assigns one of the values of f(z).

Example 1 : We consider branches of the two-valued square-root function f(z)
= 7ZV2(z # 0). The principa branch of the square root function is

12 =[2" "¢ =77 cos] +sin? | 0= Arg(2)

wherer = |z| and — 1< B < 1t The function f, isabranch of f. Using the same notation,
we can find other branches of the function f. For example if we let

f,(2) = ‘Z‘HZei(mzn)/z — ryz[co{e +22T[) i sin( 9+22 T[):|

fz(Z) = rV2gi(6+2m/2 = (120102 g = _fl(z)'
So, f; and f, can be taken as the two branches of the multi-valued square root
function. The negative real axisis called a branch cut for the functions f; and f,. Each
point on the branch cut is a point of discontinuity for both functions f; and f5.
Result 1 : Show that the function f, is discontinuous on the negative real axis.
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Solution : Let zy = re™be any point on the negative real axis. We compute the
limit as z approaches z, through the upper half plane Im z > 0 and the limit as z
approaches z, through the lower half plane Im z < 0. The limits are

lim f (re®) _ lim

= r“’z[cosgﬂsing} =ir)?, and
(r,0) - (r,, ) (r,8) > (r,, 1) 2 2

li o i ) o o] .
(1.8) ~ (-1 €)= (1 g 2 1, -9 [coszﬂsnz} = i

The two limits are distinct, so the function f, is discontinuous at z,. Since z, is
an arbitrary point on the negative rea axis, f; is discontinous there.

Note : Likewise, f, is discontinuous at z,.

b

w = fy(2)
z-plane
e > i >
0
<
Z=w?
Fig. 28 a
Yy
n n
w = f,(2) !
i
i
z-plane !
e >y ! >
[0} e) u
<——
Z=w?
Fig. 29 a Fig. 29 b

Figures : 28-29 The Branches f; and f, of f(z) = zV2
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4.2 The logarithm function

Let us define the inverse function f-1(z) forz=e»: Let z=re® and w=u + iv.

Then rei® = eu.@v
So that r=elandv=0+2km, k=0 %1, % 2,..
and w=logr+i@+ 2km), k=0, 1, +2,..

But r = |z| and without loss of generality, we can take O0(—Tt, 11). This motivates
the definition of the inverse function f-1(z) for z = e»
w=logz=Ilog|z] + i(Argz + 2km), k=0, 1, + 2,...

or, equivalently
w=logz=1Ilog |z| +i arg z.

Mapping of the strip |Im @| < Ttunder z = ew

w-plane B A

Py

e | 3
/

- e -

u=uy<0

Fig. 30

I. Take u = ug > 0, v (=1, ) for the line PQ :
X+iy =ej(cosv +isinv)

X = €% cosv —
- Y:ersinV} — XZ+y2 =€t >1,

a full circle in z-plane outside |z| = 1.

Now approach Q; u=Uy >0, v = -1+ €
X = ebcos(—Tt+€) - €ebase - O+and—eob<-1asu;>0

y = ebsin(-m+¢€) - 0—ase - 0+
Now approach P: u=uy>0,v=T1—¢€
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X = ebcog(t—€) - €ebase - 0+
y =ebsin(m—-¢) - 0+ase - 0+
[1. Now take u = uy <0, vOJ (-, m) for the line RS :

§ X =€ % cosv
y=etsnv

- X2 +y? =g <1

represents afull circlein z-planeinside |z| < 1.
Approach S:u=-Uuy<0,v=-T+eg
X=ebcos(—TT+€) - —eb>—-1lase - 0+
y =etgin(-m+¢) -~ 0—ase - 0+
Now approach R:u=-uy<0v=m-¢
X = ecos(lt—€) » —e>—-1ase - 0+
y =etsn(mm—-¢) - Oase - 0+
Observation : Points along the negative real axis in the z-plane yield multiple w
values. In order to obtain a single-valued inverse function for the fundamental strip
|Im w|<TT We require a cut in z-plane along Re z < 0. The mapping z = & and
w = f-1(z) will be single-valued in |Im w| < Ttand zO ¢ \(<0, 0).
Clearly theinverse function w=Logz=1log |z| +iArgz,—TI<Argz<Tm

z-plane
/4
/7
/7
/7
/7
/’\ 0
Branch cut
Fig. 31

is single-valued. We call this function the
principal value of log z.

The principa value of log z isnot defined
at z=0and is discontinuous as z approach the
negative real axisfrom top and bottom. Using
the necessary and sufficient conditions for
differentiability we find

ELogz:}, z#0, zOfeo ,0)
dz z

The point z = 0 is called a branch point of
Log z sinceif we encircletheoriginz =0 by
a closed contour then Log z changes by an
amount proportional to 2ru.

4.3 Properties of log z

(i) log (z12,) = log z; + log 2z,

(means that the set of all values of log z; + log z, is the same as the set of al

values of log (z;2,)).

94



(ii) z = €09z, but log(e?) = z + 2k, k = 0 +1, £2, ...
Letz=x+1Iy
siny

loge™*” =log(e*) + i(tan‘l(—) + 2krr] +X+iy =2KTi
cosy

=z + 2kmi, k =0, £1,...
(iii) log z" # nlog z in general.
Let z = re®
logzn = nlogr + i(n@ + 2km), k = 0, +1,...
nlogz =nlogr + in(@ + 2mm), m = 0, £1,...
Let n be fixed. Then the set of values of {k}, k =0, £1, £2,...
do not coincide with the set of values of {mn}, m = 0, £1, £2,...
[0 logz" # nlog z

1
(iv) log(z¥") = Elogz (provided the set of values are the same) n = + ve integer.

Now, z = re®, zZUn = (Ung(® +%min k =0, 1, 2,..., n—1

0+ 2kTt

Iogz”“zilogHi( +2€T[), k=01..,n=1/=0, +1, +2,...

1 1 ,
Again, —logz=—logr +i
n

(6 2mmt
n

—+—),m:0, 1, £2,..
n n

The set of values of log (zUn) and 1/n log z are the same if the sets {k + In},
k=0 1,..,n-11=0, £1, £2,... coincide with the set {m}, m = 0, +1, £2,...
Complex exponents

If a is complex and z # O then

z0 = erlogz multi-valued.

70 = ea[loglz] + i(Argz + 2kT[)]’ k = 0’ +1, 12,...

= eafloglz] +i(8 + 2km)]

: . . 1 : : .
agreeswith our previousresultsifa =m, 0 = E; m=integer. If a isarational number

say p/q, then z* will have only g number of distinct values, occurred against k = 0,
1, 2, ..., q—1 and the values of €2kma for k = — 1, — 2, ..., — (q — 1) coincide with
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itsvauesfork =q—-1, -2, ..., 2, 1 respectively, whereas the values of e2rkma
for k = xq, £(q + 1), ... coincide with its values for k = 0, £1, +2, ...

za takes infinite number of values when a isirrational or complex. Clearly there
is a distinct branch of z for each distinct branch of log z and the branch cuts are
determined as in the case of log z. Every branch of z% is analytic except at the branch
point z = 0 and on a branch cut.

Example 2. Find all distinct values of i2.

Solution : 2 = g2ilogi :eZi[IogHiGﬂknﬂ’k =0, +1..

= edk+ Dk =0, 1, +2,...
So, there are infinite number of values.

Example 3. Find all solutions of z1-i = 6.

Solution : el -ilogz = glog6

O (1-1i)logz =log6 + 2kmi, k =0, 1, £2,...
or, 2logz = (1 + i)[log 6 + 2kri]

or, Iogz:M+|§(logG+2kn)

Thus z = g9 /o cog(krt+log/6) +i sin(kt+log+/6) ]

= \/Ee-kﬂ(—l)"[cos(l 0g+/6) —isin(log \/6)]

4.4 Branch, Branch point and Branch cut

Definition : F(z) is a Branch of the multi-valued function f(z) in adomain D if
F(z) is single-valued and continuous in D and has the property that for each z in D
the value of F(z) is one of the values of f(2).

To determine F(z) we introduce a line imanating from a point (called a Branch
Point) to ensure that F is single-valued in the cut plane by the line. A Branch Point
is one for which if we enclose it with a curve the function changes discontinuously
as the variable makes a complete round over the curve.

For instance, consider w = zV2. Let P be a point on the z-plane where w, = z;'2
and Argz; = @, 0< @ < 21L

Let z, =1,€%, then at P, w, = r’2€*/2, We now encircle the region along closed
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curve C through P. Upon travelling
anticlockwise once, we have @ = @, + 2T,
- e, w=rl2gler2niz = —lizgle/2 g the point
N\ ¢ P.
0 [0 w=—wq at P. Thisshows that w has
changed discontinuously after performing a
loop about z = 0, which establishesz = 0 a
Branch Point.
Now we consider a different loop, a
P closed curve I around some point z* which
does not enclose the origin. As before,

/
/
/

C

z, =r,€% and w, = r?€%2 ypon returning
to P, travelling anticlockwise, we have @ =
@ again. Hence w is continuous after
’ r performing the loop. So z = z* is not a
/\ ] Branch Point for zV/2 = w.
o Example 4. Discuss the multivaluedness
Fig. 33 of the function f(z) = (z2 — 1)¥2 and introduce
cuts to obtain single-valued branches.
Solution : Letz—1=re%andz + 1 = r,e¥

Then f(2) = \/Eei(eﬂp)/Z
We choose a branch of f(z) at a point z, by taking values of 6, of 8 and Y, of
W. Then at z,, f(z) takes the value
f,= \/Eei(%““o)’z
If now z traverses from the point z, and form a simple closed contour (end point
also zy) Cy enclosing the point z = 1, where the point z = -1 lies outside C,, the value

of f(z) at z, changes to
/rlrzei(90+¢0+2n)/2 = _fo

Cl CO

Fig. 34 Fig. 35
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f(z) takes the same value —f, while z travelling from z, and returns to z, itself
forming a closed contour C; which encloses —1, but not 1. Hence it is clear that
—1 and 1 are the branch points for the function f(z).

In order to obtain single-valued branches we introduce two different set of branch
cuts. (i) A branch cut between the points—1 and 1 on the real axis. In this case consider
the closed contour C enclosing the branch points —1 and 1. Here f(z) returns to the
value (from its value fj at zg).

lrlrzei(60+2n+%+2 n/2 = /rlrzei( g+ y)2 = fO
So, it is a single-valued branch.
(if) Two branch cuts on the real-axis, (—oo, —1) and (1, ).

Fig. 36 Fig. 37

Here the contour " does not enclose any of the branch points, so f(z) remains
single-valued as z makes a complete round through I initiating from z,.
z-1

Example 5. Construct a branch of log ( 1
Z+

) , which is analytic at the origin and
takes the values 511 there.

Solution : Let g(z) = Iog(;ﬂ . The points z = + 1 are the branch points of g(z)
and the behaviour of g(z) at these branch points are smilar to f(z) as shown in the previous
example. We do not repeat these here.

Write both z — 1, and z + 1 in polar form :

z—1=reb z+1=pe¥

Then we can express

) - Iog{i g(e—w}
P

re'®
pev

9(2) = |Og(
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= Iog(i)ﬂ(e - )
P
We consider the complex z-plane with two branch cuts (—eo, —1), and (1, o). Here
the principal branch of g(z) is taken as

Iog[éjﬂ(e—w), 0<0<2m -7 Y< 0

Now, go = g(0) = it
In the branch 41t< 8 < 615 Tt< Y < 311, g(2) will take the value 5t at the origin.
Example 6. Let z = w»? and consider Re w > 0.

"

\“h\\\a\“ﬁ“‘\“‘\“ﬁ\\‘\\“!\h\\\‘!\“\“‘
o) QL ot

Fig. 38

Q
Imageisz OC\ (-, 0)
Note : Injective mapping if Re w > 0and z O ¢ \(—»o, 0). We need a Branch
cut along negative real-axis in the z-plane.
Hence w=2zV2 z=rd? -I<@P<T
This ensures that Re w > 0. Here the points on the cut go either to P or Q. P and
Q are arbitrary.

4.5 Integrals of Multi-valued functions

o Y01
Example 7. Evaluatej X dx,0<a <1
01+x
Let us consider the integal .
IZ dz
1-z

C
where the contour C consists of a large Circle 'y with centre at the origin and

radius R, a small circle y, with centre origin and radius € joined to the large circle
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I'r @dong the negative side of the real axis from € to R by means of a cut as shown
in the figure 39. Thus we have avoided the branch point z = 0.

We take principal branch of z¢ -1, Then
a-1

Fi-2

since a < 1,

o-1

J‘yg 12_ . dz

since a > 0.

a-1 a
R*™ 2mR L0asR -

< 2TR =
1+R 1+R Mg

a-1

sznee =2ne’ - 0as € - 0,

Thus, by residue theorem,

a-1 1 Fig. 39
I z dz=21 Re z 01
Cl-z 1-z

a-1

z
Observe that 1—7 has a simple pole at z = 1 which lies inside C.

a— a1
or, lim dz + dz =-2mi
Rowdlg]l—7 e-0dy; 1—7 Yal—2Z vsl—27
Zu -1 Zu—l )
dz+ dz =-2m
SO’ J.ya 1_ Z Ve 1_ Z (54)
On  y:zZ=peM0<p<oo
S0 l1-z=1+panddz=e€rdp
0! - IT[ p in(u—l) - i 0-1) . pu_l -_ ima [ pu_l
and qul Zd j o dp=¢ 0—1+pdp e o—1+pdp

On  y,z=pe'M0O<p<o

8

1—z=1+p,dz:e4ﬂdp,then

a—

z e p e gy = _gin oD  p?t
z+ dp=-— ——d
J.VB 1- Z J. +p p=¢ 01+p P

— ima [ p B
=e™) 140 0 dp
Substituting these integrals into (54), we get
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a-1
[—em +e—ma]J' b dp = —2ri

1+p
- j =P dp = o 2m take branch cut on the
€. °1+p 2isinta negative real-axis
= X d n 23
or, X = — z = pe2n r
-[0 1+x  snTa —L A

YR Ye

Example 8 : Evaluatej dx0<a <3 St g,
Y1 R
We take the contour integral Fig. 40
oa-1

_[C 147 dz, where C is the contour as shown in the fig. 40. Take

principal branch of zo -1,

yAk 2 _e*t  2n .
dz = —¢ =—¢" .0a -€& -0sncee>0
Then, J.VE1+ z? 3 1 3
yAd 2IR R _ 2T
< =2 R"® ., wasR - osncea <3
and IrR 1+7° 3 R 3
Now the function Z“'11+ 3 has only one simple pole z=e? inside C. Thus
a-l . i 3@ 210
j dz=2m Re z e e” |=2r1i. € = —— g3
1+ 78 1+ z3 3e?m’3 3
a-1 c o -1 /3
i o Z dZ+J‘ + p e2ru(u 1)/3e211/3dp+J‘ dp — _2Tﬂ e]
S Ire 1+ 28 vel+z3 JR1+p3 1+p3 3

[In the third integral, we used z = pe2/3, dz = e2/3dp, 1 + z3 =1 + p3, and in
the fourth integral, z = p, dz = dp]

Taking R - o and € - 0 inthe above integrals, we find using the earlier results

_e20mi/3 pq -1 p J_ pu -1 2Tu'e1ni/3
0 1+p? 1+p 3
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ol 211 1 I

Y - —
[P = -
3 ami/3 _ 4-omi/3
So that, °1+p 3 e e 3gn "
3
or [ X7 =T
’ 3 -
°1+x 3$inogT

Riemann Surface

A Riemann surface is a generalization of the complex plane to a surface
comprising several sheets so that a multi-valued function can have only one vaue
corresponding to each point on that surface. Once such a surface is ascertained for
a given multi-valued function, the function becomes single-valued on the surface and
can be treated according to the theory of single-valued functions.

This topology removes artificia restrictions-Branch Cuts and gives us a more
general notion of a domain so that a multi-valued analytic function becomes single-
valued if it is considered as a mapping to an appropriate generalized domain as
suggested by G. F. B. Riemann (1826-1866) in 1851. The idea is ingenious—a
geometric construction that permits surfaces to be the domain or range of a muilti-
valued function.

4.6 Branch points at infinity

So far we have considered only branch points in the finite plane. Now we discuss
about the possibility of a branch point at infinity. For this sake we map the point at
infinity to the origin with the transformation ¢ = % and then examine the point
¢=0.

Example 9 : Again we consider the multi-valued function f(z) = zV2. Making the

1
transformation G :E’ the point at infinity is mapped to the origin, we have

%
f(Q) = ( %) . For each value of ¢, there are two values of ¢=2, Writing ¢V2 in

modulus-argument form

c‘% _ 1 o IATI(c)/2

i
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we find that like zV2, (-2 possesses double sheeted Riemann surface. We see that
each time we walk around the origin, the argument of ¢-2changes by —Tt. This means
that the value of the function changes by the factor ™= —1, i.e. the function changes
sign. If we walk around the origin twice, the argument changes by -2, so that the
vaue of the function does not change, e2m = 1.

Now, since ¢¥2 has a branch point at zero, we conclude that z¥2 has a branch
point at infinity.

Example 10 : Again consider the multi-valued logarithm function f(z) = log z.
Mapping the point at infinity to the origin, we have

f(c) = Iog(%) =—logc

But log ¢ has a branch point at ¢ = 0. Thus log z has a branch point at infinity.
Branch points at infinity : Paths around infinity

We can also check for abranch point at infinity by considering a path that encloses
the point at infinity and no other singularities. This can be done by drawing asimple
closed curve that separates the complex plane into a bounded region that contains all
the singularities of the function in the finite plane. Then, depending upon the
orientation, the curve is a contour enclosing al the finite singularities, or the point at
infinity and no other singularities.

Once again consider the function z¥2. We know that the function changes value
on a curve that goes around the origin. Such a curve can be considered to be either
a path around the origin or a path around the point at infinity. In either case the path
encloses one branch point. Now consider a curve that does not go around the origin.
Such a curve can be considered to be either a path around neither of the branch points
or both of them. Thus we see that zV2 does not change value when we follow a path
that encloses neither or both of its branch points.

Example 11 : Consider the multi-valued function f(z) = (z2 — 1)V2. Rewriting the
function f(z) = (z — 1)V2 (z + 1)V/2, we see that there are branch pointsat z = +1. Now
consider the point at infinity.

fe) = (2= D2 = ¢l - )7

which shows that f(¢-1) does not have a branch point at ¢ = 0 and f(z) does not
have a branch point at infinity. We might reach the same conclusion by considering
a path around the point at infinity. Consider a path that encircles the branch points at
z = £1 once in the positive direction. Equivalently it encircles the point at infinity once
in the negative direction. In traversing this path, the value of f(z) is multiplied by the
factor (e2mV2 (e2ml2 = g2t = 1, Thus the vaue of the function remains unchanged.
There is no branch point at infinity.
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4.7 Detection of branch points

We have the definition of a branch point, but we do not have a convenient
criterion for determining if a particular function has a branch point. We have noticed
that log z and z* for non-integer k have branch points at zero and infinity. Theinverse
trigonometric functions like sin-1z, cos-1z etc. also have branch points, but they can
be written in terms of the logarithm and the square root. In fact al the elementary
functions with branch points can be written in terms of the functions log z and z.
Furthermore, note that the multi-valuedness of zk comes from the logarithm, zk = eklogz,
This gives us a way of determining branch points of a function if there is any.

