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PREFACE

In the curricular structure introduced by this Universily lor students of Post-
Graduate: Degree Programme, the opportunity to pursue Post-Graduate course in any
subject introduced by this University is equally available to all leamers. Tnstead of
being guided by any presumption about ability level, it would perhaps stand to
reason if receptivity of u learner is judged in the course of the learning process. That
would be entirely in keeping with the objectives of open education which does not
believe in artificial differentiation,

Keeping this in view, study matenals of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-oul syllabus. The course
structure combines the best elements in the approved syllabi of Central and Stawe
Universities in respective subjects, 1t has been so designed as to be upgradable with
the addition of new information as well as results of fresh thinking and analysis.

The accepted methodology of distance cducation has been followed in the
preparation of these study materials. Co-operation in every form ol experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debl of gratitude Lo everyone whose tireless efforts went into the writing, editing and
devising of proper lay-out of the materials. Practically speaking, their role amounts
lo an involvement in ‘invisible teaching'. For, whoever makes use of these study
materials would virtually derive the benefit of leamning under their collective care

Cwithout each being seen by the other.

The more a learner would szriously pursue these study malenials, the easier it
will be for him or her to reach out to larger honzons of u subject, Care has also been
tiken to make the language lucid and presentation attractive so that they may be rated
us quality scli-learning materials. It anything remains still obscure or difficull 10
l[ollow, arrangements are Lthere (o come lo terms with them through the counselling
sessions regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental-in fact,
pioneering in certain areas. Naturally, there is cvery possibility ol some lapse or
deficiency here and there. However, these do admit of rectification and further
improvement in due course. Un the whole, theretore, these study materials are
expected to evoke wider appreciation the more they receive serious attention of all
concerned.

Professor (Dr.) Sublin Sunkar Sarkar
Vice-Chancellor
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Unit : 1 O Existence and Nature of Solutions

1.0 Introduction : In our earlier course on differential equations we have learas
lo recognise certain types ol ordinary differential equations (ODE) and solve them when
they belong to some standard forms, Here our main objeet will be to learn under
what conditions these equations do possess solutions though in many cases we are
unable to express them in particular forms. In this context we have discussed the
conditions of existence of unique, conlinuous solutions of (1) first-order ODE (i1) first-
order system of ODL in # unknown lunctions and (iii) n-th order ODL. Belore
discussing the existence theorems we have touched upon some equations like first-
order exact equalions, integrating fuctors of non-exact equations, the linear equations
of first order, the principle ol duality and simultancous systems in three variables. The
Cauchy-Picard existence theorem for first-order ODE is the most important one as
it gives us the conditions under which the cquation does possess a unique, continuous
solution. The method may be extended to find the existence of unigue set ol continuous
solutions of the system of first-order ODE in » unknown functions and also the exislence
of solution of nth order ODE. Lastly we have discussed simgular solutions of first-

order equations.

1.1 Definitions : A relationship between the differentials dx and dy of the two
variables x and v is called a differential equation. Such a relationship involves the
variables x and y together with some constanis ¢, b, ¢, ete. The differential equation
expressing a relation between an independent variable, a dependent variable and one
or more differential cocfficients of the dependent variable with respeet to the independent
variable, 1s called an (ODE) Ordinary Differential Equation. The highest order
differential coellicients involved in the differential equation is its order and thc1 power
to which the highest order differential cocfficient is raised is the degree of the equation.
The equation is said to be linear if the dependent variables and its derivatives oceur
in the first degree only and not as higher pawers or products. Otherwise, the dilferential
equation is said lo be non-linear. The coefficients of a linear equation may be either
constants or functions of the dependent variable, For example, the ordinary differential
equation (ODLE)
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15 non-linear of order 2 and degree 3.
Let us now consider an equation of the form
({5 P €16 s €y) = 0 o (1.1)
where x and y are variables and ¢, ¢,, ... ¢, are constants. This equation determines
v as a function of x. Dillerentiating (1.1) with respect to x in succession, we gel 1

equations
A
J.'}'t d]!
d'f o d f
T T '+ W 2. il
ax” ik Y ——y dy b4 12)
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where A== f{ji = d f ke !?I:JJ? o ﬂ :
il Hx" g dx”

Eliminating the n constants from the (n + 1) equations (1.1) and (1.2) we gel the
differential equation

Fte; 7 s 3l an 39 =00 ° (1.3)

This diffcrential equation is satisfied by every function y = @) defined by the relation

(1.1). This relation 15 called the primitive ol the differential cquation (1,3) and every

function y = ¢(x) satistying the diflerential equation is termed as a solution. A solution

involving the number of distinet arbitrary constants equal to the order of the equation

is known as the general solution Thus the peneral solution is the primitive of the
differential equation.