Result : Let f(z) be asingle-valued function. Then log f(z) and (f(z))k may have
branch points only where f(z) is zero or singular.

Example 12 : Consider the functions

1. (2912 2. (z12)2 3. (zV2)3

Are they multi-valued? Do they have branch points?

Solution

1. (22)1/2 =47 =2z

Because of (-)V2, the function is multi-valued. The only possible branch points are
at zero and point at infinity. If (€9)2)V2 = 1, then as ((e2M)2)V2 = (e#m)V2 = g2 = ]
the function does not change value when we walk around the origin. We can also

consider this to be a path around infinity. This function is multi-valued, but has no
branch points.

2. (2”2)2 = (i\/E)z =z
This function is single-valued.
3 (22) = (+2) = +(V2)’

This function is multi-valued. We consider the possible branch point at z = 0. If
(€9)V/2)3 = 1, then as ((e2M12)3 = ((€™)V2)3 = (¢m)3 = g3m = —], the function changes
value when we walk around the origin. So it has a branch point at z = 0. Since this
Is also a path around infinity, there is a branch point at the point at infinity.

1
Example 13 : Consider the function f(z) = log (1/z — 1). Since 21 has only

zero a infinity and its only singularity (a pole here) is at z = 1, the only, possible
branch points are at z = 1 and z = oo.
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Here f(z) = Iog(zil):—log(z—l) =logw, say

We know that log w has branch points at zero and infinity, so f(z) has branch
pointsat z =1 and z = co.

Example 14 : Consider the functions

1. €0z 2. log €

Are they multi-valued? Do they have branch points?

Solution :

1 glogz = dogz +i2ik k = Q, + 1, ...

= gogz g2k = 7

The function is single-valued.

2. logez = Logez + i2tk =z + 21k, k =0, £ 1, ...

This function is multi-valued. It may have branch points only where ez is zero or
infinite. Thisoccurs only at z = . Thus there are no branch pointsin the finite plane.

The function does not change when traversing a simple closed path and since this path
can be considered to enclose the point at infinity, there is no branch point at infinity.

Note : Let f(z) be single-valued and have either a zero or a singularity at z = z,.
Then {f(2)}* may have a branch point a z = z,. If f(z) is not a power of z, then we
are not sure whether {f(z)}k changes value when we walk around z,.

Now if f(z) can be decomposed into factors f(z) = h(z) 9(z), where h(z) is finite
and non zero at z,, then from g(z) we know how fast f(z) vanishes or tendsto infinity.
Again {f(2)}k = {h(2)}* {g(2)}* and {h(2)}k does not have a branch point at z,. So
that {f(2)}k has a branch point at z, if and only if {f(z)}k has a branch point there.

Similarly, we can decompose

log {f(2)} = log {h(2)g(2)} = log {h(z)} + log {g(2)}

to seethat log {f(z)} hasabranch point at z, if and only if log {g(z)} has abranch
point there.

Example 15 : Consider the functions :

1. sinzV2 2. (sinz)¥2 3. zZY2 cos zV2 4. (sin z2)12,

Find the branch points and the number of branches.

Solution : 1. Sinz"? =sin(++/z) = +siny/z

So it is multi-valued. It has two branches and the possible branch points are zero
and infinity. Consider the unit circle |z| = 1 which is a path around the origin and
infinity. If

sin(e%¥2 = gin(1), then as
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sin((e2m¥2) = sin(e™ = sin(-1) = — sinl,
there are branch points at the origin and infinity
2. (snz)"?* = +/sinz
The function is multi-valued and has two branches. The sine function vanishes at

z =nmand issingular at infinity. These may be branch points of the function. Consider
the point z = ntTt We can express

. sinz .
snz=(z-nm) , Nan integer.
Z—nNm
. §nz . C0Sz
But lim =lim—— ="
zommz—NTT  z-nm ]

S0, (sin 2)¥2 has branch points at z = n1t since (z — nY/2 has a branch point at
z=nm

Here the branch points are z = n1, n = 0, £1, ... and they go to infinity. So it is
not possible to make a path that encloses infinity and no other singularities. The point
at infinity is a non-isolated singularity. A point can be a branch point only if it is an
isolated singularity.

3, 2% [£057"* = +\/7 cog( 12

= +/zcos/z
The function is multi-valued. It may possess branch pointsat z = 0 and z = c.
If (€9)V2 cos(€9)V2 = cog(1), then as (6272 cos((€2M)V/2) = (—1)cos(e™) = — cos(—1)
= — cosl, there are branch points at the origin and infinity.
4. (sinz?)"? = +y/sin z?
The function is multi-valued. Now since siz z2 = 0 at z = (nT)V/2, there may be
branch points there.

We consider first the point z = 0. We can write

: 2
. sinz
sinz? = 22 =—
z
. §nz®> . 2zcosz?
but lim =lim———=1
z-0 7 z-0 27

So, (sin z2)V2 does not have a branch point at z = 0 as (222 does not have a
branch point there.

Next consider the point z =J/nm
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snz? = (7 Jm) SN2

z—+/nm

. §nZ? . 2zcosz? N

but lim = lim =2/ n1(-1)
z-Jmz—_.\/nTt  z-+nm 1

U2
Since (z—\/m't) has a branch point at z = \/n, (sin z?)¥?, too as a branch
point there.

Thus we see that (sin z2)Y2 has branch points at z = (nm)Y2 for n e Z \ {0}. This
is the set of numbers : {iﬁi\/ﬁ +iJ 1 ii\/Z_EL..}. The point at infinity is
a non-isolated singularity and hence it is not included in the set of branch points.

Example 16 : Find the branch points of

@) = (8- 2"

and introduce the branch cuts. If f(3) =2%/3, find f(-3).

Solution : Here f(z) = z13(z — 1)¥3 (z + 1)18

So the branch points are at z = -1, 0 and 1. We consider the point at infinity

1 V3 1 3 1 v3
(=2 (-9 [+
= (0-9"@+Q*

Since f(1/¢) does not have a branch point at ¢ = 0, f(z) does not have a branch
point at infinity.
Here we give three possible branch cuts :

\
\'"
\'"

Fig. 41 Three possible branch cuts for f(z) = (z3 — 2)13

In the first and third the function is single-valued but in the second it is not. It
is clear that the first branch cut does not alow us to walk around any of the branch
points.
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The second branch cut allows us to walk around the branch pointsat z = + 1. If
we walk around these two once in the positive direction, the value of the function
would change by the factor e413,

The third branch cut allows us to walk around all the three branch points, the
value of the function will not change (since €63 = g2rn= 1),

To find f(-3), we consider the third branch cut with f(3) = 23/3.

f(3) = (3ei0)]/3(2ei0)1/3(4ei0)1/3 = 2%
The value of f(-3) is
f(—3) — (Seir[)]/3(zei T[)]!3(4ei n)]!3 - 2%/:__3
Example 17 : Determine the branch points of the function f(z) = (2 — 1)V2

Construct branch cuts and define a branch so that z=0 and z = -1 do not lie on
a cut, such that f(0) = —; then what is f(-1/2)?
Solution : The roots of the equation z3 — 1 = 0 are

{1 ei2T[/3 ei4Tl(3} - {1’ -1+ |\/§ —1-— |\/§}

2 2
30 that,

2
There are branch points at each of the cube roots of unity

_{ 1+iy3 —1—i\/§}
z=11 ,

(2-1" = (2—1)1/2(2 + 1_;/5] (z L1 i\/é)

2 2
Now we examine the point at infinity. We make the change of variable z = 1/¢
Q) = (Ve - P2 = ¢¥(1 — )2

¢~32 has a branch point at ¢ = 0, while (1 — ¢3¥2 is not singular there. Since
f(1/Q) has a branch point at ¢ = 0, f(z) has a branch point at infinity.

There are several ways of introducing branch cuts to separate the branches of the
function. The easiest approach is to put a branch cut from each of the three branch
points in the finite complex plane out to the branch point at infinity (see Figure 42a).
Clearly this makes the function single-valued as it is impossible to walk around any
of the branch points. Another approach isto have a branch cut from one of the branch
points in the finite plane to the branch point at infinity and a branch cut connecting
the remaining two branch points (see Figure 42 bcd). In this case, in walking around
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any one of the finite branch points (in the + ve direction), the argument of the function
changes by 1 This means that the value of the function changes by €™, which isto say,
the value of the function changes sign. In walking around any two of the finite branch
points (in the +ve direction), the argument of the function changes by 2rti.e, the value
of the function changes by €27, that means the value of the function does not change.

Figure 42. Branch cuts for (z3-1)V2

\ | N
/ a

a . /

Now we choose the branch 42a, and introduce

\ the variablesz — 1 =r,€% 0 < 6, < 21
+%: . %2 —2—T[S92 <E
d 3
o1 "/é-sei _ES93<%"

We compute f(0) to see whether it has the desired value,
f(Z) - r1r2r3ei(91+92+93)’2
f(0) = i(m-3+32 = @2 = j

Since it does not have the desired value, we change the range of 6,
z-1=r€9, 2m < 6§ <4n

f(0) now has the desired value,
f(0) = g@rem3m3) = _

1
We compute f(— E)’
f(_ 1) 3473 38 33t
2 2 2 2
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_ [Oona _ -3

8 22

Example 18 : Identify the branch points of the function
w = f(z) = (8 + 22 — 62)1/2
in the extended complex plane. Specify the branch cuts and select a branch that
gives a single-valued function where it is continuous at z = —1 with f(-1) = —V6.
Solution : First we factor the function
f(2) = [2(z — 2(z + 3)]V2 = ZVY(z — 2)V2 (z + J)V2
There are branch points at z = -3, 0, 2. Now we examine the point at infinity.

12
1(1 1 V2
fa/o)=|=|=-2| =+3|| =c¥a-
(1/¢) L(C ](ch H ¢ ’[(1-2c)(1+39)]

Since (32 has a branch point at ¢ = 0 and the rest
of the terms are analytic there, f(z) has a branch point

at infinity.
Now consider the branch cuts given in the figure
43. These cuts do not permit us to walk around any -3 © 2
single branch point. We can walk around none of the
branch points (or al of the branch points considering o s
ig.

the cuts [-3, 2] and x = 0, y < 0). The cuts can be
used to define a single-valued branch of the function.
Now to define the branch, we choose z + 3 = r; €8, —TT1 <0; < T, z = r,€9,,
%Tgez <37]T and z — 2 =rze%, 0 < 65 < 2m.

The function is, f(z) = (rqror3)Y2e®, + 8 + 8972

Here f(-1) = [(Q(D)(@)] %20+ 12 = — 6

So our choice of angles gave the desired branch.

4.8 The Riemann surface for w = z12

We have seen that w = zV/2 possesses two branch pointsz =0 and z = «. To utilize
the developments made in Example 1, we introduce a branch cut along the negative
real axis. The given function has two values for any z # 0.

fi(z) = ri2g¥2 —.m<B <M
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and fo(z) = rV2 g2 T< B < 3m

Each function f; and f, is single-valued on the domain formed by cutting the z-
plane along the negative real-axis. Let D; and D, be the domains of f; and f,
respectively. The range set for f; is the set R;
consisting of the right-half plane and the positive
Imaginary axis [see Figure 28b]; the range set
for f, is the set R, consisting of the left-half
plane and the negative imaginary axis [see
Figure 29b]. The sets R; and R, are glued
, together along the positive imaginary axis and

Fig. 44 the negative imaginary axis to form the

w-plane with the origin deleted. We stack D,

directly above D,. The edge of D4 in the upper-half plane is joined to the edge of D,

in the lower-half plane, and the edge of D, in the lower-half plane is joined to the

edge of D, in the upper-half plane (it is needless to mention that the line of joining

is the negative real-axis). When these domains are glued together in this manner, they

form a Riemann surface domain for the mapping w = f(z) = zZ¥2 shown in the figure
44 for some finite r.

4.9 Concept of neighbourhood

When a point lies on the boundary of two domains D, and D,, we define a
neighbourhood of that point in the following manner. Here the boundary of D, and D,
is the negative rea-axis. (i) Neighbourhood of a point ¢[1D; with Im ¢ < 0, Arg
C=T |z —¢| < € consists of pointson : (a) D, if Im¢ =0 (b) D, if Im ¢ < 0. (ii)
Neighbourhood of apoint ne D, with Imn =0, Arg n = 31, [z| < € consists of points
on (a) Dy if Imn <0and (b) D, if Imn = 0. With these definitions of neighbourhood
of apoint, it becomes clear that w = zV2 is continuous and differentiable everywhere
on the Riemann surface except at the origin and the point at infinity. The derivative
IS given by

11 onD,
d pn_J2 f
dz % Lon D,
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4.10 The Riemann Surface for w = log z

The Riemann surface for the multivalued function w = log z is similar to the one
we presented for the square root function. However, it requires infinitely many copies
of the z-plane cut along the negative x-axis, which mark S, for k = ..., —n, ..., =1, 0,
1, ..., n, ... . Now we stack these cut planes directly on each other so that the
corresponding points have the same position. We join the sheet S, to S,;; asfollows.
For each integer k, the edge of the sheet S, in the upper half-plane is joined to the
edge of the sheet S, in the lower-half plane. The Riemann surface for the domain
of log z looks like a spiral staircase that extends upward on the sheets S;, S,..., and
downward on the sheets S_;, S, ... as shown in figure 45. For S, we use

z=re%=r (cos B + i sin 0), where
r =zl and 2rk—mt < 6 < 11 + 21k

Again, for S, the correct branch of log z on each sheet is

logz=1logr+i 6, where
r =zl and 2rk—mt < 6 < 11 + 21k

w-plane

Fig. 45 | Fig. 46
Example 19 : Form a Riemann surface for f(z) = (z — 1)V/3 taking a branch cut
along the liney = 0, x = 1. Detect the point where the function takes the vaue
V2 (i = 1).
Solution : Letr =|z—1|and 6 = arg (z— 1), where 0 < 6 < 21t Here the Riemann
surface consists of three domains D; D, and Dj :
f1(z) = r3e®3, 0 < 0 < 21 (Dy)
fo(z) = rV3 €03, 211 < B< 411 (D))
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fa(z) = r3 93, 4 < 6< 611 (Dy)
Each function f,, f, and f3 is single-valued on the domain formed by cutting the

z-plane along the liney = 0, x > 1. y
We place D, on the top, then D, and D5. The edge c
of D, in the upper-half planeisjoined to the edge of D,
in the lower-half plane and the edge of D, in the upper-
half plane is joined to the edge of D in the lower-half

plane and finally the edge of D5 in the upper-half plane o 1 X
IS joined to the edge of D, in the lower-half plane.

Sy az=¢f(=v2(-1)

: f(c) —_z(i_i_j

|.e. Q)= \/E \/E Fig. 47
= 2d"e 4 = pgs

_ Zei(%"]/s _ 2ei(£+2r[)/3

im

So, ¢—1=2%*,c=1+8e* lying in the domain D,.
Example 20 : Form the Riemann surface for the function f(z) = (z2 — 1)V/2,

Solution : Here the given function f(z) = (22 — 1)V2 has branch points at z = +1.

To examine the point at infinity, we substitute z = 1/¢ and examine the point ¢ = 0.
il2

f(%){@‘l} = )"

Since there is no branch point at ¢ = 0, f(z) has no branch point at infinity.
Let z—1=r@® and z + 1 = r,e®,
where @, = Arg (z—-1) and @ = Arg (z + 1). Then w = f(2) = (22 — 1)12

= (2 - V2 (z + 1V2 = (1yrp)¥2 oy + @)

73



Case-

O<s@<2m0< @<2n

onthe | @, | @ | €@+®)2| Continuity y
segment of f(2)
B | O i No
B’ | 2’ —i «
C 0] o0 1 Yes -1 1
c 2| 2m 1
D m| T -1 Yes
D’ | 7 -1 _
Fig. 50 Branch cut [-1, 1]
Fig. 49

Caselll Os@<2Im,-M<@<T y
onthe | @, | @ | @@*®)/2| Continuity
segment of f(2)
B m| O i Yes
B’ m| O i 1 0 1 x
C OO 1 No
c 2| O -1
D | 1 -1 No
D' | = 1 Fig. 51 Branch cuts (o, —1] and [1, )

Two branches of (z — 1)¥2 can be taken as
f,(2) = Jre®™ andf,(z) = Jre *" ", 0<q, <2m=—,(2)
Again two branches of (z + 1)V2 can be taken as
0,(2) = re™ andg,(2) = Jre """, 0=, <2m
= -2
Let us construct a Riemann surface for w = (z2 — 1)Y2 considering case |.

Here a Riemann surface consists of two sheets So and S;. Let S, be an extended
complex plane cut along the real axisfrom z=-1toz =1 and S, be another extended
complex plane cut of similar nature.

0<Arg(z-1) <21 2n< Arg(z-1)<4m
O{Os Arg(z+1) <21 {Zns Arg(z+1) <4m

The sheets Sy and S, are joined along the segment [-1, 1] in such away that the
lower edge of the dit in Sy isjoined to the upper edge of the dlit in S;, and the lower
edge of the dlit in S; is joined to the upper edge of the dlit in S,.
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Let a point on the sheet Sy move anticlockwise and form a ssmple closed curve
which encloses the segment [-1, 1] once. Then both ¢, and ¢, change by an amount
21t upon returning to their original position. i.e. (¢, + @,)/2 changes by an amount 2,

so the value of
W= (r1r2)1/2€i((p1+2n+ Q2 W2 — (r1r2)1/2€i( @t /2
remains unchanged.

Then w = f1g; on S, and as well as on S;.

If a point starting on the sheet S; travels a path which makes a complete round
about only the branch point z = 1, it crosses from the sheet S, to S;. In this case,
the value of ¢, changes by an amount 21, while the value of ¢, does not change at
al. The changein (@, + @,)/2 isthen 1. The change in (@, + @,)/2 remains the same
if a point on the sheet S; makes a complete round about the branch point z = -1 only

and enters on the S; sheet. This time.
o :{ f,g, onS,
_f1g1 on Sl
Thus the double-valued function w = (z2 — 1)¥2 can now be considered as a
single-valued function on the Riemann surface constructed above. Hence the
transformation w = (z2 — 1)Y2 maps each of the sheets S, and S; forming the Riemann
surface on the entire w-plane.
Riemann surface for the case ||
Here the Riemann surface is formed by two sheets Sy and S,. Each of these sheets
Is an extended complex plane cut along the line (—eo, —1) O [1, )

0<Arg(z-1)<2m 2n< Arg(z-1) <4m
’|-m< Arg(z+1) < T m<Arg(z+1) <3m

These sheets are joined along the line (—o, —1] [J [1, o) in such a way that the
lower edge of the dit in Sy isjoined to the upper edge of the dlit in S;, and the lower
edge of the dlit in S; is joined to the upper edge of the dlit in S,

If a point traverses a simple closed curve on either of the sheets S, or S; not
enclosing any of the branch points—1 or 1, then the function f(z) remains single-valued
on the respective sheet, whereasiif it encloses any one of the branch points the function
changes the branch as explained in case I. In the same way the double-valued function
f(2) = (22 — 1)V2 can be treated as a single-valued function on the Riemann surface
formed earlier.

Example 21 : The power function w = f(z) = [z(z — 1) (z— 2)]¥2 has two branches.
Show that f(—1) can be either —V6i or V6i. Suppose the branch that corresponds to
f(-1) = —/6i is chosen, find the value of the function at z = i.
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Solution : The given power function can be expressed as

W= f(Z) — |Z(Z—1)(Z— 2)| ei[Argz+Arg(z—1)+Arg(z—2)]/2eikr[’ k - 0, 1

where the two possible values of k correspond to the two branches of the double-
valued power function.

If figure 52a branch cuts arey = 0, x < 0 0 1 2
andy =0, 1< x < 2and in figure 52b branch Fig. 52a
cusarey =0,0<x<landy=0,x=2In 0 1 2
both the cases Riemann surface is formed by Fig. 52b
two branches.

At z = -1, we note that
Argz=Arg (z-1) = Arg (z-2) = mand \|z(z-1)(z-2) = V6.
So, f(—1) can be either \/6_ei3n/2 = _J6i or /6 (M2 2 _ [543 g [6

The branch that gives f(—1) = V6i corresponds to k = 0. With the choice of that
branch, we find

f(i)= |i(i -1 _2)|eiIArgi+Arg(i—1)+Arg(i—2)/2

X 2
i[n—tan_ 2]/2
- 2\/5 gl (1243 4+ rten12)/2 _ 4/_10 e 4 gm

! —1 H —1
—_4 /_10 el(tan ftanu2)2 — 4 /10 el(tan 13)/2

4.11 The Inverse Trigonometric Functions

(i) The function sin-1z is defined by the equation

‘ ‘ z=s8Snw
Substituting % for sin w, we find that
(€w)2 — 2igwz —1=0
i.e, gw=jz + (1 - 2312
0 iw = log{iz + (1 — z2)V2}

sothat sin1z = —log{iz + (1 — z2)V3}
Similarly, we can have
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coslz = Hlog{z + (22 -1)V2}

(i) We take the function w = tar1z, which is the inverse of z = tan w. Expressing
tan w in terms of sin w and cos w and then converting to their exponential form, we
oet 4 4

_1le¥—-e'™
1 |
- i 49 +1
-1 . 1+iz
Te - €T 15
e +1 1-iz
and finally 0= logi
’ 2i 1-iz

Note : When z # * 1, the quantity (1 — z2)2 has two possible values. For each
value, the logarithm generates infinitely many values. Therefore sin-1z has two sets of
infinite values. For example, consider

i.e., 1z=

i _1} :1'|0 I_+£
3 9272
B (T (51
_ :I|_ |og el(g +2kr[j:| or :I|_|:|og e|(€+2knj

— P

(g o)

:g+2knor 56T[+2k1T, k is any integer.

Likewise, the set of values for other inverse trigonometric functions can be
ascertained.

Example 22 : Discuss the mapping w = sinh z that transforms the infinite strip
—0 < X <00, 0 <y < minto the w-plane. Find cuts in the w-plane which make
the mapping continuous both ways. What are the images of the lines (a) y = Um
(b) x = 1?
Solution : First we express sinh z in cartesian form
w=snhz=gnhxcosy +icoshx sSiny =u + iv
We consider the line segment x = ¢, y € (O, m). Itsimage is
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{sinhccosy + i coshcsinyly € (0, m}
Clearly, u and v then satisfy the equation for the ellipse

u2 V2

sinh®c ¥ cosh® ¢

The éllipse starts at the point (sinh ¢, 0), passes through the point (0, cosh ¢) and
ends at (—sinh ¢, 0). As c varies from zero to co or from zero to —o, the semi-ellipses
cover the upper-half of w-plane. Thus the mapping is 2—to-1.

Now consider the infinite liney = ¢, X (-0, ).

It's image is {sinh x cos ¢ + i cosh x sin c|x [(—o, c)}.

Here u and v satisfy the equation for a hyperbola

2 2
u __ .vz -1
cos“c sn“c

As c varies from 0 to 12 or from 172 to 11, the semi-hyperbola cover the upper-
half of w-plane. Thus the mapping is 2-to-1.

We look for branch points of sinh-1w

w=3snhz
el _e?
2
eZ2we-1 = 0
&€ =w+ (u? + 112
z = log(w + (w —1)¥2 (w + 1)12)

The branch points are at w = +i. Since w + (w? + 1)Y2 is non zero and finite
in the finite complex plane, the logarithm does not introduce any branch in the finite
plane. Thus the only branch point in the upper-half of w-planeisat w=i. Any branch
cut that connects w = i with the boundary of Im w > 0 will separate the branches under
the inverse mapping.

We consider the line y = 174. The image under the mapping is the upper-half of
the hyperbola

w =

22 —2v2 =1
Consider the segment x = 1. The image under the mapping is the upper-half of the

ellipse.
u? v?

- 2 + 2 :1
snh“1l cosh 1
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Example 23 : Construct a Riemann Surface for cosz.

Solution : The function w = cos1z = - log [z + (22 — 1)V2] has two sources of
multi-valuedness; one due to the square root function (z2 — 1)V2 and the other due to
the logarithm, if any.

First we construct the branch of the square root

(22 — 1)1/2 = (Z + ]_)1/2(2 — 1)1/2

We see that there are branch points at z = —1 and z = 1. In particular we want
the cos1z to be defined for z = x, xU[-1, 1]. Hence we introduce the branch cuts on
the lines (—, —1] and [1, ). Let

z+1=reb z-1=pe€?¢
With the given branch cuts, the angles have the possible ranges
-m<O<mMO0<P<2n
Now we must determine if the logarithm introduces
y additional branch points. The only possibilities for
branch points are where the argument of the logarithmis
zero.
X z+(22-1)Y2=0
-1 1 o, 2=22-10 0=-1
We see that the argument of the logarithm can not be
zero and thus there are no additional branch points. Here
the Riemann surface consists of two sheets S and S;
joined on the real axis (-, 1] O [1, o) :

Fig. 53

s {Os Q<2T {Zns Q<4
l-m<B< T < 8<3m
A particular branch of this function can be obtained by first taking
z+1=red m<B<mMz-1=pe? 0<@<2m
Then adding these relations, we find
z = (rei® + pel9)/2
and the function z + (z2 — 1)V2 reduces to

re® +pe'®

7+ (22 _1)1/2 - + (rp)ll2ei(6+(p)/2

:E 1+Eei(tp—9) +2\/§ei((p—0/2
2 r r
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rel® 2
- 114 Eei((p—B)IZ
2 r

2
Then cos™z= —i{log(% eie) + Iog(1+\/§ei(“*9)’2] } on S, If apoint lying on the

sheet S, is alowed to travel a path making a complete round about only the branch
point z = 1, it enters to the sheet S; from the sheet S,. In this case the value of ¢
changes by 2mt while the value of 6 remains unchanged. The change in (@-0)/2 is Tt
S0 in this case,

2
costz= —i{log(% eie) + Iog(l—\/Eei(“*e)’z) } on S;. Similarly we can analyse
r

the case when the point on S, encloses only the branch point z = —1 while travelling

a complete round.

Some standard branch cuts of elementary functions.

Function Branch cuts

z5, non integral s with Re s> 0 (—o0, 0)

zs, non integral s with Res < 0 (o0, O]

€ none

log z (—o0, O]

sin-1z, cos1z (=0, —1] and [1, )
tanlz y<-1,x=0andy=>1x=0
cosecz, sec1z (-1, 1)

cot-1z [, 1]

snhiz y<-1,x=0andy>1x=0
coshiz (—o0, 1)

cosech1z -1<y<1,x=0
sech1z (=0, 0] and (1, )
tanh-1z y<l x=0andy=1x=0
coth1z [-1, 1]
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Exercises
Find the principal value of each of the following complex quantities :

(@ (1 )+ (b) 3+ (c) 22

Give the number of branches and locations of the branch points for the functions.
(@) cos (z2) (b) (z + )=

Determine the branch points of the function

w={(z2-2(z + 2}

Find the branch points of (zV/2 -1)¥2in the finite complex plane. Introduce branch
cuts to make the function single-valued.

Let D be the complex z-plane with a cut along the segment [—1, 1], determine the
regular branches of the function

f(2) = G:—;)

Split the function f(z) = ./(z2 —4)(z> —9) into two regular branches in the
domain D:C\{[-3 -2],[2, 3]}

Evauate
e XC . = logx
0) J, g @ —1<a<1 ) [ ey

Prove that jon logsin xdx = —Ttlog 2.

Construct a Riemann surface for the following functions :

. . z+1 :
(i) w=2z1B (ii) w = (22 + 1)V2 (jii) W =|ngi_1 (iv) w = sinz.
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10. Let f(z) have branch pointsat z = 0 and z = % i but nowhere else in the extended
complex plane. How does the value and argument of f(z) change while traversing
the contour given in the figures 51(a) (b). Do the branch cuts make the function

single valued?

Fig. 54 (a) Fig. 54 (b)
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Unit 5 O Conformal Equivalence

Structure

50 Objectives

51 Riemann Mapping Theorem

5.2 The Schwarz Reflection Principle

5.3 The Schwarz-Christoffel Transformation
54 Examples : Triangles / Rectangles

5.0 Objectives of this Chapter

The concept of conformal equivalence of two regions will be introduced in this
chapter. The main theorem of this chapter is Riemann mapping theorem. Also
Hurwitz' s theorem, Schwarz lemma, Schwarz reflection principle, Schwarz-Christoffel
transformation will be studied and their applications will be shown through a few
examples.

5.1 Riemann Mapping Theorem

In the family of analytic functions that concern geometrical orientation, conformal
mapping plays a leading role. As its consequences we shall present here a most
important result named after G. F. B Riemann, known as * Riemann mapping theorem”.
Throughout H(G) will denote the family of analytic functions defined on the region G.

Definition : Conformal Equivalence::

Two regions R; and R, are said to be conformally equivalent if there exists a
f O H (Ry) suchthat f isone-to-onein R; and f(R;) = R, i.e. if there exists a conformal
mapping one to one of R; onto R,. Clearly, thisis an equivalence relation (reflexive,
symmetric and transitive).

Theorem 5.1 [Hurwitz's Theorem] Let G be a region and {f,} be a sequence
in H(G) that converges uniformly to f{O H(G). Supposef # 0, § (a R) U G and f(2)
#0ony: |z—a = R. Then there exists an integer N such that for n> N, f,, and f have

the same number of zeros in D(a, R).
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Proof. Since f(z) is never zero on the circle y, we have
Inf[f(z)|=6>0
Yy

Agan, f, - f uniformly on vy, so there is an integer N such that for n > N
o
supff,(2)~f(2) <3
Yy

and thus on the circley, [f(z)—f,(2)| <g <3 <[f(z)| for n = N. Using Rouche's
theorem we find that f,, and f have the same number of zeros inside the circle
y:|z—e =R forn=N.

By means of the above theorem, we can easily prove

Corollary 1. Let G be aregion and {f,} be a sequence in H(G) such that each
f, never vanishes in G. Suppose f,, — f uniformly in H(G). Then f(z) never vanishes
in G, unless f = 0.

Some useful results

(i) If f(2) isanalytic at zy and f1 (zp) # 0O, then there is a neighbourhood of zj in
which f(z) is univalent.

(if) An univalent analytic function f on a domain G has a non-zero derivative at
every point of G, i.e, f(z) # 0 on G.

(iif) The inverse of an univalent analytic function is analytic.

(iv) Any domain in ¢, that is conformally equivalent to a smply connected
domain must itself be simply connected.

(v) A domain D in ¢ is simply connected if and only if every analytic function
in D has a primitive in D.
Schwarz Lemma

Letf: D (0, 1) - D (0, 1) be an analytic function which maps the unit disc
D(0, 1) to itsalf. If f(O) = O,

then

M f@|<lzfor0<|z<1

(i) 1O < 1

(i) if equality holdsin (i) for at least one z[ID (0O, 1) — {0}, or, if equality holds
in (ii), then

f(z) = A z,
where A is a constant, |A| = 1.
Proof : Let us consider the function

o(z)="2

z
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which is analytic in the disc D(0, 1) {0} and it has removable singularity at z
= 0, since f(0) = 0. It can be made analytic at z = 0 if we define

0(0) = lim "2 =0 (55)
For |zl =r,where0<r<1
|g(z)|:@ <1‘
4

By the Maximum Modulus Principle, |g(z)| < Y/, for the entire disc |z| < r. We fix

zID (0, 1) {0} and let r — 1. Then
lg (@) = 1.
This is true for al z[OD (0,1) {0} and we get
If(2)
2

i.e. [f(2)| < |z], 0 < |z| < 1. Since f(0) = 0, we have [f(2)| < |z| for 0 < |z| < 1. So,

(i) is proved and we find from (55) that |g (0)| = [f1(0)| < 1 which proves (ii)
To prove (iii), we observe that if at a point zy # 0 (|zo] < 1) lg(zo)| 1 = 1 i.e. [g(2)|
attains its maximum at an internal point and hence by the maximum modulus principle
g(z) = A, aconstant and that |A| = 1, so f(2) = Az.

Theorem 5.2 Let allD (0, 1). Then @, defined by

<1 0<[4<1 (56)

maps D (0, 1) onto p (O, 1).
Proof. Clearly, @, isabilinear transformation, it is analytic in the whole complex
1
plane except the point a (which is the inverse point of the point a with respect to
the circle |z| = 1, and hence lies outside |z| = 1). We observe that
z+a
9.(0,(2) = 12—
1-a
1+az
2
Z(1-[a)
1-ja"
=z = @ 4(f4(2), smilarly.
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Thus @, maps D (0, 1) onto D (O, 1) in a one to one way. Now let 6 be a red
number. Then

] eie_a
i0) —
(pa(e )‘_ 1—7e"°
€% -al|1 _eie—a_1
e —a e e _g

i.e, @ maps|zl=1on|z =1 Thus, @ maps p (0, 1) onto p (O, 1).
A maximal problem
Let a, B be two complex numbers with |a| < 1, |B| < 1 and f be analytic on
D(0, 1) satisfying f(a) = B. What is the maximum possible value of |f (a)| among
such mappings?
Solution : Let
9=¢ 0 f 0 @, where 0N is defined as in theorem 5.2 (57)
Then g maps D (0, 1) to D (O, 1) and satisfies
900 = @ff(e. (0)}
9, {f(o)}
= ¢, (B)
=0
Thus g satisfies all the conditions of Schwaz's lemma and hence [g1(0)| < 1. To
obtain an explicit form of g3(0), we use (57) and apply the chain rule

g'(0) = {(@,00" (9(0)} ¢"(0)
= (9,001 (o) (1-aP)
= @(f(a))f* (a) (1-of?)
@ (B (a)(1-al?)
1-jaf
1-pf
But |gX(0)| < 1, therefore

fi(a)

2 1B’
F(o)] < jaf (58)

Equality in (58) occurs only when [g! (0)| = 1. In that case by virtue of Schwarz
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lemma there is a constant A, [A| = 1 so that g(z) = Az. Hence,

f(2) = o4{ro,(2)}, z 0D (0, 1) (59)
We now present an important conseguence of Schwarz's lemma, which may be
seen as the converse form of theorem 5.2.

Theorem 5.3: Letf: D (0,1) - D (0, 1) be any conformal map of the unit disc
onto itself and f(a) = O, alID (0, 1). Then there is a constant A, |\| = 1 such that

f(z) = MA@, (2) where @, is defined as in theorem 5.2.

Proof. Since f is a conforma map from D(0, 1) to D (0, 1), we can have inverse
of f, g defined by

9{f@)} =z
which is analytic too. Applying the chain rule
g'0) 1 (@ =1 (60)
But according to inequality (58), f and g have to satisfy
1
1
HEE e 9"(0) <1-[a° (61)

(since, f(a) = 0 and g(0) = a).

From (60), (61) it follows that [f1(a)] = (1 — |al?)-2. Hence applying the result (59)
we find that

f(2) = Aps(2)

for some A with ]\| = 1.

Lemma 5.1 : Let G be a simply connected region and {f,} be a sequence of
injective anaytic mappings (conformal mappings) of G into ¢ which converges
uniformly on every compact subset of G, then the limit function f is either constant or
injective.

Proof. Suppose f is not constant and not injective. Then there exist two points ¢
and nOG, ¢ # n such that f(¢) = f(n) = wy, Say.

Let g,(2) = fy(2) — wp. We can find a positive 9, & < |¢n}/2 so that the discs
D(c, d) and D(n, d) are included in G. Now g(z) = f(2)—wy, never vanishes on the
circles |z — ¢ = & and |z — n| = &, where 9(2) =1img,(2). Applying Hurwitz's
theorem, for large n, there exists ¢, lying inside the circle [z — ¢| = & with g,(g,) =
0 as g, — g uniformly in G. Similarly, for al large n, there is n, within |z—n| = &
with gn(nn) = 0. But by construction, D(¢, ) n D (n, ) = @ and hence ¢, # n,. Thus

On(Gn) = gn(Nn) =0, G # N,y

that is, fo (G) = fn (W), Go # Nh
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contradicting the injectivity of each f,, and the proof follows.

NOTE : There is no conforma map f of the unit disc D (0, 1) onto the whole
complex plane ¢ because then the inverse function f*: ¢ — D (0, 1) would be a
bounded entire function which is not constant, contradicting the Liouville's theorem.

Open mapping theorem : Let G be aregion and suppose that f is a non-constant
analytic function on G. Then for any open set U in G, f(U) is open.

Proof : Omitted.

Uniform boundedness : A sequence of functions {f,} defined onaset D issaid
to be uniformly bounded on D if there exists a constant M > 0 such that [f,(2)] < M
for al n and for all z[D.

Normal family : Let F be a family of functions in aregion G. The family F is
said to be normal in G if every sequence {f,;} of functions f,,[JF contains a subsequence
{f.} which converges uniformly on every compact subset of G.

Montel’stheorem : A family Fin H (G) isnormal if and only if F is uniformly
bounded on every compact subset of G.

Proof : Omitted.