‘Ihe primitive of the first-order differential equation

P f(x.y) (1.4)

PEhy

is a relation between the two variables x and v and a parameter ¢. The differential
equation is then said to represent 4 one-parameter family of plane curves and each
curve of the family is called an integral-curve or the solution-curve of the dillerentia)
equation, In the equation (1.4) we assume that the function f(x, y) is single-valued
and continuous in a domain P in the (x, p)-plane. Through every point in the domain
D). there passes one and only one integral-curve. However, there may be points oufside
D at which flx, y) is not continuous or single-valued; such points are known as singular
points, where the behaviour of the integral-curves may be exceptional, In general, an
ordinary differential equation of order 7 forms an n-paramcter family of integral-curves
and through each non-singuiar point there passes in genera! an (1 1)-fold infinity ol
integral curves.

fl

1.2 Simultancous System of Equations : Suppose that
fsﬂi.r. Yo 2, ¢ €2) = 0.and plx, p 2, €1 62) = 0
are two equations, each involving lhree variables x, y, z and two arbitrary constants
¢y, ¢, Diffemtiating these two equations with respect 1o x and then climinating the constants
¢y and ¢, between these four equations, we obtain a pair of simultancous ordinary
diflerential equations of the first-order of the form
Sl 3z 2) =0, ¥ix, . yiz. 2')— 0
By introducing a sufficient number of new variables, we may obtain either a single

equation of any order or any system of simultaneous cquations ol first-order. Let us

consider an equation of the form

i b i I!r||—l ) .
LB, PN A (1.5)
" el !
Introducing the new variables i, ya. Vi o ¥y by -
ey, T » dyz dv,
R T ==y = —:—1,__.:;=—1
WEPYET A IS s e v
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we gel from (1.5)

D _ p

o U M deven M) ; (1.6)

which form a system of # simultaneous equations of the first-order. It may be noted
that if the original equation is linear, the equations of the equivalent.system are also

lincar.

1.3 Exact Equations of the First-Order and of First Degree : An ordinary
differential of the first-order and of first degree can always be expressible in the form
ol a total differential equation

Plx. ydx + Ofx, vidy = 0 (1.7)
which do not involve p(= dy / dx}). The expression Plx, vldx 1+ Ox, y)dy is said

to be exact differential if it can be expressed in the form dir, where u~u(x, ) and
then the differential equation (1.7) is said to be exact. The necessary and sufficient

condition of integrability of the cxact equation (1.7) is

g do

For example, the equation
(a? —2xy— :,:1_}dx — i) y}z.—,fy =)
where a is constant, is exact,

In particular, i P is a function of x alone and Q is a function of p alone, the equation
Plx)dx + Q(y)dy is said 1o have selmrated variables. As an example, consider the
equation

xfydx + (14 )1+ xdy = 0

which can be written as
X et
=t

This equation is exact and has separaled variables,

10



If P and @ are homogeneous functions of x and y of the same degree, then the
equation (1.7) 15 reducible by the substitution y-vx Lo one whose variables are separable
and then the equation (1.7) is called homogeneous equation. For example, the

equation

X Cos *E(y dx + x dy) =.y 5'.'111£{xdy — yix)
& ¥

¢an be reduced by the substitution y = vx mnto ‘the form

cosv —vsiny clx
dv+2— =10
¥

VoSV
which is separable. .
I.4 Linear Equations of the First-order : The most general linear equation of

the first-order is of the type

dy

— 4 2x)y=0(x

e (x)y = 0Qlx) (1.9)
To solve this equation, we consider [irst the homogeneous hinear equation

LT

dx

whose solution is y = co~ P Subgtituting in (1.9), the expression ?e‘l i — () leads
I

to

whence '|.::C+IQEIP°&: e, y= E‘E'jﬂm +ﬂ_FdIJQﬂIPdrdx_

The equation ol the form

Dy Py = 0@y, (1.10)

known as Bernoulli cquation, can be reduced to the linear form (1.9) by changing
I-n

the variable y by z =y

L



1,5 The Integrating Factor : Il the differential equation Pdx + Qdy = 0 is not
exacl, then this equation can be made exact by introducing a function u(x, 1) such
that the expression #(Pdx © Ody) is a total differential du (say). If % can be found.
the problem reduces to a mere quadrature. It can be proved that if the differential
equation admits one and only one solution, there exists an inlinite number of integrating
factors. '

1.6 The Principle of Duality : By the use of a certain transformation, due to

Legendre, a dual relationship can be set up between two first-order differential equations.