Theorem 5.4 : [Riemann Mapping Theorem] Let G be asimply connected region,
except for ¢ itself and let alJG. Then there is a unique conformal mapf : G - D
(O, 1) of G onto the unit disc which satisfies

f(@) = 0 and f1(a) > 0.
Proof. Let us first prove that f is unique. If there was another conformal map
g: G - D (0, 1) with the given properties, then
fogl: D (0,1 - D (0, 1)
would be a conformal map and also
(fog™) (0) =f(a = 0
Hence, applying Theorem 5.3, we find that there is a constant A with [A| = 1
(fog—1) (2) = Az
Deriving the derivative at the origin, we find
oY (0 = £ (a N (O (LY (O)= 1 _f@,
(fog™)'(0)=1'(g™)(0)(g™) (0)= f'(a) 7(0°0) 9@

from which it follows that A is positive. But also \| = 1, so A = 1. Thus
fog? is an identity map and f = g.

The proof of existence is divided into several stages.

Lemma5.2 Let G be asimply connected region other than ¢. Then there exists
an injective analytic map f on G with f(G) O D (0, 1).

Proof. We choose a point b Og\G. Since G is simply connected there exists a
g: G - ¢ analytic with g3(z) = z - h.
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Here g is injective since

9(z1) = 9(z2)
O 94(z1) = & ()
i.e. z1—-b=2-Db
U Zl = 22.

By open mapping theorem g(G) is open. Let us pick wyg(G) and chooser > 0
so that D(wy, r) 0g(G). Then D(—wy, r) O ¢\g(G). For, if there exists a point w[]
D(—wy, 1) n g(G), then w = g (z4) for some z;JG and also —w[D (wy, 1) O g (G),
so that —w = g(z,) for some z,0G. Again,

9(z1) = 9(z)

O 9%(z1) = ¢*(22)
or, z1-b=2z-D
i.e. 21=2
or, 9(z1) = 9(z) = -9(z0)
O 9(z1) =0
O 0=0%z) =z,—-b
i.e. z; = bOC\G
contradicting z;JG.
We take 1) L F— — (62)

~ 29(2) + @]
Then f isinjective analytic map on G (by construction |g(z) + uy| =r for zOG)

1
and also satisfies [f(2)| <3 <1forz OG.

Lemmab5.3: Let G be asimply connected region other than ¢ itself and let al1G
be fixed. Then there exists a conformal map f : G - D(0, 1) of G onto the unit disc
with the properties f(z) = 0 and f(a) > O.

Proof : Let F denote the family of analytic functionsf : G - ¢ such that either
f =0 orfisinjective, and f(G) U (0, 1), f(a) = 0 and f' (a) > O.

Let us consider the function

f(z)-f(a)

YO i@
where f(z) is given by (62) of lemma 5.2 and we find that ¢(G) O D (0, 1), y(a)
=0and Yi(a@) > 0. So F isnon empty and by Montel’s theorem it is normal. Applying
Lemma 1 we see that all functions in the closure of F in H(G) are either constant or
injective. Now since al functions in F take the value zero at a, the same is true for
all functionsin the closure of F. Likewise the only constant function in the closureis
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0 while the other functions in the closure satisfy f(G) U p (O, 1). Since f(G) is open,
by open mapping theorem, f(G) [0 D (O, 1). Again since the f — f1(a) is continuous,
all functions in the closure of F must satisfy f1(a) = 0. The functions in the closure,
that are not identically zero, areinjective, so f1(a) > 0 unlessf = 0. These observations
prove that the set F is closed in H(G). Hence F is compact in H(G).

Sincethemap f - f'(@) : F -~ R is a continuous function on a compact set, it
must attain its maximum value, as we are not considering constant function (here it
IS zero). Let fOJF be a function with f'(a) maximum.

We now show that f(G) = D (0, 1). On the contrary, suppose that f(G) # D (0, 1)
and choose w1 D(0, )\f(G). Using the property that every non-vanishing analytic
function in a simply connected region has an analytic square root, we take a function

h OH(G) with
f(2)—w

1-of (2)

[h(@)I = (63)

Now as the bilinear transformation ¢, (z) = 12;_‘5‘ maps D (0, 1) onto D (O, 1)
—az

and as fOF, h(G) O D (0, 1).
Let g: G -~ ¢ defined by
_Ih'(@)] Jh(z)-h(a)
h'(a) 1-h(a)h(z)
Then clearly, g(G) OO D (0, 1), g(@ = 0 and g is analytic injective and g'(a) >
0, since

9(2)

_ @) (@0 |h(a)’]
h'(@ — [1-|h(a)’]?

= ‘hl—(a)‘z > O
1-|h(a)|

g'(a)

(64)

So, gUlF.

Again, differentialing (63) we find that
2h(a)h(a) = f1(a)(1-cof?)

So, from (64)

|h(a)”h1(a)‘ :fl(a)(1—|w|2 -
Ih@|@-|h@)]* 2Vwld-|d)’ as [h(@)[]2 = |o]
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_ @1+ o)
2Jw

contradicting the choice of fOJF as maximising f1(a). Thus f(G) = D (0, 1).

Note : The Riemann mapping theorem is one of the most celebrated results of
complex analysis. It isthe beginning of the study of complex analysis from a geometric
view point. G. F. B. Riemann in 1851 correctly formulated the theorem, but
unfortunately his proof of the theorem was lacking. According to various accounts, he
assumed but did not prove that a certain maximal problem had a solution. A final proof
was definitely known by the early 20th century, different sources attributed to it
particularly, W. F. Osgood, P. Koebe, L Bieberbach etc.

>f1(a).

5.2 The Schwarz Reflection Principle

Let f be analytic in the domains D4, D, which have a common piece of boundary,
a smooth curve y. Assume further that f is continuous across y. Then, by Morera’'s
theorem, f isanalytic in D, J D,. This allows us to perform analytic continuation in
Some Cases.

Theorem 5.5 [The Schwarz reflection principle] Given afunction f(z) analytic in
adomain D lying in the upper half plane whose boundary contains asegment | [ IR,
assumef iscontinuouson D [J | and real-valued on |. Then f has analytic continuation

across I, inadoman D O | U D*, where D* ={zz OD}.

Proof. Let us consider the function
UDUI

f(z) = @, z
f(z)'zOm Ul

It is clear that F is analytic in D. We shall show that F is aso analytic in D*.
Letzand z + hliewithin D*. Then z and 3 + 1 liewithin D and we can express.

Rz+h-F2) _ . fz+h)-f() _ ”m|:f(2+ﬁ)—f(2)}:f,(z).

lim m

h-0 h h-0 h h-0 h
So, F is anaytic in D*. F is aso continuous on D*U I.
For,z I

limF(z) = limf(z) =f(x) =f(x),
by hypothesis. Thus F is continuouson D U | U D*. To prove F is aso analytic
there, we consider the function
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r ®2) =2de jr% dg (65)
ItisanalyticinD U | U D* [as (i)

F(Q)

-z is continuous function of both

variables when z lies within ' and ¢
onrl.

F(C
(ii) for each such C’£ is
analyticinzinD U | U D*. [see (14)].
To complete the proof, we try to establish @(z) = F(z) for al ze D U | D*.

Breaking the integral in (65) and adding the two integrals along |, which are in
opposite directions, we write
_ 1 K9 1 K9
<P(Z)—2—mjr1;dc +2_er2§ dg (66)
where ", and I, are the boundary of D U | and D* U | respectively. When z[ODUI,
the second integral in (66) vanishes and @(z) = F(z). Again, the first integral vanishes
when z € D* U | and @(z) = F(2) in this case too. Thus ¢(z) = F(z) for al zO D U
I U D* and we have found a function F(z), analyticin D U | U D*, and coincides with
f(z) inD U I.

5.3 The Schwarz-Christoffel Transformation

We know from Riemann’s mapping theorem that there is a conforma mapping
which maps a given simply connected domain onto another simply connected domain,
or equivalently onto the unit disc. But it does not help us to determine such mappings.

Many applications in boundary-val ue problem requires construction of one-to-one
conformal mapping from the upper half plane Im z > 0 onto a polygon Q in the
w-plane. Two German mathematiciansH. A. Schwarz and E. B. Christoffel independently
discovered a method for finding such mappings during the years 1864-18609.

Theorem 5.6 [Schwarz and Christoffel] Let P be a polygon with vertices wj,
...W in the anticlockwise direction and interior angles a; 1t oy Ttrespectively, where
-1 <ay, ..., 0 < 1. Then there exists a one-to-one conformal mapping of the form

f(z) = Aj: (5=X) XS =X,) L (S= X4 )0 s —1dS+B  (67)

92



where A, BOg, that maps the upper plane Im z > 0 onto the interior of P, with
f(X1) = Wieeenee. , F(Xe1) = Wiy, To0) = w. (68)

Remarks: (i) We do not need to have specific information on wy and a. While
travelling the polygon anticlockwise direction we made a left turn of an angle Tt
at the vertex .

(if) Sometimes certain infinite regions can be thought of as infinite polygons. In
this caseit is convenient to take w, as the point at infinity, as we need no information
on O.

(iii) It can be shown that Schwarz-Christoffel transformation can be uniquely
determined by three points as in the case of bilinear transformation. One of these is
used by taking f(c) = wy,. We can therefore have the freedom to choose two points
say, X1 and X, satisfying —o < X; < X, < oo,

(iv) Note that the integral involved may be impossible to calculate theoretically.
In practical problems numerical techniques are often used to evaluate the integral. In
first part of the proof we take f(x,) = wy, X = finite.

Proof. By Riemann mapping theorem such a mapping exists. We shall prove that
its form is given by (67). So f(z) is analytic for Im z > 0 and f(z) # O in the upper
half plane. From these it is clear that )

9 jogtr(z)= 112

dz f'(z
is analytic in the upper half plane. To const(ru)ct the function f(z) our aim is to
| establish that f"(z)/f'(z) is analytic for Imz >0
save for the pre-image points of the vertices of
w-plane the polygon lying on the real axis.

% Let | be a side of the polygon P, which
makes an angle 0 (positive sense) with the real-
axis and ¢ be any point on | but not a vertex of

Fig. 55 the polygon P. Then for any won |, (w—¢)e® is
real and there is a point z on the real axis of the z-plane so that f(z) = w and a
corresponding point z = a for ¢ on the same line. Hence
{f(2) - ¢e
Isreal and continuous on the segment y of the real axis of the z-plane corresponding
to the straight line | of the w-plane. Moreover, this function is also analytic for
Im z > O, thus following the Schwarz reflection principle we can continue this function
analytically across y to the lower half plane Im z < 0. In particular, this function is
analytic in a neighbourhood of the point z = a and can be expanded in the form of
the Taylor series.

)
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00

{f(z)-ge™” = thtk(z—al)k
where c; = f'(a) # 0, maintaining the status quo that f(a) = ¢ and the function f
maps the segment y onto the straight line |. Now
f'(z) = €¥c, + c,2(z—a) + ..}
and logf'(z) = i0 + log{c, + 2c)(z — @) + ...}

So, dilogfl(z) is analytic in a neighbourhood of z = aand real on areal line
z

segment intercepted by the neighbourhood.

Let us consider the case when the point ¢ is the corresponding point at infinity
ony (in this case y is divided into two parts, each of infinite lenght). Here the Taylor
series expansion in the neighbourhood of point at infinity

00

{(f(2)-ge™® = g c /z"

where each cg is real and ¢; # 0 (with the same reason mentioned in the finite
case). So

o G 26,
e

v e 2, 6BC, 12
f"(2)e e=—‘;1+Z—42 S

_ 2 &G
——;+;? (69)
pre logf*(2) isanalytic in aneighbourhood of the point at infinity and is real when

Zz is real.

In the polygon P, let y* be an adjacent side to ¢ making on angle a4t at their
point of intersection w;. The corresponding point of w; on the real axisis x;. Here
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the function f(z) is not analytic in a neighbourhood of x,, we choose the branch of the

argument so that
T 31
—<Arg(z—-x,) <—
5 <ATg(z-X,) <

introducing a branch cut along the axis {x; + 1y : y < 0} [f'(2) is not continuous
on this branch cut].

new position after
rotation through an
angle 6 clockwise
Q.
0'\/
1 ,W
A S «
AN

Fig. 56 Fig. 57

Here Arg { (u;,— w)e7%} is equal to zero or a;Ttaccording as w lieson ¢ or yt.
So the function
[{o, ~f(2)}e 1"
is real and continuous on the segment of the real axis corresponding to the
consecutive sides ¢ and yt. Again this function is analytic for Im z > 0 since

f(z2)—w, is anaytic and non zero there.
Expanding [{oo1 —f(2)} e‘ie]ﬂa1 in Taylor’s seriesin a neighbourhood of x; we find

[0, ~f (2} ™ = gck(z—xl)k

where each ¢, isrea and ¢; # 0. On simplifying, we find
f(2) =w, —€°(z—x))“[c, +C,(z—X,)+..]"

=, +€%(z—x)" S . (z—x,)"
where ¢yl is a constant multiple of ¢4, :hence not equal to zero. Now we have
f'(2) = eie(z—xl)“l‘l[alcol +(a, +1)cll(z—x1)+...]
= (2 = xR (2)
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where F(z) is analytic and not zero in a neighbourhood of z = x; and we obtain
a, -1, F'(2)
z-%x, K2

d, o1 \_
Elogf (2) = (70)

d
This shows that if the polygon P has an angle ayTtat apoint w; then logf'(z)
will have a ssimple pole of residue a;—1 at its corresponding point X;.

Now if the point at infinity be the corresponding point to w,; a which the polygon
P has an angle a1, then we can express

o -f@)e] ™ =2+ 4.

z z
o c M c
or f(Z):(L)l—ele el 1+O(1—2+...
’ i zc,
W o™ c e\ a.c
f'(z2)= +€°, 2 |1+a, 2 +..|-€9 2| |-——22_
1 o+l 1 2
z% zc, z z°c,

‘ o c
=% —L|1+(a, +) 2 +..
z ZC

o, +1
1

) + )
f"(z)= —e'ecl"ial(al1){1+(011+1)C2 +..}+e'9clcx ! {—(a1+1) 22 —}
zc z z°c

a,+2 o+l
VA 1 1

: +
=—€%" .0, *+1) {1+ (a, +2) 2 +}
zc

o,+2
z 1

d f"(z) a, +1 c c
—logf'(z) = =—— 1+ (a, +2) = +..q1—(a, +1) = +....
dz' (2) f'(2) z { (o )zcl H (% )zcl }

+
=% 1{1+(0(1+2—0(1—1)02+....}
z zc,

a,+1 &G
— Z? (71)
Now since X,, Xz..., X, are the corresponding points lying on the rea-axis of the
z-plane, to the vertices ws,, ws, ...w, respectively of the polygon P with angles a,m,
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d .
Q4T ... Oy Tt there, the function E|ng1(2) will have simple poles with residue o;—
latxj,j=2, ..,k Thuswe seethat thisfunctionisanalytic for Im z > 0 and continuous
on Im z = 0 except the points x4, X,, ..., X, and using the Schwarz reflection principle
d
it can be continued analytically across the real axis. Hence E|ng1(2) POSSESSES
only simple poles at x4, X», ... X, &s its only singularities and can be expressed as
a, -1 ey -1 +m+a «—1
Z—-X, Z-X, Z—X,

d o
49 (D)= +G(2) (72)

where G(z) is a polynomial.
When |z] is large enough

2
%G-l_a ‘1(1+ﬁ +X—;+...],i =1,k
Z—X, z z z

So, 109P(D)= 3 (@, -1 7+ x(a, )17 +3 1@, -1/ 7' +.46(2)

=—3+2$+G(2) (73)

y4 Z

Using the property of the sum of the exterior angles of a polygon, (1 — aq) T+
Q-oayrm+ ... (1 —a)mt=2r Comparing (73) with (69) we get G(z) identically zero.
Finally integrating equation (72), we find the desired mapping f(z) as

f(z)= ALZO (5—X) " (s=X,)" (5= X, )+ ds+B (74)

Role of constants A and B

(i) JA| controls the size of the polygon

(if) Arg A and B help to select the position, if any, in determining orientation and
tranglation respectively.

An useful observation

In some occasions we urge to make the evaluation process of the integral in (74)
simple. For this sake, we consider the point at infinity corresponds to the vertex wy
where the polygon P has an angle o, . Then we can express [see eg. (71)]

d a,-1 &¢
—loaf(z) = k= =
Y (2) . +Z Z. (75)
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in the neighbourhood of the point at infinity.

d
Again considering the expression of E|ng1(2) in the neighbourhood of the
points corresponding to the vertices wy, W ..., W,_1 [See eq. (70)].

d a,-1 a,-1 a,, -1
—logfi(z)=2+—+—2 "+ .+ ~+G(z
dz 9t (2) Z—X, Z-X, Z—X, 4 (2) (75%)
where G(z) is a polynomial. If |z| is large enough, proceeding as earlier
k-1 k-1 k-1
%Iogfl(z) = Z(O(i -1/ Z+Z x.(a, =1)/z° +in2(0(i -1)/72° +G(2)
— cxk +1+ - i +
=— —++G
- Z ++G(2) (76)

Comparing (76) with (75), G(z) turns out to be identically zero and hence
integrating (75%) we obtain

(2)= Af (53 (5-x)" (5, )''+" s+ 8

where the role of the constants A and B remain as before.

5.4 Examples : Triangles / Rectangles

The Schwarz-Christoffel transformation is expressed in terms of the points x;, not
in terms of their images i.e., the vertices of the polygon. Not more than three points
(X;) can be chosen arbitrarily. If the point at infinity be one of the x;’s then only two
finite points on the real-axis are free to be chosen, whether the polygon is a triangle
or a rectangle etc.

Triangle

L et the polygon be atriangle with vertices wy, w, and ws. The S-C transformation
IS written as

w=A LZ (S—X,) " (S—X,)* 2 (S—X,)* "ds + B (77)

where a4, Tt, 6Tt and a5t are the internal angles at the respective vertices.

z-plane -
w-plane Ws
| } } 3

X1 X2 X3 4Tt

Wy as
Wa

Fig. 58 Fig. 59
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Here we have chosen all the three finite points x4, X,, X3 on the real-axis.
The constants A, B control the size and position of the triangle respectively.
If we take the vertex w; as the image of the point at infinity, the S-C transformation
becomes
w = AJ;Z (s—%,) " (S—X,)""ds+B (78)
Here x; and x, can bia chosen arbitrarily.

Example 1 : Find a Schwarz-Christoffel transformation that maps the upper half-
plane to the inside of the triangle with vertices —1, 1 and V3i.

Solution :

V3i

Fig. 60

-1 1
Fig. 61

Following our notation, we write w; = =1, w, = 1 and w3 = V3i o that a; =
0, = 03 = 1/3. We choose the form (78) of S-C transformation and consider the
mapping.
f(z)= A joz(s—xl)‘z’s(s—x2)‘2’3ds+ B, [here f() = V3i]
We may choose x; = -1 and x, = 1, so that f(-1) = -1 and f(1) = 1. Therefore
f(2)=A[ (s+1)™(s-1)ds +B
= A joz(s2 ~1)?3ds+B
It then follows that
=A jo‘l(s2 ~1)?*ds+B =-1 A jol(s2 ~1)?*ds +B =1
Rewriting these as
~AL+B=-1andAL +B =1, whereL =[(s’ ~1)*ds

We obtain A :;and B =0. Hence

i ~1*ds
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1 z
f — 2_1—2/3d
? Ll(sf—l)*’Sdsjo T

Example 2 : Using Schwarz-Christoffel transformation map the upper half-plane
onto an equilateral triangle of side 5 units.

Solution :

W3

wlg
wlg

[w, Wo
Fig. 62 Fig. 63

It is convenient to choose three arbitrary points x; = —1, X, = 1 and X3 = o which

are mapped into the vertices of the equilateral triangle, so we take S-C transformation
(78).

f(2)= A (s+1)*(s-1)*ds
Here, f(-1) = w; = 0 and f(1) = w, = 5. So that
A=5/[ (¢-1ds
Hence the desired transformation is
J) (£ -1)*°ds
[ -1*ds

Alternative : We take z;= -1, A = 1, B = 0 and find S-C transformation as,
(choosing one of x;'s as point at infinity)

w = [ (s+1)(s-1)**ds (79)
taking x; = -1 and x, = 1.

f(2)=

Then (1) =W, say, and theimage of the point z = —1 is the point W, =0. When
z = 1 in the integral we can write s = X, where -1 < x < 1. Then x + 1 > 0 and Arg
(x+1) = 0, while |[x-1| = 1-x and Arg (x-1) = Tt Hence

W, = E(X +1)%3(1- x)*%e" P
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=gt X w2
- j_l(l_x2)% -—F€ jo(l—xz)% dx

_ w3t dt
-—€ Iom substituting x = Vit.
2'3

k =5/ 8(1,1).
2'3

— iT/3 1 1 ~
=—€ "Bl .5 | We choose w, as, w, =kw, =5 where

To find wj let us first calculate for w,.

V—\\'/3 = j:(X +:|_)_2/3(X _l)—2/3dX
= J-_ll(X +1 —2/3()( —1)—2/3dx +J-:o (X +1)—2/3(X _1)—2/3dx
i 11 i s
= _emsB(E’é) +e ,[_1(|X +]j|x _]D dx

<o 5.2 ) e (x +ax-1)

-+ e—iT[+i%+i2—3TI _M‘X +1$—2/3e—i%lx

-2/13 __on
) _1J e2Tu/3dx

-+ e1n/3J“1°° (x +1)_2/3(X —1)_2/3dX
Now, the value of w, can also be represented by the integral

j:m(x +1)?3(x —1)#%dx when z tends to infinity along the negative rea axis. Thus

from the above relation, we have

W, = _ems(l,}) +6"™,
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Therefore, the three vertices of the equilateral triangle are w, = 0, w, = 5 and
w3 = 5e™3, Clearly each of it's side is of length 5 unit. The desired transformation
IS then

f(2)=Kf(2)
_ UL

which is same as obtained in the first process.

Remark : Following the above technique we can determine a S-C transformation
from Im z > 0 onto a triangle, in particular, whose one side opposite to an angle is
given.

Rectangle :

Example 3 : Find a S-C transformation that maps the upper half of the z-plane
to the inside of the rectangle in the w-plane with vertices —a, @, a+ ib and —-a + ib
which are the preimages of —1, 1, a and —0 respectively.

[ (s+2)%%(s-1"%s

Solution :
y —a+ib v a+ib
] ] 1 1 X Fu
-2 -1 0 1 2 —-a 0 a
Fig. 64 Fig. 65

Let us first make the identification of the vertices of the rectangle
w; = —a+ib, w, = —a w3 = a w, = atib
01 =0,=03=04 =12
We choose
X1 =0, X =-1,X3=1, x4, =0
where a > 1 will be determined later. We are attempting to benefit from the
symmetry here, which requires the image z = 0 to be w = 0. So taking z, = O we get
B = 0 in the formula (74) for S-C transformation, which reduces to

f(z)= Aj:[sm)(s +1)(s—1)(s—a )] “2ds
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z ds
=A (=
b raser—a

The constant A may be found by using the fact that f(1) = ai.e,,

@z, 0)) (80)

1 ds 1 ds
=A A =al
i jo\/_[(1—~°»2)(0t2—~°f)] ornse jo\/_[(l—sz)(az_SZ)]
= alg(a), say (81)
To find a, we apply f(a) = a + ib,

. a ra ds

b=
atl <p(0() jo \/_[(1—82)(G2—52)]

_ a {Jﬂ ds +iJ-a ds }
®0) |0 [1-)a* )] [(§-D(@*-s)]
from which, equating imaginary parts, we arrive at

_ (o ds
D)= o o a9

Since a and b are known, this equation determines a, which gives rise to the
evaluation of @(a) i.e. A is completely known.

Note : The function @(z, a), given in (80), which involves z as the upper limit
of anintegral, iscalled an dliptic integral of thefirst kind and it is not an el ementary
function. The real definite integral @(a) in (81) is called a complete dlliptic integral

of the first kind.

Example 4 : Find a Schwarz-Christoffel transformation that maps the upper half
of the z-plane to the vertical semi-infinite strip —172 < u < 172, v > 0 of the w-plane.

Solution :

0, RS
/ 4 ~ N, > ~
tip 0l IS~ 27
/ // ’Z-plan;, 1 s < ~ w-plane I <
// / /7, N \\
L0, s, 2 ~hoNT
// / // / // ~ \\\I ~ N
S ] NNTSE NN
—© ©- T 01 m
-1 1 2 | 2
Fig. 66 |
|
Fig. 67
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Here we take x; = -1, X, = 1 and X3 = o and the image points are w, = —T72
and w, = 172 respectively, so that a S-C transformation can be written as

f(z) = Aj; (s+1)“2(s—-1)“2ds+B
a1
:Klog(iz\/1—22)+§

Using 1‘(—1):—]2T and f(l):g, we find

f(2) = -ilog(iz ++1-2°),

Choosing a suitable branch of the logarithm.
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Unit 6 O Entire and Meromorphic Functions

Structure

6.0 Objectives

6.1 Entirefunction

6.2 Infinite Products

6.3 Infinite product of functions

6.4 Welerstrass Factorization

6.5 Counting zeros of analytic functions

6.6 Convex functions

6.7 Order of an entire function

6.8 Thefunction n(r)

6.9 Convergence exponent

6.10 Canonical Product

6.11 Hadamard’'s Factorization Theorem

6.12 Consequences of Hadamard’'s Theorem

6.13 Meromor phic functions

6.14 Partial Fraction Expansions of Meromor phic Functions
6.15 Partial Fraction Expansion of Meromor phic functions Using Residue theorem
6.16 The Gamma Function

6.17 A few properties of I'(z)

6.0 The Objectives of the Chapter

In this chapter we shal study entire functions, their growth properties and meromorphic
functions. Infinite products and their convergence will be discussed. Properties of zeros of
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an entire function, convex functions, gamma function and its important properties will
aso be discussed.

6.1 Entire function

A function f(z) analytic in the finite complex plane is said to be entire (or
sometimes integral) function. Clearly, the sum, difference and product of two or more
entire functions are entire functions.

Examples : The polynomia function P(z) = gy + &z + ... + a,z", exponentia
function €z, sin z, cos z etc. are entire functions.

Let us consider the first example, the polynomial function. It is evident that P(z)
can be uniquely expressed as a product of linear factors in the form

Z VA Z .
All-Sl1-2]..[1-2if
O e R e AL
or,

Apzp(l_i](l_i}..(l—i} if ao =a = ap_l :O’ ap ;tO, (82)
G Gz n-p

where Ag(or, Ap) is constant and z = z3, 2y, ..., Z,(0r, Z =0, Gy, Gy, ..., Gyp) A€
the zeros of P(z), multiple zeros are counted according to their multiplicities. There
arises a natural question : whether any entire function can be expressed in a similar
manner in terms of its zeros. The observations are as follows :

(i) There may exist entire function which never vanishes,

(if) If an entire function possesses finite number of zeros, then it is always
possible to express it in the form (82) stated above. But when the number of zeros
are infinite the form (82) reduces to a product of infinite number of linear factors
which need not always be convergent. We first consider infinite products of complex

numbers and functions.

6.2 Infinite Products

An infinite product is an expression of the form

00

[]Pa (83)

n=1
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where py, P2, - Pn --- &€ NON-zero complex factors. If we allow any of the
factors be zero, it is evident that the infinite product would be zero regardless of the
behaviour of the other terms.

Let Pn = p1P2---Pn-
If P, tends to a finite limit (non-zero) p as n tends to infinity, we say that the

infinite product (83) is convergent and write as

[1p. =P (84)
n=1
An infinite product which does not tend to a non-zero finite limit as n tends to
infinity is said to be divergent.
To find the necessary condition for convergence for the infinite product |_| Pn, say
n=1

(84) holds, then writing p, as

P = it
" Pn—l
. . . P, _P_
we conclude in view of (84) that limp, = lim P” "5 =1
n= n=e n-1
Thus, limp, =1 (85)

n- oo

is a necessary condition for convergence of the infinite product (83). It is then
better to write the product as

00

Ma+a,) (86)

so that a, - 0 as n — o is anecessary condition for convergence.
Theorem 6.1 : The infinite product (86) converges if and only if

z log(1+ a,) (87)

converges. We use the principal branch of the log function and omit, as usual, the
terms with a, = —1.

Proof. Let P, = !‘| (l+a)andS, :Zlog(l +a,).
=1 =1

Then log P, = S, and P, = e>. Now if the given seriesis convergenti.e. S, - S
asn - oo, P, tendstothelimit P=eS (# 0). Thisprovesthe sufficiency of the condition.
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Conversely, assume that the product convergesi.e. P, - P (#0)asn - «. We

shall show, by virtue of P, = e, that the series (87) converges to some value of log
P, not necessarily the principa value of log P.

P P
n- o, landLog |- O
For P g( P)
Now there exists an integer K,, such that
Log(P“) =S -LogP +2k i
P n n (88)

To establish the convergence of the sequence {k,}, we form the difference

(Kpoy — k)27 = Log(P;l] - Log(PF:) - Log(1+a,.,)
P P
= iJArg ™ |- Argl " | - Arg(1+
'{ rg( P ) rg( P) rg( an+1)}

ko —kn {Arg[P““) ~Arg % )~ Argid + am)}

and that

21 P
tends to zero as N — o, and let the limit of the sequence {k,} be k.
Taking limit in (88), we find that
S, — LogP - 2kri

and so the condition assumed is necessary.

Definition : An infinite product [] (1+a,) is absolutely convergent if and only
n=1

if Zl|log(1+ a,)| is convergent.

Theorem 6.2 : The infinite product (86) converges absolutely if and only if the

series ) @, converges absolutely.

Proof : If 3 a, converges absolutely, then in particular a, — 0 asn - . Also,
if ilog(1+ a,) converges absolutely then log(l+a,) - Oanda, — 0. Thus in
n=1
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either of the cases a, — 0 and we can take |a,|< % for sufficiently large n. Then by
elementary calculation,

_log(1+a,)
a,

a, _a
2 3

1

1 2 3 1
SE{‘an‘-l-‘an‘ +la,| +} SE’ n = large enough. It follows that

1 3
Slanl<log(+a,) < Jay|

confirming the occurrence of the absolute convergence simultaneoudly for the two
series.

6.3 Infinite product of functions

So far we have considered infinite product of complex numbers. Now we shall
study infinite products whose factors are functions of a complex variable. Some of the
factors (finite in number) may vanish on aregion considered. In that case we consider
the infinite product omitting those factors. The theorems proved earlier hold good in
this case too with some modifications.

Definition : (Uniform convergence of infinite products)

An infinite product
L_!{l +a,(2)} (89)

where the functions a,(z) are defined on a region D, is said to be uniformly
convergent on D if the sequence of partial products

n

P.(2) = Dl{l +a,(2)}

converges uniformly to a non-zero limit on D.
Theorem 6.3 : An infinite product (89) is uniformly convergent on a domain D

if the series » [8,(2)] converges uniformly and has a bounded sum there.
n=1
Proof : Let M be the upper bound of the sum z|an(z)| on D. Then

{|1+ ai(z)|} {1 + |a2(z)|} . {1 + |an (Z)|} < @a @@+ (D] < M
109



Let us consider the sequence {Q,} with
Q,(2) = [+ @)

We observe
Q.(2) - Qua(2) = {1 +[a (2L +la, (2]} {1 Ha, 2 (2]}, ()
<€"la,(2)
Now sincethe series ¥ |a, (2)| isuniformly convergent, the series ${Q, (2) - Q,,(2)}
isuniformly convergent. Thus the sequence { Q,,} tendsto alimit. Again

P.(2)-P.(2) £Q,(2) -Qu4(2),

30 the result follows.

Theorem 6.4 : An infinite product ﬁ{1+ a,(2)} converges uniformly and
n=1

absolutely in a closed bounded domain D if each function a,(z) satisfies |a,(z) <M,
for al z € D and M, isindependent of z and moreover ZM,, is convergent.

Proof : Given ZM, is convergent, so theinfinite product M = ﬁ (1+M,) converges
by theorem 6.2 i
Now, for n > m

Q.(2) - Q. (2) =|Q,, (Z)I

{1+ak(2)} 1\ (90)
Agan,

|_|{1+ a(2}-1= Zak(Z) +Za(z)a (2) +Za(z)a (2a(2)

m+1

42 (D)3, (D). 3, (2).
Taking moduli

|£|{1+ak(z)}—1‘ ZM +ZMM +ZMMM +

+..+tM M, .,...M

m+1

n

=T]@+M,) -1

m+1

Utilising thisin (90) we obtain

110



Q.- Q@[]+ Mk){ﬁl(““”k) _1}
:!ll(l-l-Mk)_ﬁ(l_*-Mk) (91)

Now asthe infinite product |'| 1+ M,) isconvergent, we choose m large enough so
1

that r.h.sin (91) isless than € and hence
Qu(2) — Qu(@)| < & whenn>m
Thus the sequence { Q,(2)} converge uniformly, since m depends only on €.
Finally, absolute convergence of the infinite product follows on utilising Th. 6.2
Example 1: Test for convergence of the infinite product

10-5)

Solution : The terms of the product vanishwhen z = +1 + 2, ... etc.
v 1
Here a,(2) = —5 and|a, (2)| s‘zz‘F

Now sincethe series y iz Is convergent, the given infinite product is uniformly and
n

absolutely convergent in the entire plane excluding the points z = +1, + 2, etc.
Example 2 : Discuss the convergence of the infinite product

(g2l

n

2
Solution : Let P,(2) = |'| (1 —%] and we consider a bounded closed domain D

k=1

which does not contain the points z=+1, %+ 2,... . The sequence {P,(z)} converges
uniformly in D (see example 1). Again let

ir-{eFfae oo 2 (-2

Froa@® = Fu@(1- -2 )

v R@=ROMFE.@=(1- % P

111



and obviously the sequences F,, F,, F, ... and Fy, F3, F5 ... converge uniformly in D.
Hence the given infinite product converges uniformly in D.
To test for the absolute convergence of the given product we notice that

Slal=f1eneg g 4 o v
2 2 3 3

and it is divergent since the series on the right is divergent and |z| is finite. Therefore
the given product does not converge absolutely.

Considering the theorem 4.4 on uniformly convergent sequence of analytic functions
[(14) Page-72] we get the following theorem :

Theorem 6.5 : If aninfinite product M{1 + f,(z)} convergesuniformly to f(z) ina
bounded closed domain D and if each function f,(z) isandyticin D, then f(z) isaso andytic
inD.

6.4 Weestrass Factorization

Theorem 6.6 : If f(z) isan entire function and never vanishes on C, then f(z) is of the
form f(z) = e9(, or, more generally, f(z) = ced®@, ¢ # 0, constant.

where g(z) is aso an entire function.

Proof : Sincef isentire and never vanisheson C, f1/f isalso entire and is thus the
derivative of an entire function g(z). [followsfrom Result 1, PG(MT) 02-complex analysis

[14, page-54]. Then

g
i g
.e. f' =fg'
Now, (fe9)' =f'e®-fg'e®=0
Hence, f(z) = ce8®@ proving the result.

Assume now that f possesses finitely many zeros, azero of order m > 0 at the origin,
and the non-zero ones, possibly repeated are &, ... &, Then

o122 |ao@
f(z2) =z Dl(l an]e

wheregisentire.

Thisisclear, sinceif wedividef by the factors which produce zero at the points z =
0, &, ..., &, we get an entire function with no zeros.

However we cannot expect, in general, such asimple formulato hold in the case of
infinitely many zeros. Here we have to take care of convergence problemsfor an infinite
product. In fact the obvious generalization.
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n z
f(z)=z"|1-= |e9®
w=r-2]

isvalid in abounded closed domain D if the infinite product converges uniformly
inD.
Theorem 6.7 (Welerstrass Factorization Theorem) :—

Let {a,} beasequence of complex numbers with the property a, — o asn - oo,
Then it is possible to construct an entire function f(z) with zeros precisely at these
points.

Proof : We need Welerstrass primary factors to construct the desired function.

22 zP
The expressons E(z,0) =1-2 E(z,p)=(1-2e > P,p=1,2.. aecaled
Welerstrass primary factors. Each primary factor is an entire function having only one
simple zero at z = 1.
z° z°
Now, when |z| < 1 we have, log E(z, p) = log (1-2) + z + E+~--+—

Y
Z2 Zp Zp+1 Z2 Zp Zp+1 Zp+2
=|l-Z-—— ../ .|t Z+E+...+— =

2 7 p p+l p)  p+l p+2
Here we have taken the principal branch of log (1 — z).
Hence if
Z s;, logE(z,p) <[2° +[27+...= 12" (1 +/2 +[2°| +.)

sZp+1(1+; . +) = 22" ©2)

We may suppose that the origin is not a zero of the entire function f(z) to be
constructed so that a, # O for al n.

For, if origin is a zero of f(z) of order m we need only multiply the constructed
function by z™m. We aso arrange the zeros in order of non-decreasing modulus (if
severa distinct points a, have the same modulus, we take them in any order) so that
lag] < Jao] < ... . Let |ay| = 1.

Since r, - o we can always find a sequence of positive inegers
r

my, My, ... My, ... such that the series z(
rn

n=1

mp
) converges for al positive values
of r.
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In fact, we may take m,, = n since for any given value of r, we have (%) < 2—1n for

n

all sufficiently large n and the seriesistherefore convergent. Next we take an arbitrary
positive number R and choose the integer N such that r, < 2R <r,,,. Hence, when

|zl < R and n > N we have,

igﬁgi<%andsoby(92),

an rn rN +1

log E(i,mn]
an

converges absolutely and uniformly when |z < R and so theinfinite product ﬁ E(i, mn]
n=1 an

mp+1

<2

By Weierstrass' M-test the series  log E(Z,mn]
n=1 a

n n

converges absolutely and uniformly inthe disc |z < R, however large R may be. Hence
the above product represents an entire function, say G(z).