We introduce two new variables defined by X = p, Y =uxp -y, (p = g?{ # ﬂ] and
I X

b pi= G
ot P = - Then

dX =dp, dV = xdp + pdv — by = xedp
and, therefore, £ = x Also py = xp — ¥ = XP — ¥ Henee the transformations X =
p, Y =xp—yand x = P,y — XP — y are cquivalent. Thus the cquations

A, p) = 0 and F(P, XP - Y, 0 =10
can be transformed into one another and, therefore, there exists a dual relationship between
theni. If one of the equations is mtegrabie, (he other can be integrated by purely algebraical
process.

As lor example, the equation (v — px)r =y can be transformed into the homogeneous

equation P = _X_Y } having solution log ¥ — T constant, Differentiating with respect
+ i

’ —XP Y-Xp 'y .
to X, o ;' ={ whence Y= =-L and consequently
J_: }r _.‘_” 3
A1 I : : T 1 15
e I=——1. Hence the solution of the given equation is log| —= |- — =
M XA %

constant, ie., ¥ = exe!™

1.7 Simultaneous Systems in Three Variables © Let us consider the syslem

de _dy _dz

€ n 28



where £ =&(x, p,z), N =n(x.y.2) and { = {(x, y,2). In particular if £and p are

: ; S .

independent of z, then the equation — = _'I involves only x and y; it is supposed
I

(hat this equation can be integrated to give the solution @(x, y. @)= 0, a being the

conslant of integration, Let this equation be solved for y and y — #&x, ). Let 4 and

(i be what £and j"become when y is replaced by #(x, @). Then the equation & oy

S I
do not involve y and its solution is of the form Ay, z, & A) =0, #being constant
of integration. Let @ be eliminated between the two solutions @(x, v, @) = 0 and dx,
z, @ A =010 give ¥x, y,'z, g) = 0. The solutions then take the Torm

Fx, v, @ = 0 and ¥x, », 2, 9 — 0 . (1.12)

Now consider a simultaneous linear system with constant coelficients of the form

(1.11) where

& =eax + by oty

N =a;x +hy+eztdy

C=ax+by+aztds
where a;, by ¢, d; (i = 1, 2, 3) are constants. We introduce a new variable f such

that

iy di _dz dt

BEoon- & it

Then, we have

dr ledx +mdy + ndz
/ [E +mn+ng

whatever be the constants [, m, n. We choose [, m, n such that
let, + miety + nay = Ip
b, + mby +nby = mp

ley + mey ey = np




50 that

di _ d(lx +my+ nz)

B pllx+my +nz + 1)

with pr = ld| + mdy  nd;. This choice of /, m, n is possible provided g is a root
of the equation

G ¢ b-p
If 1A = 1, 2, 3) be the distinet roots of this equation and the corresponding

values of I, m, n, r be Iy m, n, r; (i = 1, 2, 3), then

dt  Ax(lx +my+nz)
{ lx+nmy+mz+n

A S
whenece ( =C,(lLx+my+nz+ 1) The solution is, therefore,
~ 4 ; Aa
Cllhx+my+mz+n)" =Clhx+my+mz+n)"

; : A
= Cy(lx +myy + mz +13)7
conlaining three constants C,, Cy, € of which two are arbitrary.

1.8 The Existence Theorem : A diflerential equation may or may not have a solution,
and if a solution exists, it may not be unique, We now proceed to find the conditions
which guarantee the existence and uniqueness of a solution of a diflerential equation.
The method of finding is known asg Picard’s method or the method of successive
approximations,

Picard’s theorem : The differential equalion

has a unique solution y = y(x) satisfying yy = y(xp) over [xq — h, xp-+ A| if
(i) f(x, ¥) is continuous over a rectangular domain
D={|lx—xplZa,ly—wml2bl (h=a, bIM)
14



(i) |[f(x.0)|= M eRV(x,y)eD
(iii) f{x, ¥) satisfies the Cauchy-Lipschitz condition
1f(x, ¥) — fix, p)l <k|Y —py| for ke Rand (x, ), (v, V) € D

Proof : Lel us construct a sequence of functions y,(x) delined over the common
domain [xq — a, xy + a] as follows :

WLx) = Yy t I_:I_f{r,yr,}d.f

) =y +[o i 0)d

Yul®) =y + j:. Ty (1)t
We shall show that

(i) as m—> e, the sequence ol functions y,(x) tends to a function which is a

continuous function of x;
(i) the limit function satisfics the differential equation;

(iii) the solution thus defined assumes the value y,, when x = x; and is the only

contimupus solution,

Let, x lic in the interval considered and |y, (x) — y,! < b so that [p,_;(x) - Yo|£h.

Since |/ {f, ¥, (1)} = M, we have
() = o] < [ |F Ly (DMl € M(x—x5) < M < b

But ly]{:r} - y”| = b and, therefore, | ¥ (x) = J‘n| < h, ¥n. Il lollows that when
XpExsx,+h e,y (x))s M
[t will now be proved in a similar way that

ti—1

i

|-:IrH{‘T-':I = ¥ {1')| = (x— xuj”

15




For if we suppose it (o be true when x, < x < x, + /4 that

=2

4 =) 2y =1
PR o

then

03 = 2y ] € [ 14020 (0} = {83, 20}t

< _I:" k|.3"’u—] (” = ¥y {f)i dr
| by Lipscbitz condition]

M

x| |
(n—1)! Jolr=xol " di

=

f“l’k”_l =
S = x|

Bul this inequality is true tor # = 1 and, therefore, it is true for all n. In a similar way,

the result can be proved for x;, — h < x < x,;. llence the result is true for ix — x| <.

Now the series y, + 3. (v, (x) — v, (x)} is absolutely and uniformly convergent

r=|
for |x = x“| < f; and each term is continuous in x; consequently the limit function
ylx)=lim y,(x) exists and is a continuous function of x in the interval
f—te=

[%5 — M Xy + h).

Moting that

lim y, (x) =y + lim [0 /4, , ()}

T e

=y + [}, Bmf{e, y, (O}t

16



it follows that p(x) is a solution of the integral equation

CIES RN AUSIOHTE

That the inversion of the order of integration and the procedure of limit is permissible,
can be proved as follows :

I:UUJUH—f%hmﬁﬂﬂ{imhﬂ%ﬂmdmm

< ke, |x - x|
< ke h
where & is independent of x and tends to zero as h — ==,

The function f{f, ¥(f)} 1s continuous in the interval x, -h<t=<x,+h and

consequently

dy(x) _

il g \; i '
=L Ty} = [ ()

Hence the limit function v(x) satisfies the differential equation and reduces
to y; when x = xp

Next we show that the solution y(x) is unique. If it is not, we suppose that ¥(x)
be another solution dillerent from p(x), satisfying the imtial condition ¥(x;) = 3 and
continuous in an interval (xg, x5 + A'), where #'< h and A’ is such that the condition

|l” (xy) — ¥yl < b satisfied for this interval. ‘Then since Y(x) is a solution of the given

equation, it satisfies the integral cquation

Y(x) =y + [ LX)l
and consequently,

Y(x) =y, (0) = [C LAY} = S, (01t
For n =1 !

Y(x) = m(x) = [ LAY} =S {8 yo(0))1dt

17
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s0 that
Y 0x) =y ()] < _L Lf (. ¥y} — Aty ()} et

- k_[;|l’ff}—yn“)| dt (by Lipschitz condition)

Hence
¥ (x) = (x)] < kb(x ~ xu}
For n = 2
Y = ya @ <[ [ .Y @) - 711,303
< k[, [¥(e) = (0|
< kL: kb(t — x, )t
so that

i o
V(x) = 3 (%) < : k*h(x - x,)°
Henee, in general, we have

kb — xy)"
!

(x)| <

whence ¥Y(x) = lim n y,(x) = y(x) for all values of x in the interval (g, 3 + ') ﬁnd

therefore, ¥(x) is identical with ¥(x). Thus there is one and only one continuous
solution which satisfics the differential equation satistying the given initial
conditions.

I8



1.9 Existence Theorem for a System of Equations of the First-order

Let the system of equations be

ay '

L = _;’](_!:,_1.*],}-'31---1,1”"1)
e

et | -

e = _I}E{Iﬁyr,yga---!yﬂr}
dx

dy,

'F_ == fm{x,'}’],yzs---*.]"u.l]
i

then, under conditions which will be stated, there exists a unigue set of continuous
solutions of this system of equations which assume given values Vi Py eeny 0
when x = x. outline of the proof will be given; the method follows exactly on the lines

of the preceding section.

The functions £}, f3, ..., f,, are supposed to be sinple-valued and continuous in their
(s +1) arguments when these arguments are restricted to lie in the domain D defined
(]
by

ix = xﬂf =,

¥ _.-V:]l < IEL"l* "'!'J’m '_yr[:r[ = |E.".-.ra

let the greatest of the upper bounds of fis 2y wous [y in this domain be M: i A
is the least of a, by / M, ..., b, / M, let x be further restricted, if necessary, by the

condition [x — x| < h.
The Lipschitz condition is
B By 2| = Fo(2 91 Yo )
[< Kl = | + Kot = | 44+ K IE, — |
for p =1, 2, 1y m i

We now define the functions y{'(x), pJ(x)....,»"(x) by the relations
V) =+ [ LA O Oy )i

19




then it can be proved by induction that

MK, + K+ + Km}’i

in!