2 z
Thus, G(2) = |‘|1 E(a—, mn] (93)

n

With the same value of R, we choose another integer k such that r, < R <r,,,.

n=1

Then each of the functions of the sequence [T E(i,mn], m=k+1k+2,...,
an

vanish at the points & ..., & and nowhere elsein |z < R. Hence by Hurwitz’ s theoroem

theonly zerosof Gin |z < R are &, ... &. Since Risarbitrary, thisimplies that the only

zeros of G are the points of the sequence {a,}.

Now, if originisazero of order m of the required entire function f(z), then f(z) is of
theform f(z) = z"G(2). Again, for any entire function g(z), €9 is also an entire function
without any zero. Hence the general form of the required entire function f(z) is

f(2) = 2"e"”G(2)

= 7Mg9® nlj E(ai, mn) (94)
2 mn
- Zmeg(z) rlf:ll(l — azn) ean+;[anj +...+min[;nJ (95)
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Remark : Asthere are many possible sequences {m,} in the construction of the
function G(z) and ultimately of f(z), the form of the function f(z) achieved is not unique.

6.5 Counting zeros of analytic functions

The rate of growth of an entire function is closely related to the density of zeros. We
have aquite effective formulain thisregard due to JL.W.V. Jensen, a Danish mathematician
who discovered it in the year 1899.

Theorem 6.8 [Jensen’s Formula] :—

Let f(z) beanayticon |z|< R, f(0) Z0and f(z) Z0on |z| = R. If &, ..., &, be the
zeros of f(z) within the circle |z| = R, multiple zeros being repeated according to their
multiplicities, then

logif (0) = %[jj"log\f (Re?)[db - Z |og(%]... (©6)
Proof : Let §(2) = f(2). !-| R ?:Z) : @

The zeros of the denominator of @(z) are also the zeros of f(z) of the same order.

Hence the zeros of f(z) cancels the poles &, in the product and so @(z) is anaytic on
Rz

lz| < R. Also, ¢(z) £ 0 on |z] < R. For, if R* =3,z =0 then Z:E is the inverse

point of g, with respect to the circle |z| = R and so lies outside the circle. Again,

2 = 2 —
oy [ R mR2| |RP-az) _
o(2)| |(Z)|‘R( —a)| |R@- ah)‘ Now, when |z = R
R°-az _|z-az _|4/z-3a_
wehave R(z-a,) "|R(z-3,) R z-a,

Hence, |@(z)| = [f(2)| on |z| =

Since @(z) isanalytic and non-zero on |z| < R, log ¢(z) isaso analytic on |z| < R and
consequently Relog @(z) = log |@(z)| is harmonic on |z] < R. Hence by Gauss mean vaue
theorem,

logl®(0)| = %[ joz”log\cp( Re®)de (98)

115



From (97) we have, |(p(0)| :|f (o)|% %%

Hence from (98) we get,

loglf ()| + Zlog(:(] zzlnj'jﬂlog(p(Reie)
de - Z Iog(lil]

(since |@(2)| = [f(z)| on |z] = R)

Note : We observe that Jensen’s formula can also be expressed as

do

1 ¢2n :
i e logf(0) =§[JO logf (Re®)

R" 1 con i
log——— =—| loglf (R€®)dB —loglf (0)|......
Rn 1 2T i0
or as, log = —j Iog‘f(Re )de —log|f (0)]...... (100)
r..r, 2m?°

where lal=r,i=1,..n.

Theorem 6.9 (Jensen’sinequality) :— Let f(z) be analytic on |z] < R, f(0) # 0 and
f(z) Z0on |z = R. If &, ..., &, be the zeros of f(z) within |z| = R, multiple zeros being
repeated according to their multiplicities, and [a| =1, i = 1, ..., n, then

R"[f(0)|
...l

n

where M(R) = max [f(2),.

[z=R

<M(R) (101)

Proof : Asin Jensen’s formula (theorem 6.8) we have, |p(z)| = [f(z)| on |z| = R and
so0 by the maximum modulus theorem, |@(z)| < M(R) for |z| < R. In particular,

l9(0)| < M(R)
RO

S

n

Theorem 6.10 (Poisson-Jensen formula) :- Let f(z) be analyticon [z| < R, f(0) 0
andf(z) #0on |z| =R. If & ... &, be the zeros of f(z) within thecircle |z| = R, multiple
zeros being repeated according to the their multiplicities, then for any z=re®, r < R,

< M(R).

R? - a,re®
R(re® —a,)

1 J‘ZT[ R? -

0y — r
Iog‘f(re )‘ " 2md R?Z+12 - 2Rrcos(t -

5 logif (Re" )|t —leog
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Proof : Let ¢(z) = f(z). !‘| RG a“ Then asin Jensen’s formulawe have, |@(2) |

=1|f(2)|on|z]=R. Since ¢(z) |sanalyt|c and non-zeroon |z| < R, log ¢(2) isaso analytic
on |z| < R and consequently log |@(z) | isharmonic on |z| < R.
S0, by Poisson’ sintegral formula,
R? —r?
0 R2+r —2Rrcos(t - 0)
R? -a re°

+Vlog— %
Zl 9 R(re® -a,)

Since log|@(2) | =log|f(z)| on |z| = R we get from (102)
R2 _ r2
0 R2+r —2Rr cos(t — 6)

log|g(re®)| = _n loglp(Re")[dt  (102)

Now, logg(re®)

= logf(re®)

logf (re®)| = —n loglf (Re")[d

- |097R2 ~ayre’
21 R(re® -a,)

6.6 Convex functions

(103)

The property of convexity plays an important role in function theory becausein severa
cases some | ead factors associated with entire, meromorphic and subharmonic functions
appear to be convex functions.

A real-valued function @ defined on the interval | =[a, b] is said to be convex if for
any two points s, uin [a, b]

@AM+ (L-ANs<Ap(u) +(1-A) @(s)for0 <A <1 (104)

Geometrically, the condition (104) is equivalent to the condition that if S<x < u, then
the point (X, @(x)) should lie below or on the chord joining the points (s, ¢(s)) and (u, @(u))
inthe plane.

Analytical condition for ¢(x) to be convex in [a, b] :- Let the coordinates of the
points A, B, C on the curvey = @(x) as shown in the adjoining figure be (s, ¢(9)), (u, @(u))
and (x, @(x)) respectively wheres< x < u.
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Equation of the chord AB isy — @(x) = % (x-9).
- y
o y=09+ 8" B-g oy g
B
Let the coordinates of any point D on the D(xy) (U, o)
chord AB be (X, y). According to definition ¢(x) A
will be convex if and only if CN < DN. i.e, if and (s¥(s) ¢ lix. a0
only if x) <y; i.e. if and only if ’
O(x) < @s) + AW~ ¢s) (x —9); i.e, if and only if
u-s S N u X
o< ¢+ qu) (106)
u-s u-s
fors<x <u.

We now state two results on convex functions without proof.

Result 1. A differentiable function f(x) on [a, b] is convex if and only if f'(x) is
increasingin [a, b].

Result 2. A sufficient condition for f(x) to be convex is that f"(x) > 0.

The maximum modulusfunction : Let f(z) be anon-constant anaytic functionin |z|
<R. Thenfor 0 <r < R we define the maximum modulus function M(r, f) or, smply M(r)
by M(r)= mex f(z). By maximum modulus theorem we can also write
M(r) = max [f(2)).

Result : Let f(z) be anon-constant analytic functionin |z| < R. Then M(r) isadtrictly
increasing functionof rin0<r<R.

Proof : Let0<ry <r,<R. Sincef(z) isanayticin|z| < r,, the maximum value of
|f(2)| for |z| < r,isattained on |z| =r,. Let z, beapoint on |z| = r, such that |f(z,) |
= M(r,). Similarly, the maximum value of |f(z) | for |z| <, isattainedon [z|=ry. Let 4
be a point on |z| = ry such that |f(z,) | = M(ry).

Sincer; <r,, z; isaninterior point of the closed region |z| < r,. Hence by maximum
modulus theorem,

[f(z1)] < M(rp); i.e. M(ry) < M(ry).

This proves the resullt.
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Corollary : Let f(z) be anon-constant entire function. Then its maximum modulus
function M(r) — w as |z =r - oo. For, if M(r) is bounded, then by Liouville's
theorem f(z) would be a constant function.

Theorem 6.11 [Hadamard' s three-circles theorem).

Let 0 <ry <r <rzand suppose that f(z) is analytic on the closed annulusr, < |z] <
rs. If M(r)= r‘rzl‘gx|f(z)|, , then

3 '3

M(r)log(”] < M(rl)log(r). M(rs)log(rrl] (107)

Proof : Let us consider the function ¢(z) = zof(z), where a isareal constant to be
chosen later. If a # aninteger, @(2) is
multi-valuedinr; < |z| < rz and sowe
cut the annulus along the negetive part
of the real axis. Thus we obtain a
simply connected region G in which

> <

the principa branch of @(z) isandytic.

Hence the maximum modulus of this f

branch of @(z) in G is attained on the / S X
boundary of G. Sincea isredl, al the M N Q

branches of @(z) have the same
modulus. If we consider another
branch of @(z) which is analytic in
another cut annulusit is clear that the
principa branch of ¢(z) can not attain
its maximum va ue on the cut. Hence
maximum of |@(z)| is attained on at least one of the bounding circles |z| = r, or, [z] = .
Thus,

z"f(z)‘ < max(rf M(r,), 15 M(r,)). Hence on || =,
r*M(r) < max(rfM(r,), ry M(r,)) (108)
We now choose a such that rM(r,) = ry M(r,). Then

_ _ log(M(r;))/M(r,))
log(r,/1,)

. Substituting this value of a in (108) we get,
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M(r) < (ri) M(r,)

1

log M(r;)
{5 s
rl rl

leQ(M(rs)/M(rl))

and SO M(r)log(rglrl) < (r ) M(rl)log(rglrl)

1

M log(r/ry)
That iS, M(r)log(r3/r1) < (%] ) M(rl)log(r3/r1) [SI nce 61'09 b = bIOg a]
rl

= |\/|(rl)log(ralr)_M(rS)Iog(r/rl)_

Note : Equality in (107) occurs when ¢(z) is aconstant, i.e. when f(z) is of theform
czo for somereal a and c is a constant.

Corollary : log M(r) is a convex function of log r.

Proof : Let f(z) be analytic in the closed annulus 0 < r; < |z| < 1o

If ry <r <r, we have, by Hadamard’s three-circles theorem,

M (r)'°%2" < M(r,)" %2’ M(r,)'°®"'"), Taking logarithms we get

(logr, —logr,)logM(r) < (logr, —logr)logM(r,) +

(logr —logr,)logM(r,). That is,
logr, —logr logM(r,) + logr —logr,
logr, —logr, logr, —logr,
The inequality (109) shows that log M(r) is a convex function of log r.

logM(r) < log M(r,) (109)

6.7 Order of an entire function

An entire function f(z) is said to be of finite order if there is a positive number
A such that as |z| = r — oo, the inequality M(r) < e* holds.
The lower bound p of such numbers A is called the order of the function.

f is said to be of infinite order if it is not of finite order. From the definition it
Is clear that order of an entire function is non-negative.

Result : Let f be an entire function of order p and M(r) = max{|[f(2)] : |z| = r}.
Then
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o= IirnSUIOIoglogM(r)
reo logr
Proof : By hypothesis, given € > 0 there exists ry(€) > 0 such that

p+e
M(r) <e" forr>r,

(110)

while M(r) > e”" for anincressing sequence{r,} of vauesof r, tending to infinity.

In otherwords,
10glogM(") _ 4 ¢ > 1, and (112)
logr
loglogM(r) oo
~loar gr p-¢€ (112)

for asequence of valuesof r — +oo0
(111) and (112) precisely means

b = limsup loglogM(r)

reoo logr

Example 3 : Determine the order of the functions.
()p@2) =ay+ayz+ ... + a;2", a, # 0. (ii) €2 k # 0.
(iii) snz (iv) cosvz
Solution :

() [p(2)] = [y +az +... +a,2"| <la| +[a[[4 +... +fa[|2"
Hence, M(r) = rlrzllgx|p(z)| <lay| +|ay|r +... +[a|r"

< r"(|Jag| +...+[ay]) (choosing r = 1. Since ultimately r — oo, the choice is
judtified).

= Br", where B =|a,| +... +|a,|. Hence
logM(r)<logB +nlogr<logr+nlogr (Takingr sufficiently large).
=(n+1)logr. Now,
D= IirnSUIoIogIogM(r) < IirnSUIOIog(n +1) +loglogr _0

Mo logr Moo logr
I.e. p <0. But by definition p >0. Hencep =0
(i) Here M(r) = ekir and hence

loglog M (r) :”msuplog(|k|r)

=limsu
P Irmp logr r.o lOgr
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(iii) We know that

22 2z
snz=z-—+— —--
3! 5l
and so
\s:inz\<\z\+ﬁ+ﬁ oo =r +—3 +r—5 +.. =sinhron |z <r
- 31 5l 3! 5l o
-€7€ Asoaz=irsnz=5"F andso|sinz|:e_e
2 2
r _ Ar r _Aa2r
HenceM(r):e € :e(l e”)
2 2
1-e? 1 1-e™
logM(r)=r+lo =ril+=lo

Therefore,

A2
Iiml()glog'vl(r):Iiml:l+log{l+1log(l © )}/Iogr}:l
r-e  logr ro r 2

So order of sinzis 1.

(iv) Following asin (iii) we find that the order of cos+/z = 1/2.

Let f(2) = Z a,z" be an entire function. We now state atheorem which will give us
n=0

order of f(z) in terms of the coefficients &, of the power series expansion of f(z).

Theorem : Let f(z) = Z a,z" bean entire function of finite order p. Then,
n=0

b = limsup -logn _ . -nlogn

——am IMsUp—————
o loga [ hee loga,|

6.8 Thefunction n(r)

Let f(z) be an entire function with zeros at the points &, &, ..., arranged in order of
non-decreasing modulus, i.e. [a,| <|a,| <---, multiple zeros being repeated according to
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their multiplicities. We define the function n(r) to be the number of zerosof f(z) in |z < r.
Evidently n(r) is a non-decreasing, non-negative function of r which is constant in any
interval which does not contain the modulus of a zero of f(z). We observe that if f(0) #

0. n(r) = 0 for r <|a|. Also, n(r) = nfor |a,|< 1 <|a,,,]|.

Jensen’s inequality can aso be written in the following form involving n(r).
Theorem 6.12 (Jensen’s inequality) : Let f(z) be an entire function with f(0) #

0, and &, &, ... be the zeros of f(z) such that |a| <|a,| < ---, multiple zeros being
, then

repeated according to their multiplicities. If [a,| < r <|ay,,

N

e a,

Proof : Let|a|=r,i=1,2, ..., and r beapositive number suchthat r, <r <r,,.
Let X;..., X, be the distinct numbers of the set A = {rq, ..., ry} where x; =14, ..., X,
= In- Suppose X; is repeated p; timesin A. Then, py + ... + p, = N. Also let t; = p;
+..+p, i =1 ..., m

We now consider two cases.

Case 1) Let ry <r. Then,
erdx = |im{jx2_£@dx +JX3_£mdx+...+Jxm_smdx} +f 109 e

X X X Xn o X

0 €0 | Jx X, X X

= [ ”E(X) dx < logM(r) - loglf (O) (113)

m-1 m

(since j:l_sr]()()()dx =0 asn(x) = 0 for 0 < X < xy).

e [ ] o o

=i Erg{[tl log x}:_8 +[t,log x]:_s +-- 4t log x]i:'f +[Nlog x]:N
= lim{t{log(x, ~€) ~logx} +t,{log(x, ~€) ~logx,} +
-+t {log(x,, —€) —logx_}] +N(logr —-logr,)
=t; (log x, — log xq) + t5 (log X3 — log xy) +...
+ thg (Iog X — 109 X1) + N(logr — log ry)
=pylog X —pylog xg + (P + p2) l0g X1 — (P1 + P2) 109 X2 +...+ (P1 +...% Pm—1)
logXm — (p1 +... Pm_1) l0gXm_1 + Nlogr — (p; +...%+ py) 100 X1y
=Nlogr — (p;logx; + polog %, +...+ py 109 X)

123



rN
=logr™ —logx§x$2---xPm =log————
og og 1 2 m g Xfl)(gz . ernm

rN
=log Thus,
ree Ty
; N
j@dleog ' (114)
0 X ‘aiaN‘

Case 2). Let ry =r. As before,

1109 gy = fim {JXZ'Et_ldXJ,...J,LXm‘”m_—ldX}

o X €01 X
m-1
=Zti(logxm—logxi)+tm(logr—Iong)

N

|ai. ay |
Thus in any case,

r N
J @dleog '

=log (Proceeding as in case 1).

0 X ‘ai...aN"BUtJen%n’SinaqualitygiVESUS
M)
|ai...aN| - |f (O)| - Hence,
r N
J@dleog ' <logM(r) ~logf (0).
0 X ‘aiaN‘

Theorem 6.13: If f(z) be an entire function with finite order p, then n(r) = O(re *€)
for € > 0 and for sufficiently large values of r.

Proof : By Jensen’s inequalilty,
jog dx < logM(r) - logff (0)| (115)
We replace r by 2r in (115) and obtain

ern(xx)dx <logM(2r) - logf (0) (116)

Since order of f(z) is p we have for any € > 0,
log M(2r) < (2r)p*e=Krp+efor all larger, K being aconstant. Hence from (116).
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2r N(X
Jo —(X ) dx <Ar®* for all larger, A being a constant independent of r. Since n(x)

IS non-negative and non-decreaing function of x, er nx) dx < '[Ozr ne) dx <
r X X
Are+¢€ and also J.zr@dx > J.zr@dx =n(r)log2
r X X

r

Hence, n(r)log2< _|'rzrn(xx)dx <Arf,

e, n(r) <|:£;2r°+8 for al large r. Hence, n(r) = O(re +€).

6.9 Convergence exponent (or, exponent of Convergence)

Let f(z) be an entire function with zeros at the points ay, &, ..., arranged in order
of non-decreasing modulus, multiple zeros being repeated according to their
multiplicitiesand |g| =r1;, 1 = 1, 2, ..., We define convergence exponent p, of the zeros
of f(z) by the equation

= limsup 29"
Py =limsup; - (117)
) . logn(r)
or, equivalently by Py = “mSUIOW (118)

The convergence exponent has the following property.

Theorem 6.14 : Let f(z) be an entire function with zeros at a, &, ..., arranged
in order of non-decreasing modulus, multiple zeros being repeated according to their
multiplicitiesand |a| = r;. If the convergence exponent p, of the zeros of f(z) isfinite,
then the series Zr_ﬂ converges when a > p; and diverges when a < p;.

n=1"n

If p; isinfinite, the above series diverges for all positive values of a.
1
Proof : Let p; be finite and a > p;. Then, P, <§(p1 +0).

logn

n

Hence,

<%(p1 +a) for al largen.
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1 .