WO (x) = 3 ()] < lx_~’fn|“

and the existence, continuity and uniqueness of the set of solutions lollow immediately.

Since the differential equation of order m

‘rm {}rur—l
Y gty P
I.CET.‘CM {.’x dxar

is equivalent to the set of m equations of the first-order

ey dy ty,.
—= F—':JJ‘ZJ _y 2

Ay
dx Yoy Y dx ;

e P -
Yol i

= _f[.h',ye_}ﬂ gt 1..]"J|'.|r--|J

it lollows that if fis continuous and satisfies a Lipschitz condition in a domain D,
the equation admits of a unique continuous solution which, together with its first
m — 1 derivatives, which are also continuous, will assume an arbitratry set of
initial conditions for the initial value x = x-

1.10 Singular Solution : Sometimes a solution of the differential equation can be
found which involves no arbitrary constant and it is not a particular case of the general

solution. Such a solution is known as Singular solution.

: : : ; \ ey
Let us consider the differential equation f(x. ), p) = {},( p= d_}] whose general
g |
solution is @, ¥, ¢) = 0, ¢ being an arbitrary constanl. The ¢c-discriminant 15 Dhtaim:d;
by eliminating ¢ between

P(x,y,¢) = 0and i—'ﬂ ={) (1.13)

L&

while the p-diseriminant is obtained by eliminating p between the equations
f(x, 3 p)=0and i = ( (1.14)

Now when a continuous succession of line-clements build up an integral-curve which
is singular and the corresponding solution is singular solution, these line-elements can oceur

20



only at points on the p-discriminant locus and a singular integral curve is a branch of
the p-dicriminant locus.
The direction of the tangent at any point of the p-discriminant locus is obtained by

differentiating the equation f{x, 3, p) = 0 with respect Lo x. Thus

o dy e dpdx

But at any point on the p-discriminant locus o =0 so that the direction of the

U U d
dx vy dx
with the tangent Lo the integral-curve and, thereforc a necessary eondition for the
existence of a singular solution is that the three equations

df df c?f
=) =S==={) —
f{x.np) PR and W &y =1 (1.15)

should be satisficd simultaneously for a continuous set of values (. ).

tangent is given by = 0, But the tangent to the p-discriminant locus coincides

Conversely, we suppose that the three equations given by

; af f?f ﬂf
b o .'____,:IL = —=
Fixna) & 0, dr 5

Abeing a parameter, represent a curve, Differentiating the first equation with respect
x and using the second equation, we [ind that the direction p of the tangent al any
point of the curve is given by

r}f ~0
Eah 5‘):
and, therelore, in view of the third equation, we have
(p—~) i —ii
ay

If /. # 0, we find that A= p and the curve is an integral-curve of the differential
cquation f{x, y, p) = 0.

21




Hence the conditions (1.15) together with the condition & # 0 are sufficient
(¢
for the existence of a singular solution.

As an example, we find out the singular solution of the differential equation satisfied
by the family ol curves

{:3+2cy—x2+l——[]' (1.16)
where ¢ is a parameter, Differentiating both sides of (1.16) with respect to x, we get
zcd_":_ax — () giving ¢ = x/p so that from (1.16) we have hﬁ' f:-utting the value
of u-

2 +?x}?p+|[l—x2-]p2 = 0. (1.17)

From (1.16) the e-discriminant relation is
42 - 41 — ¥ =10, de, 2+ = 1= 0
From (1.17) the p-diseriminant relation is

4~ 4% - =0, le, ¥+ P - 1) =0

Hence the singular solution is x* + y* — 1 = 0, ie, x* + y* = L.

EXERCISES

1. Show that the equations (i) 4p* = 9x and (ii) ¥* + y = p” have no singular
solutions.

2. Solve and find the singular solution of the following equations :
0 »' = 4o - )
[Hints : Put y = ¥ 1 Ans. y = eXx — %) x* = 16y, y = 0]

2



@ xp’ =xy-—(*-p"-b")p

hl
[Ans. y? = xPc~ =23 (2 =y = 7)! +4x?y? < 0

(i) p°y’ cos’ a— 2 pxy sin’ o +_;.r1 X sinto=0
[Ans. ¥'tan’ @ - 32 = 0]