“(py+a)

O logn<logrz™™, I-&
Py ot 2 _. .

n<r; ; or, oy r.ie,

1+97P o -
re > =n 9 =n™*? where p =9 7Ps >0.

nPL*a a +p1

Hence, 1 < %p for al large n. Hence,
ru n +

n

00

> iﬂ COnverges.

n=1 'n

Next, let o < p;. Then, Il °9N o o for a sequence of values of n, tending to infinity.
ogr,

That is, logn>logrd

1.1
or, —>— (119)
re n
for a sequence of values of n tending to infinity.
N
Let N be such avalue of n for which (119) holds and m be the least integer > o

Then, asr, isnon-decreasing,

m+l _m_m_1 o
" >r7 >N >§- Since N may be aslarge aswe please, by Cauchy’s principle
N N

=1
of convergence, the series z P diverges.

n=1 "'n

If py isinfinite, then for any positive value of q, Ilggrn > o for asequence of values
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of ntending toinfinity' i.e, n>rd for asequence of values of ntending to infinity. Hence

as before, the series z 1 divergesfor any positivea.

r‘lln

Note 1. Observe that p; may aso be defined as the lower bound of the positive

numbers a for which the series z 1 is convergent. If f(z) has no zeros we define

o0 nln

1
p; = 0 and if Zr_ﬂ diverges for all positive a, then p; = .

n=1 "'n

1
Note 2. If p; is finite, the series Z_ may be convergent or divergent. For

r‘lln

logn
example, if r, = n, then pl—llmsup% =1

=1
and H — - Z— diverges. Again, if r, = n(log n)2,

n=1"'n

then, p, =limsup logn and

n.o logn+2loglogn -

1 [ee]
z ~ converges.
e &l

>

n=1

Theorem 6.15: If f(2) isan entire function with finite order p and ry, 1, ...,

moduli of the zeros of f(z),

1
then Z_ converges if a > p.

=t n
Proof : We choose 3 such that p < 3 < a. Since for any € > 0,
n(r) = 0(rP*¢), n(r) < KrP
for al larger, K being a constant.
Putting r = r,,, n large, (120) gives N<Krf, i.e,

nve 1

JR— —<
r, >k1/B or, T

COnverges.
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arethe

(120)
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Corollary : Since convergence exponent p, isthe lower bound of positive numbers

1
a for which z — is convergent, it follows that p; < p.

r‘lln

Note : p; may be O or . For exampleif r, = e, p; = 0 and if r, = log n, then
p1 = . For the function f(z) = €%, p = 1 and p; = 0 so that p; < p. But for sin z or
cosz, p=p =1

Result : If the convergence exponent p; of the zeros of an entire function f(z) is
greater than O, then f(z) has infinite number of zeros.

Proof : If possible, suppose f(z) has finite number of zeros with moduli r...., ry. The

N
series Z » being of finite number of terms, converges for every a > 0. Hence

n=1 n
p1 = 0, a contradiction. Hence f(z) has infinite number of zeros.
Note : For an entire function with finite number of zeros, p; = 0
Example : Find the convergence exponent of the zeros of cos z.

T T3m 3T
Solution : First method : The zeros of cos z are <~ YT e

2' 22" 2
=1 (2Y (2 (2Y) 1
) [ S R R [ I
Now, 2 7z LJ &J LJ?

2\ 1 1 1 1 1
=2 — 1+—+—+..|. Th 4+ T+ 4.
Z(n)( F 5 ) NS T T3 Ty

converges when a > 1 and diverges when a < 1. Hence the lower bound of the

positive numbers o for which iﬂ convergesis li.e, p; = 1.

n=11,

Second method : The zeros of cos z are (2n + 1)5,

N=0, +1 +2 -..je & T 3m 3m
2 2 2 2
Tt o T 3
Let - — =—, ':—7’ ,
a = 5 y = Ty » & 5 a, 2
a, =(2n- 1)E =—(2n - 1)lT . Hence,
G4M=%=EG=M=%=ELur#M:a=
2 2 n n n




logn

(2n—1)g,--- Hence, p, =limsup

n.o 10T,
= limsup logn H:Iimsup Iogn
" log(2n-1) +log— e 2-= (L4 I
o ) 9, og{n( n)} o9
= limsup 11 =1
e Iog(z—)
1+ n +Iogn/2
logn logn

6.10 Canonical Product

Let f(z) be an entire function with infinite number of zerosat a,,n=1, 2, ... 8, Z 0.

. o 21
If there exists aleast non-negative integer p such that the series Z o IS convergent,

n=11p

z

wherer, = |a,|, we form the infinite product G(z) = |'| E(a ,p]. By Weirstrass' factor
n=1

n

theorem G(z) represents an entire function having zeros precisely at the points g,. We cdll
G(2) asthe Canonical product corresponding to the sequence {a,} and theinteger pis
caleditsgenus. If z=0isazero of f(z) of order m, then the canonical product is z"G(z).

Observethat if the convergence exponent p; # an integer, then p = [p4] and if p; =

an integer, then p = p; when i 1 isdivergentandp=p;—1if i 1 IS convergent.
p1 rP1

=l n=1tp
Inany case, p, —1<p <p, <p, Where p = order of f(z).

1

2
il

= in—lz is convergent while Zl = Zl
=1

n n=11p n=1 N

M s

Examples: (i) Let a,=n. Then

n

isdivergent. So, p = 1.
(ii) Let a, = e. Then p = 0.
We now state an important theorem without proof. The proof can be found in any

standard book.
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Borel’s theorem : The order of a canonical product is equal to the convergence
exponent of its zeros.
Example: Find the canonical product of f(z) = sin z.

Solution : f(z) isan entire function with infinite number of zerosat z = nrt, N being an
integer. First we consider the zeros of f(z) excluding thesmplezeroat z=0. Let 8, = nr,

n==+1, +2, ...

=1 <1
|aw| = rn. Then, r, = |nm. Now, > — =5 —
n=1 rn n=1 |nT[|
121, > 1 121 .
== — isdivergent, but ) — =— 3 — isconvergent. Hence genus of the
Tt n=1 n n=1 rn n n=1 n

required canonical product p = 1.
Hence the canonical product G(z) is given by

n=-o

G(2) = ﬁ E(i,lj, where [1" meansn = 0is excluded in the product.
a,

n=—oo

wr Z Z wr Z Z VA -z
1__ nmn — 1__ nTt 1__ nt
Ao = Ao e

00 2
|‘|' 1- ZZTI.'Z) Since origin is a simple zero of sin z, the required canonical
n=—co n

product of sin zis given by

o Z2
sinz = z['] (1— nznz)'
n=1

Exercises
1. Findthe order of the entire functions :

(@ sinh z (b) & sin z, (c) &, (d) e, (e) cos z, (f) er@, where p(z) =

n/a
w n < [ ed n
a,+az+-+az", a 20, (@) ¥ z —,a>0,(h) Z(—) ", 0>0
4 (n) = N

2. Givenfy(z) and f,(z) are two entire functions of orders p; and p, respectively, show
that (i) order of f,(z) f(z) is< max (py, po) (ii) order of f1(z) + f,(z) is < max
(p1, P2), and equality occurs if p;# po.

3. Find the convergence exponent of the zeros of sin z.
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4. Find the canonical product of cos z.

5. Show that if a> 1, the entire function r!(l—n—za) is of order 1.
n= a-

6.11 Hadamard’s Factorization Theorem

Before taking up Hadamard' s factorization theorem we state a theorem due to Borel
and Caratheodory.

Borel and Caratheodory’stheorem : Let f(z) be analyticin
7 < R,M(r) = r‘n‘§\x|f(z)|, A(r) = mgx{Ref(z)}.

Thenfor0<r <R,

2r R+r

R
R AR L 1Ol < 2= AR +I1(O0)] (121)

Proof : Omitted (cf. Theory of entire functions-A.S.B Holland- p. 53).

M(r) <

2™2 nIR
(R _ r)n+1
Hadamard’s Factorization Theorem 6.16 :

If f(z) isan entire function of finite order p with infinite number of zeros and f(0) # O,
then f(z) = eR@ G(z), where G(2) is the canonical product formed with the zeros of f(z)
and Q(z) isapolynomial of degree not greater than p.

Proof : By Welerstrass' factor theorem we already have
f(2) = ERDG(2) (123)
where G(z) isthe canonical product with genus p formed with the zeros ay, &, ... of

f(z) and Q(2) is an entire function. Since p is finite we need to show that Q(z) is a
polynomia of degree< p.Let m=[p]. Then, p < m. Taking logarithms on both sides of

(123) we have,
logf(z) = Q(2) +logG(z)

o © 1 2 1 p
:Q(z)+nZ:JIog(1—i]+ ;{i+§(i] ++B(i] } (124)

Differentiating both sides of (124) m + 1 times,

Corollary : rlnlax
z|=r

" (2) < (A(R) +|f(0))) (122)
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d™ (fi(z - ® 1
dz_m( ()):Q( @-my —— (125)

f(2) &(a,-2)™
™ =fz 1(zY 1( zY
Since psm,— <=+ — | +.+=| = | =0
[ dz 1;{61“ Z(an] p(an]}
dm+1 dm+1 1
log{ 1- = logla, ~2) =-ml——
and d om+l og( an] d om+l og(aﬂ Z) (an )m+1]

Now, Q(z) will be a polynomial of degree m at most if we can show that

QM(z) = 0

-1
Let g;(2) = @) |'| (1 i] . Then gr(z) isan entire function and gg(z) Z0in
f(0) ier "
-1
|z| < R. [Since f(z) is entire, f(0) # 0 and [ (1— i] cancels with factorsin f(z)].
lan SR a

n

For |z| = 2R and |a,| < R we have, 1—azT1 >1 Hence,

9:(2)] < M@ peemr (o, Iz| = 2R (126)
f(0)

By maximum modulustheorem, |g, ()| < Ae?®™” (127)

for |z| < 2R. Let hg(z) = log gr(z) such that hg(0) = 0.

Then hz(z) isandyticin |z| < R. Hence from (127)

Re hx(2) = log |gr(2) | < KRP*, K = Constant (128)
Hence from the corollary of the theorem of Borel and Caratheodory we have

2™ (m+1)[IR

‘h(Rmu) (z)‘ < R-1™

KRP*® for |z|=r<R

R
Hencefor |4 =T =5

‘ hgm-l)(Z) ‘ — O(Rp+a—m—1) (129)
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But h,(z) =loggg(z) =logf(z) —logf(0) — Zlog(l _ai]

|a,[<R ul
Hence hg’n+1)(z) — n:n(f'(z))_l_ m| 1 _
i\ 1@ ) " (@ -2)
= O(R""™ ) +o( 11] (130)
Zia

for |z = I: and so dsofor |7 < g by maximum modulus theorem. The first term on
theright of (130) tendsto0as R — o if € >0issmall enoughsincem+ 1>p. Also

. > 1 .
the second term tendsto O since ) — - is convergent.

m+1
n=1 M

Infact, Z H% becomes the remainder term for large R.
PR [y

Hence QM+ (z) = 0 since QM1 (2) is independent of R.
Thus, Q(z) isapolynomial of degree not greater than p.

6.12 Consequences of Hadamard’s Theorem

Theorem 6.17 : An entire function of finite order admits any finite complex number
except, perhaps, one number.

Proof. Let us suppose that f does not admit two finite values a and b. Then
f(z) —a # Ofor al zin Cand hence there exists an entire function g(z) such that

f(z2) —a=es@

The function f(z) —aisof finite order sncef(z) hasfinite order. Following Hadamard' s
factorization theorem g(z) must be a polynomial. Now 9@ does not assume the value b
—ai.e. g(2) # log(b—a) for any zin € Asbecause g(z) isapolynomial it contradicts
the essence of the Fundamental Theorem of Algebra[(14), Th. 3.11, page-65].

Theorem 6.18 : An entire function of fractional order possesses infinitely many
Zeros.

Proof. Let f be an entire function of fractional order p. If possible, suppose the zeros
of f(z) are{ay, &, ... &,), finitein number, counted according to their multiplicity. Then f(2)
can be expressed as
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f2=ed@ (z—) z—a) ... (z—a)
where g(z) is an entire function. Applying Hadamard’ s factorization theorem, the
degree of the polynomia g(z) < p. It iseasy to check that f(z) and e3(@ are of same order.
But we have adready seen that the order of e9(@ is exactly the degree of g(z), whichisan
integer. Thisimplies p isan integer. This contradiction completes the proof.

6.13 M eromor phic Functions

The term meromorphic comes from the Ancient Greek “meros’ meaning part, as
opposed to “holos’ meaning whole. Thisfunction isanalytic on adomain D except a set
of isolated points, which are poles for the function.

Definition : A function f(z) analytic in adomain D except for polesis said to be
meromorphic.

Theorem 6.19 : A rational function is meromorphic.

Proof : Letf(z) = p(z)/q(z) where p and g are polynomial swith no common zeros. If

thedegreeof pislessthan or equa tothedegreeof g, thenf hasonly afinite number of poles
and the point at infinity isnot apole. Onthe otherhand, if the degree of pisgreater thanthe

degree of g, then (taking degree of p(z) = m and degree of q(z) = n).

f(2) = a,z"+a, 2" +..+a,z +a,
b,z" +b, 2" +..+bz +b,

r(2)
q(2)

where degree of r(z) < n— 1. This shows that the point at infinity is a pole of order
(m—n) and there lie afinite number of polesin the unextended plane. These establish that
f(z) ismeromorphic.

Theorem 6.20 : [Partial fraction decomposition]. Let p(z), q(z) be two polynomials
with no common zeros and that O < deg (p) < deg (q). Let &, ... & be the zeros of q(z)
with multiplicitiesay, ..., a,. Then p(z)/q(z) can be expressed uniquely as

— m-n m-n-1
=C, 2" " +C, 42" Az +C, +

m-n

P@_c<v_ G
Aa2) &&E(z-a)
Proof. The decomposition is unique. We assume that the relation (131) exists. Let r
> 0 be small enough. Then for z € N (g, r), (131) can be rewritten as

(131)
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a(2) % (z-a) (%2

since N(a, r) does not contain any zero of q(z) other than g, g(z) is analytic at
z=a.
Multiplying both sides of (132) by (z — &)?;, we obtain

@:Q(Z)+O(Zi Cij

p(Z) o — o; il oi—i
——(z-8)" =9g(9)(z-a)" +} c;(z-a)"" 133
o) 22 3 ]Z i(z -3 (133)

Now the function % (z—a)" isanaytic for al z belonging to N(a, r) and hence

z
can be expanded in a Taylor seriesin aneighbourhood of g in N(&, r)

p(2) 65— % "
——(z-a)" =3 c(z-a) (134)
TN

Combining (133) and (134), we write

icn(z—a)” = g(2)(z-a)" +Cy +Cy (z -a)+..+

+ Cil(z - a1)qi_1

Comparing the coefficientswe find

Ci; = Cy,Cig;—1 = Cyy---, Gy =Gy, UNIQUElY

Existence of the decomposition.

The principal part associated to each pole g is
=1 (z- & )]

Now if we subtract al the principal parts we find the function

ko Qi C.
f(z) = P@) _ i j
a2 &&(z-4a)
is analytic in the extended plane. Now each of the terms

Gy

(z-a)’
convergesto zerofor z — oo, and also p(z)/q(z) convergesto zerofor z - « Since
deg(q) > deg(p). This shows that f(z) — O for z — . But then f is necessarily
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bounded and hence constant by Liouville'stheorem. A constant function tending to zero
as z —» o must beidenticaly zero.

Example 4 : Consider therational function
p(z) _ 2z2°+(5i +3)Z° +(3-5)

q(2) 2t -1
We can write this as
) _ @ , B, v, 20 (135)
gz z-1 z+1 z-i z+i
a
= +—
0.(2) +——

considering z belonging to |z — 1| < 1. Then

%(z—l) =0,(29(z-)+a Oo= 2

6.14 Partial Fraction Expansion of Meromor phic Functions

Let f(z) be a meromorphic function and z, be a pole of order m with the
principal part
C 1

-m+l + -

()= —m_+
P (Z_Zo) (Z_Zo)m+1 Z—Z,

Then f(z) can be written as [see § 6.2, (14)]

f(2) =p(2) + 9(2)
where g(z) is an entire function. Now if, in generd, z,, z,, ..., z, are the poles of a
meromorphic function f with the corresponding principl parts Py, P ..., P, then f can be

expressed as
Na=ia@+w@ (136)

where )(2) is an entire function.

But the question arises whether it is possible to construct a meromorphic function
possessing poles at the sequence of points{z,} with corresponding principa parts Py, Ps...
Because in this case the series 2P,(2) in (136) turns out to be an infinite series i P(2),
which needs to be convergent. =
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Gosta Mittag L effler (1846-1927), German in origin but his severa generations
lived in Sweden, overcame this difficulty by introducing a polynomial p,(z) dependent on
z, and P(2) so that the series i{ P.(2) - p,(2)} isuniformly convergent in any compact
set K not containing any poi r:t_; of the sequence{z.}.

Theorem 6.21 [The Mittag Leffler Theorem] : Given a sequence of distinct
complex numbers{z,},

|21| S|22| S...,Iimzn =

n- oo

and a sequence of rationa functions{P,(2)},

In c
P(z)=Y—"% __ 1 >21n=1 2,.. 13
( ) kZ:]_ (Z _ Zn)k 1n ( 7)
there exists ameromorphic function f(z) having poles at the points z, and only there

with P,(z) asits principal part at z, and can be represented in the form of an expansion

f(2) = 3 [P.(2) =P, (D] +h(2)
n=1
where h(z) is an arbitrary entire function and p,(z) is suitable partial sum of
Taylor's expansion of the singular part which is analytic in the open disc |z| < |z,|.
Proof. Without loss of generality we assume that z = 0 is not a pole of f(z). Now
P(2) is analytic for |z| < |z| and can be expanded in this neighbourhood of z :

— s K) 5 j
P(2)=5% cz!
i=0

and hence this series converges uniformly in the disk |7<|z|/2. Let
ak ]
P(@=3 c'¥'z! be a partial sum of this expansion such that
1=0

1
P.(2) - p(2)| <F for |4<|z,|/2.
Let R be an arbitrary large positive number and since z, — « as n - c we can

z
find an N(R) so largethat |z,| > 2R whenn = N(R). Thereforeinthecircle|Z < R < %

w N(R)-1 w
Zl[Pn(Z) -p.(2] = Zl [P.(2) -p.(2)] + _gR)[Pn(Z) -p.(2)]
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thefirst suminther.h.sisfinite and the second sum E is absolutely and uniformly
N(R)

convergent by comparison with the convergent series > 2™". Therefore
n=N(R)

E [P.(2) - p,(2)] isandyticin|z| < R except at the poles belonging to the sequence{z.} .
n=1

It is thus a meromorphic function with the poles at z;, z,, ... and with the principal parts

P1(2), Px(2), ... a each point z, respectively. Now if f(z) possesses the same poles only
with the same principal parts then

f(2) - z [P.(2) - . (2)]

isan entire function h(z), say. This completes the proof.
Example 5 : Prove that

ncotnzzl+ Z { 1 +1}
Z n=-oo Z—N n

Solution : The given function 1t cot Tz has simple polesat z = 0, £1, £2, ... with
residue 1.