3. Transforming the differential equation (px — y)(x - py) = 2p to Clairaut’s form

by the substitutions x* =y and yl =, solve it and find the singular solution

if any,
[Ans. &®x? —o(x® + > ~2) + y* =
(x= Y +V2)(x =y = V2)(x + p +N2)(x + y =) = 0]
4. Verify whether the solutions of the first-order ODE exists or not :

4 = f(x,»), where f(x,y) = p2 L X7V
ox X X

I+J” =% and 3y
X—y ¥

3. Find the first four successive approximations yq, Vs Vo, ¥a for the first-order
ODE :

1
@ »=1+xy p0) =1
@ »' =", w0) =1

L11 Summary : The main theorem discussed in this chapter is the Cauchy-Picard
Existence Theorem for the solution of the initial value problem for the first

x* + % 9(0) = 0

order ODE d_y = f(x,») with the initial condition y = y, when x = x5 A
X

unique, continuous solution of the problem does exist if i (x, ) is continuous
in a domain D of the xy-plane and also if f(x, y) satisfies the Lipschitz
Condition. The existence of solutions for the first-order system in n dependent
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variahles ¥y, V2, -.s Py ! %= £, (& Y1y Y3 o ¥) (0= 1, 2,000 ) which
d x v B

assume the initial values y}', ¥J., ..., y, respectively, when n = x; can he
deduced if the functions f; are continuous and they satisfy Lipschitz conditions.

Lastly, the existence of the solution y = p(x) of nth order ODE : 3" = f{(x,
¥, s o P71y with the initial conditions ¥ = yg, ¥'=»/, ... " =y

can be estabvlished in a similar way.
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Unit : 2 O General Theory of Linear Differential
Equations

2.0 Introduction ; The general ODE of order n which 15 linear in the dependent
variable v and its derivatives is

[r-1}

Lyl = o)™ + p )y H ek px)y = HX)

where L is the lincar differential operator. If #(x) = 0, the equation

Llyl= po()p" + p)y" Y oot p(x)y = 0
is called a linear homogeneous ODLE.

The method of solution of linear ONE depends on our ability of finding a fundamental
set of solutions of the corresponding homogeneous equations. A sct of n linearly
independent set of solutions of L(y) = 0 is called a fundamental set and there may be
an infinite numbet of possible lundamental sets of solutions of the homogeneous equations.
In general it is very difficull to find a [undamental set of solutions of the general linear
ODE’s. Only in the case of linear equations with constant coeflicients and the Euler Tinear
equations ol the form

agx™y"™ 4 ax" P kg y =0
(erg, €y s @y ave all constants)

we can find the fundamental set very easily, As a matter of fact the Euler linear equation
can be transformed into a linear ODE with constanl coefficients by changing the
independent variable x to z by the substitution ¥ = ¢, Then we can lind the fundamental
set in terms of elementary functions ¢ such as polynomials, the exponential and
(rigonometrical functions. '

The idea of integrating factor which plays a crucial role in finding solutions of linear
equation of first order may be introduced in the theory of linear ODE of higher order.
Let L[u] = 0 be the homogeneous ODL and we seek for a function v(x) such hat
v L[u]clx is an exact differential, Substituting for 1 and after some casy calculation we
can find the Lagrange identity in the form :

vL[#] — uLlv] = ‘:— (P, )}
X
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where L is another nth order linear differential operator (adjoint operator) and -
P(u, v) is the bilinear concomitant, The equation L [v] = 0 is called the adjoint
equation corresponding with L[u] = 0. If v is a known solution of the adjoint eqﬁatiun,

the equation L|u] = 0 reduces to a linear equation of order (n — 1) :
Plu, v) = C

where C is an arbitrary constant. Thus by knowing a solution v of the equation [ [v]
= 0 we can reduce the order of the original equation by ene. It may sometimes happen

that it is easicr to find a solution of the adjoint equation.

2.1 Liaear Differential Operator and its Properties : The most general linear

dilTerential equation is given by

" =1

) gEr)
2o) T+ P Pn_.(x)%+p,,(x}y — (%)
= : e
or Uyl={poD" + p D"+t p D+ p}y = 1(x), [ﬂ = E]’ 2.1)

in which the coefficients py, p,, ..., p, and r are single-valued continuous functions
of x throughout an interval o < x < b and that Po # 0 at any point in the interval.
The existence theorem of 1.8 in Chapter I asserts the existence of a unigue continuous
solution y(x) assumes a given value y, at x = Xpi Xg € (4, b) and whose first (n
— 1) derivatives are continuous and assume the values Yo ¥or, 15" respectively

at xg. The expression
L=p,D"+ .IE'"I-'DH-I oot PuaD + Py
is called a linear differential operator of order n. The differential equation
Liu] =0 : (2.2)

is known as the homogeneous equation or the reduced equation.
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We give below some theorems which will bring out the nature of the operator

Theorem 2.1 : If # = u; is a solution of the homogeneous equation (2.2),

then # = cuy is also its solution, where ¢ is an arbitrary constant.