Here, 1 1 1 1(. z 7
==~ =-l+=+ 4| <n
Z-n n( Z) n n n

1—7
n

Let |z] < Rand N(R) be so large that R < 2 when n = N(R). Then from (138), we

(139)

find
1 1

+ =
Z—Nn n

< W’ n=N
Now, since 21/NZ2 is convergent, the series

oo' 1 1
PR

converges uniformly on any compact set (lying in |z| < R) not containing any of the
pointsz = £1, +2, ... Therefore applying the Mittag-L effler theorem we can express

ncotnz:}+ i{ 1 +1}+h(z) (139)
z 4%, (z-n n
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where h(z) isan entire function. Differentiating term-wise, we obtain

T cosec? TlZ—— i

PR RLC
- 1
_nzz_w(z—n)z h (2)
and h(2) = i 1) ~ rPcosec? T = £ (2) - U(2), (140)

We notice that the functions f(z) and (z) are both periodic with period 1 and
consequently h'(z) is also periodic with the same period.

Let z=x +iy. Consider the strip 0 < x < 1. In fact, the convergence of the series

in (140) isuniform for y = 1, say and the limit tendsto 0O as y — o (this can be seen
on taking the limit in each term of the series).

Again, sin(x +iy) =sinx cos(iy) + cos x sin (iy)
=gnxcoshy +icosxsinhy
and so
[snTd” =[sin T(x +iy)|’
= sin® Txcosh?® Ty + cos” Xsinh® W
= cosh® Ty — cos” TK
which establishes that 1 cosec? Tz tends uniformly to zeroas y -, . From these

we conclude that h'(z) is bounded in the period strip 0 < x < 1 and due to its periodicity
it is bounded in the entire plane. By Liouvill€ stheorem it then reduces to a constant. Now

gance
limh'(z) = limf(z) -limy(z) =0-0 =0
y-eo Yo Y-
h' (z) isindeed zero and h(z) = ¢, a constant. Then from (139),

1 =2(1 1
Tcot Te = — + +=|+cC
Z n=— oo Z—N n

For, z=

N

0=2+ ( 2 + 2 )+c
1-2k 1+2k
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R CENEE TR

=2-2+c
[0 c=0i.e h(z) =0. Finaly we obtain

1 d 1 1
ncotrrz:—+Z'{ +—}
Z Z—N n

Z=—o00

Now since the series on the r.h.sis uniformly convergent on any compact set not
containing the pointsz = 0, £1, +2 ..., rearrangement of the terms are permissible and
hence

1 2 2z
Ticot Tz = — + 141
T2 Ao (141)
Remark : Hereit is proved incidentally that
Trcosec’ Nz =y ;2 (142)
i (2=N)

[see equation (140)]
We can now utilize the identity (141) to calculate easily some familiar sums. Here the
|.h.s of (141) has the Laurent series expansion in the neighbourhood of z = 0.

1 mwz 1tz 212
TICOt TZ = — — - - -...
z 3 45 945
Note that the series on ther.h.s of (141) converges uniformly near z=0. By Th. 4.14

[14] it converges uniformly together with all derivatives. Again

27 z 22 27
= 2| S
Z°-n

(143)




-1

[or, equivalently, Titan T2 = Zzz [(n +§) - 22} ]
0

n=

Solution : Here the given function 11 tan Tz possesses simple poles at

zzii, J_r§, ... with residue —1.
2 2
2
Then, —11 _ 1 1 1+ z1+ z1 +
(n) n+ll” nel | nsel
2 (n+1)1_ z 2 2
2 n+1
2
and the series
@ -1 1

2 1y .1
elz-ln+= | n+_
; (n 2) 2

converges uniformly on any compact set not containing any of the poles of the given
function. By Mittag-L effler theorem,

o= 1 1
mtan Tz =~ ) + 1 +h(2)

4 1
“elz-|ln+=| n+t_
2-(n+3] nej

where h(z) is an arbitray entire function. Now proceeding as in example 5, we can
have the desired result.

Example 7 : Establish that
1 1 1 & 2z
=+ +) -V
-1 2 z nlez+4n2n2

Solution : We rewrite 1/ez — 1 as

z/2 +ez/2 +e—z/2 B 1 1 7

= -— +—-coth—
eZ/2 _ e—Z/2 2 2 2

141

z - 72 —-7/2

1 B e—Z/2 B 1 e—Z/2 — e
e-1 e -e 2



. . Z
cosh= | CO{I )
But coth 2 - 2 =i cot(i g)
2

NI N
[7)]

S

5

\

(728

S
T
N |
N——

Now utilising (141) we get the result.

6.15 Partial Fraction Expansion of Meromor phic Functions
Using Residue theorem

Let us suppose f to be a meromorphic function whose only singularities are simple
poles zy, z,, ... with increasing moduli 0<|z)| <|z,| < ...,

limz, = o and Res (f(2); z,) = A, Suppose there exists asequence { C,} of smple

n- oo

closed contours such that
(i) C,, does not contain any of the poles z,
(ii) each C, liesinside Cy11
(iii) rYEIiCn|Z| =R, » towasn - +o
(iv) length of C,isO(R,)
(v) mex|f (2] = O(R,)

_ o 1 1
Then f(z)—f(0)+kzlAk(Z_Zk+Z—k) (144)

The series (144) converges uniformly in any bounded domain not containing the poles
of f(2).

To prove the above result we consider the integral
| () = A1 4

211 “Cn ¢(¢ - 2)

wheezOIntCyandz#z (k=1 2, ..)
Here the integrand in (145) possesses smple polesat ¢=0, ¢ =z and
¢ =z Int C,.. Then using the Residue theorem, we find from (145) that

In(z):[m} +[m} +[#} Res(f (Q)iz,)
C-2z], ¢ ., [c-2) ],
142

(145)




=4@+Na+%@;§%5

Thus,

(146)

f(z) =f(0) + A( +— [+
Zk%tcn “ Z—7, Z 21 “°n ¢(¢ - 2)

We now show that limll, ()| = 0 for |z] < R.
Nn- oo

1 1] 1I A(Q) |

z f(Q) f(c)
ol A O jage X O g o
NS 4 2" "[dlle-R
as n — o by the given conditions (iii), (iv) and (v).
Then (144) follows from (146) considering al the contours C4, C,, ... etc
Example 8 : If a,, are positive roots of the equation tan z = z, show that
zsinz _3
z

© 27
pr v bl Y
Sinz - zcosz &z

1 1
where| n—-= < a, <|n+= |
( 2) ( 2)

Solution : Given a,, are positive roots of tan z =z, so + a,, are roots of SNz —z
cos z = 0. To check whether the function f(z)/g(z), wheref(z) = zsin z and g(z) = sin
Z — z cos z, has any pole at z = 0 we notice that

f'(z) = sinz+ zcosz g'(z) = zsinz=1(2)
f"(z) = 2cosz- zsinz g"(2)=1'(2
f'(0)=0butf"(0)# 0 f"(2)=d" (2
s0, 9'(0) = g"(0)= O butg” (0)# O

Thus origin is the double zero of f(z) and triple zero of g(z). As aresult the given
function f/g possesses asimple pole at z = 0. To find itsresidue a z = O we note that

@ g 9D 1
@ @) 3

zsnz —§ has the

and so residue there is 3. Thus the function F(z) = ————
snz-zcosz z

143



simplepolesat z=+ a, asitsonly singularities and Res (F(z); £ a,)) =1 and F(0) =0
since F(z) = F(-z).

. 1 1 .
Since (n - E) m<a, < (n + E) T, we consider the sequence of contours {C,},

formed by the straight linesx = + b, y = £ b, with b, = (n +;)n, n=1, 2.,

MY AB,P-Q, shown below :
A, by Bn We find that when z 0 B,P,, Z = b, + iy,
where — b, <y < b,
Hence,
1 .
—b 0 COS{(n +2)T[+ |yH
’ X lcot 7| = :
snd| n+ = |+
{( 2) VH
b, . o
o L sy e -e (147)
cos(ly)\ e +e y\

Same result holds when z [0 A,Q,. Now when z lies on either of thelinesA,B,, or

(1
QPnz=X1 I(n+§jﬂ

oo x{n+3 )
wfee(0+3)

1- e—2(n+1)’T g™ —1
= >
1+e @™ el +1

sinh(n+1)n
> 2

cotz = > 1
cosh(n + 2)11

(148)

The given function can be rewritten as

zsinz _ 1
inz- 1
sinz-zcosz  L1_ .,
z
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I. Bound on the sides A,Q,, & B,,P, of the square C,, : Using (147), we obtain

‘ 1 1 1

< = ~lasn - oo,
lcot 7| - Lo |e-e” L

[1. Bound on the sides A B, & Q,P, of C, : Here we apply (148) to achieve

1
——cotz
z

|COtZ|—1_ e"-1 1 e" -1

4 e+l o2 +y?

1
‘—cotz
z

Thus,
| zsinz |< e"+1
lsnz-zcosz|~ e"-1

,zUOC,,F 1, 2,...

This shows that the function F(z) is bounded on the sequence of contours{C,,} and
we can apply (144) to prove

zsinz 3 2 1 1 1
_—:—+Z +— + -
snz-zcosz 2 &|z-a, O z+o, O

Exer cises

1. Obtain partial fraction expansion of cosec z.
2. Prove that

(2n-Dm

22—(n—1) s
2

secz = i(—l)“

3. Show that

tanz = —Z
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and hence deduce

6.16 The Gamma Function

The gammafunction I' (z) was introduced by Swedish Mathematician L. Euler (1707-
1783), in 1729 while he was seeking for afunction of areal variable x which is continuous
for positive x and reducesto x! when x isapostive integer. Gammafunction iswidely used
inthefields of probability and statistics, as well as combinatorics.

Gamma function I'(z) can be introduced in either of the ways :
(i) interms of infinite product
(i) intheform of infinite integral
(iti) inlimit formula
We establish the form (i) first considering the fact that it possesses smple polesat z
=0, -1, -2, ... and nowhere vanishes in the entire plane and satisfies
r@=rz+1,ry =1 (149)
To construct I'(z) we claim that f(z) = 1/T'(z) is entire with smple zeros at z = —n
(n=0,1 2 ...
Again we know that k = 1 isthe largest non-negative integer for which
2
n=1

diverges. Then

|

=~

S_:

ilizing the Welerstrass Factorization theorem f(z) can be represented

f(2) = 26" [ 1+E)e_nZ

@ =271+

where g(z) is an entire function, so that gamma function will be of the form
1

e

Now we find g(z) so that (149) hold. We write (150) in the form

M(z) =e®

(150)
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im
n-o  z(z+1)...... (z+n) n-c

oz
2l (2) _ n!Zexp{—g(z) +Z m} (z+D)(z+2)...... (z+n+])

M(z+)  z(z+))......(z+n)

n

n! exp{—g(z +1) + Z z+1}

m

=(z+n+) exp[g(z +1) -9(2) —i %]

1

= (1+Z+1)nexpl:g(z+1) -d(2) —E 1}
n 1 m

n

= (1+Z+1jexp[g(z+1) -9(2) - 1 +log n}
n T m

zZr(z) _ lim I (2)

= , find th
F(z+41) "ol (z+1) we find that

Now from the relation

zr(z) _,. z+1 _ < 1
r(z+1)_le(1+T)ap{g(z+l) 92) Z m+|09n}

=expg(z+1D -9(2) -]

where V=|im(z %—Iogn]:O[Fﬂ?ZZ

n-oo

isknown as the Euler’s constant.
Thusin order that the conditions in (149) to hold, we should have
d(z+ 1) —9g(z) =y + 2km (k = integer)
and

147

(151)

(152)

(153)



n
z

—g(1)+z = logn

1
1=T@® =limlr, (1) = |ime— — @ 9+
n- o no o 1
1+~
n
so that g(1) =y + 27t (j = integer)
The smplest entire function satisfying (154) is given by
9(2) = vz
Finally from (150),

M(2) = £ ﬁ (1+E)_1e1’“
z |, n
Gauss sFormula
From (151) we have the representation

=

n-o z(z+1)...... (z+n)

:“mmeXpH(i ;‘V"Ogn]ﬂogn}z}

e oo z(z+1)...... (z+n)

—Iogn—y):O

3+

=lim , Since lim Z
n-ez(z+1) (z+n) n- o\ 4

(154)

(155)

(156)

The above expression for '(z), z# 0, -1, — 2, .... istermed as Gauss's formula,

though it was first derived by Euler.

In many placesit is known as Euler’ s limit formula.
Example9: Let

M(zn) = nin
" Z(z+D)......(z+n)
Prove that
r _nfM(n+r(z)
(2= F(n+z+1)
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and hence deduce that

L(n) sl1asno o

r(n+z)
Solution :

fnh+z+1)=2zz+1)(z+ 2).....»z+n) (2
N (n+1)l (2) _ nZl (n+1) _ n!n?

[Se) = :r(Z,n)
* T(n+z+]) z(z+1)(z+2)...... (z+n) z(z+D(z+2)...... (z+n)

Now,
nzr(n) _(n+2)I(zn)
F(n+z)  nr(2

. n?r (n) :lim(1+E)Limr(z,n)
neo[[(N+z) n-x n (z)

=1 by Gauss'sformula.

In the expression (155) for I(z) the infinite product is uniformly convergent on every
compact subset of ¢ —{0, -1, ......}. So calculating I'" (2)/T" (z) we find that

r'@ _ —y—} +Z (_ 1 +1)
(2 z £ n+z n
@2
r
seen from its expression that Y is meromorphic in € with simple polesat z=0, -1, —
2, ...and Res(y; —n) =-1forn=0, 1, 2, ...

Example 10 : Show that

() w(@) =-y

This function

Is denoted by (z) and named as Gaussian psi function and it is

(i) V(z+1) -v(2) =%

(i) W(2) - Y@ -2) = -1 COt TE.
Solution :

(i) w(2)=—v—%+i(—$+%)

n=.



(i) $(z+D-Y(2)

SV PP S
2 2 3 3
= —y.
1 > ( 1 1
=y —+ - +—
z+1 £ n+z+1 n

1
- +
z+1 (

Al
+)

n+z n

1
+y+=
z

We have

Hence,

. .
— = e¥z

M2 )
I
r@r(-2



Z .
=—-—gnTz
s
1 _snTz
o, r@[-zZ(-z1 =
1 _sntz _ _
e rrl-2 T [using z['(z) = T(z + 1) i.e, — zZ[(-2)
=I(1-2)] (157)

2
1 1
In particular, {F(EH =T and r(;) = J/m (minussignis excluded since F(zj is

positive by (155)). Likewise using
MNz+1) =1z (2

wefind
r § :}r 1 :1 T

2) 2 \2) 2

2) 2 \2) 22

2) 2 \2) 222
and in general

r(n+1j: 13..... (nZn—l) Jr (n=12-
2 2

. 1 (2n)!
£ M n+=|/Jm= 158
' ( 2) TP 49
If nisapositiveinteger repeated use of (149) produce

N(n+1 =n!
The T -function can therefore be considered as an extension of the factoria
function to the complex plane.

151



L egendre’ s Duplication Formula
Let us consider the Gauss' s formula

r(z)=lim 2. (2 =limr(z,n), sy

Then,

(2n)!(2n)?2
2z(2z+1)...(2z+n)...... (2n +22)

22nn!r(n+;)(\/ﬁ)_l(2n)2z
 22(2z+1)(2z+2)......(2z +2n)

(2z,2n) =

[Replacing (2n)! by (158)]

2z-1 2z EE
2°#71nl(n) r(n+ 2)
Jz(z+1)(z+2)...(z +n)(z +;)(z+§)...(z+ n —1)

2

2z-1

1

et e

2

B} r z+1,n z+14n
22Z1 1 2 2
=——T(z,nl | n+=
VT 2) n'2[(n) n

21 1 r(n*')z+2+n
and M (2z) =liml(2z,2n) = MFzr|z+=1|lim
(22) = limr (222m) = 2 o (24 im) e 202

2z-1

Jn

r(z)r (z +%) [using example 9]
So that
Jnr(2z) = 221‘1F(z)r(z +%) (159)
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Thisis known as Legendre' s duplication formula.

Residue of '(z) at its poles

I (2) isanaytic throughout the complex plane except at its only singularitieswhich are
simplepolessituated at z=0, -1, -2, .... That isT (z) isanalytic in the right half of the
complex plane Re z > 0. Using the fact that zI" (z) =T (z + 1), we have

M(z+n+1) =(z+n)(z +n -1)(z +n -2)...(z ) (2), n =positive integer and

M(z+n+1)

z(z+1)......(z+n-1)(z +n)

Res (T(2); =n) = lim(z+n) (2)

M(z+n+1)
2--nz(z+1)....(z+n -1)

- (Y .n=012,...
n!

Integral representation of I'(2)

Theorem : Prove that
M(z) = J.: e 't>?* dt for Re z > 0.
Proof. Let

F(2) = n!n*
" 2z +D)....(z+n)

We prove the theorem in the following two steps :

H (" _1 " z-1
(i) R =], (1 n) tz-igt

(i) lim |’ (1—:]) = [ et

To establish (i) we change the variable t to ns in

[ (1— :]) t= Tt

n tnz— z [t nz-
| (1—n)t dt=n jo (1-9)"s ds

to obtain

0
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Now integrating by parts we find the right hand side is equal to

z 1 —_ a\n|1 nit _a\n-1
n[;sz(l S °+Ejo 1-9) des}

—_ zjj 1 —a\n-1
=n Z-[o (1-9)"*sds

., n.(n-1)...1 1 i . .
=n 2(z+1)...(z+n 1) jo s*"-lds [Integrating by parts (n — 1) times]

a n!n? _
©2(z+1)....(z+n) R(2)

Now to prove (ii)we show that

Limm_[on [e‘t - (1—%) }tz‘ldt =0, Rez>0 (161)

For this, note that

1+ Lol <
n

for [t/ <n (162)

t\" Yy
Then, (1+ﬁ) <e' and (1 n) <et;

Consequently,

n n 2\N
0< e‘t—(l—t) :e‘tl:l—et(l—t) }se‘{l—(l—tzj }
n n n
12 t2 12 n-1 t2
= e_t};? 1'F(]I_rf2]42..+(lﬂ_rf2] < e_t1;.

Therefore,

[ [e‘t - (1—%)??‘1&

<ljn e 'ther dt
nJo
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which approaches zero as n — oo because the integral on the right converges. This
completesthe proof of (ii). Findly combining theresults (i) and (ii) with the Gauss sformula
(156) we get

=

10.

11.

12.
13.
14.
15.

16.

M(z) =limE (2) = Iim-[(: (1_%) t* 14t = J‘: ot
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