Proof ; Noting the D"(cuy) = e¢D'u, we find

Llew]= 3 p, D" (cu) = ey, p, D"y = el =0
r=0 r=0

which proves the theorem.

Theorem 2.2 : If u = Hy, 3y oy #y,, are m solutions of (2.2), and ¢y, ¢3, ...y
¢, are arbitrary constants, then o = ¢y + caty + e + ¢,,1,; is also a solution

of (2.2).
Proof : Noting that

D e + cytty +oo+ eyt b = e Dy ey DMy 4ok ¢, D',

.

the result immediately follows by Theorem 2.1,

If we can find # lincarly-distinet solutions u,, #a, ..., #, of the equation (2.2), then
u = ey + gty + ... + equy, in which the constanis ¢, ¢z, .., ¢, are arbitrary is
the complete primitive of (2.2). The constants ¢y, ¢3, ..., ¢, may be chosen in one and

only one only, so that

u(x) = Yost' (%) = Yiseonstt" " (50) = 35" (2.3)
Theorem 2.3 : If u(x) is the complete primitive of the homogeneous equation
(2.2) and y = yy(x) be any solution of the non-homogeneous equation (2.1), then

y = u(x) + yo(x) is the most general solution of (2.1).

Proof : The operator [ is distributive, because the operator D' is distributive. So,
L) + yo(0] = LIu()] + Llye()] = r(x) for L{u(o] = 0 and Llye()] = r(x). Since
the solution y = u(x) + yy(x) involves n arbitrary constants, it 1s the peneral solution
of (2.1).
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Thus the general soluticn ol (2.1) may be considered to consist of two parls

(1) The complete prinutive u(x) = ¢yuy + catta + ... | ¢y, of the corresponding
homogeneous equation and containing » arbitrary constants: this is known as
the complementary function.

(1) The particu'ir s« lution yq(x), known as the particular integral, containing no
arbitrary co st t. For definitencss. it may be that solution of (2.1) which.
together with s first (n— 1) derivatives, vanishes at a point x; in the interval
(a., b).

2.2 Linea;‘ Dependence ; The sct of functions 7, (x), Lo () ey £ (x) are said

to be linearly dependent on an interval (a, b), if there exists constants ¢|, ¢, ..., G

nol all zero. such that

afi(¥) e fa(x) teete, [ (x) =0 (2.4)
for all x & (a, b).

Functions which are not linearly dependent are called linearly independent, Thus
the functions #,(x), f5(x), -+, f.(x) are linearly independent if the constants Cpa £,
...s Uy salislying the relation (2.4) imply that

| G =ty ==¢, =0
for all x € (u, h).

Assuming that ¢, # 0, the lincar dependence of the finctions /], f,. -, [, shows

from (2.4) that
Jolx) = Bifi(x) + Bafo(x) 44

g Ilrjr l.f;'--l(l-}'-l-'ﬁr-i-l ¢-+I+'_"+ ﬁnf.ar (25}

i which f, === = 1.2,-«,m; 7 # ). Thus the function £, (x) ean he expressed as
A .
a lincar combination ol the remaining (# - 1) functions of the given set,

2.3 The Wronskian : We have seen thal il wy. ts, ..., 1, are n solutions of the
homogencous equation Llu] = 0 of depree n, then its most general solution is
u=epny + ey 4o b ey, But this is possible provided the solutions wy, ta .o iy

L Bl

are linearly independent. We now proceed (o [ind the conditions for which the n
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[unctions uy, ta ... i, supposed to be differentiable » — 1 times in (g, b) are lincarly
independent.

Let the functions iy, 4 ..., i, are not linearly independent. Then we can determine

the constants ¢y, ¢3 ... ¢, such that

¢ty + Calty ot e, =0

identically in the interval (a, b). Diflerentiating this relation up to i — | times in that

interval, we get

- # - ’ e ' ! —
oty + Gus e, =1

el eyt et e = 0

woa =1 ) PR L B
¢, by T ek i T = ]

Thus there are n equations to determine the constants ¢y, ¢3 ..., ¢, These equations

are consistent provided

" ty
1 '
”l Hz -y ."H
(g, by, 1) = : : e 0 (2.6)
HI[.l.l—l:l “éu—l] " ”h: 1)

-'r

The determinant W is known as the Wronskian of the functions u), 15 ..., t,. Thus
a nccessary condition that the functions uy, 43 .., u, are linearly dependent is
that /= (.. Hence the non-vanishing of the Wronskian of the functions uy, u;

vy 11y, is sulficient for their linear independence.

Now we suppose that the solutions w(x), ua(x), ..., ulx) (k < n) and their

k — 1 derivatives are finite in the interval @ < x < b and their Wronskian vanishes identically
in (@ #). Then we can write

t, () = eyt (x) + eatia (X)) + -+ ey (%) (2.7)

where ¢y, €2, =y € are constants, provided that the Wronskian ol uy(x),
13(X); ooy fig_ 1(x) does not vanish identically, i.c., the solutions arc linearly

dependent.
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To prove this, we suppose that 7}, U, ..., U, denote the minors of the elements

in the last line of the Wronskian

Hl. H:]_ e “J.'

’, a ,
L
(=1} (&—1) k=1
I U bue ga

then we shall hzwé k identities of the form
U™ + Uyl 404 Uyl = 00 = 0,1,k — 1)
Differentiating each of first (k— 1) identities and lhenlsul::rtracting the identity from
the result, we obtain
U + T o U = 00 = 0,10+, k = 2)

Multiplying the rth of these (k — 1) identities by the cofactor of #,""~ " in the

determinant [/, and adding the products, one obtains

Ui, —UU, =0
and since Uy is not identically zero in (a, b) we have U; = — ¢| U, Similarly, we can
show that Uy = —ealy, ..y Uy | = —4Uy. From the identity Uiy + Usug + ...
+ Uiy = 0, it, therefore, follows that
Upd—eithy — catty — =1 + w3 =0
from which we have u, =e¢u +eyu, +otepu . ie, the result (2.7) is
proved.

Thus we conclude that

L 10 the Wronskian of the solutions wy, te3, ., #, vanishes at any point

of (a, b), these n solutions are linearly dependent.

II. If the wronskian of the k solutions wy, wy, .., u, (kK < n) vanishes

il:inzntii.:alljF in (a, b), then these k solutions are linearly dependent.
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Now it follows from (2.6) by differentiation with respect. to x that

i bty #ide i,
# # ’
aw | " i
cdx | oen ) (1-2)
U, u; e My
[ L) 1)
ﬂl !4'2 dineed Hﬂ )

for all other determinants arising from differentiation have two rows alike and
therefore, vanish. Since u, is a solution of the homogencous equation L{u] = 0, it
folows thal

(n) — fn-1)

f
Pl =, s Py — Pl

and we get after some elementary calculation that

an. iy
dx Pa
. X jji
o1 W =W, expl—_[xu == dx} (2.8)
P

where Wy is the value of W at x = x;. The relation (2.8) is known as Abel
identity.
If pylx) # 0 in (a, b). then if W vanishes at xy, W = 0. If Wy # 0, then W cannot

be zero except at a singular point, 1.e., val becomes infinite at the point.
n ;

2.4 Fundamental Sets of Solutions : A linearly independent set of n solutions
1y, H3, .y 1, of the homogeneous equation L{u| = 0 is said to form a fundamental
set or fundamental system. The condition that these » solutions should be a fundamental
set is that the Wronskian of these solutions is not zero.

The peneral solution u = ¢juy + catig + ... + ¢, of the equation L{u] = 0 cannot
. vanish identically unless the constant ¢y, &3, ..., ¢, arc all zero. There may be an infinite -
number of possible fundamental sets of solutions of which one particular set is of

importance due to its simplicity.
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We choose the function u(x) such that
(%) = Land u{(x,) = w{x,) == ul""(x,) =0

and define the functions u(x) (r=2, 3, ..., n) as that particular solution satisfying the

imtial conditions
ST, Y SR P | T [r=1} = -
wxg) =u'(xy) == (X)) =0, " (x) =1,
7 0) = WV () == 10V () = 0,

then the sel w, wa, ..., #, form a fundamental set and its Wronskian for X = xyis

unity.

2.5 Depression of the Order of an Equation : I r independent solutions of the
homogeneous equation L{u| = 0 of order » are known, then the order of the equation
may be reduced to n — r. lo prove this, we suppose that the » solutions Hy; Uy aeny
1, ave known, We put w = ;2 where z is the new independent variable and the cyuation
Llu] = 0 is reduced to a new cquation of the same type in z, This new equation in
z musl have z = 1 for a solution which requires that the coelficient of z shall be zero,

since the coelficient of z is precisely L[u;]. The equation in = is therefore of the form

d'z d" 'z dz

——bly —— i~ )
u Li‘l.'" I v T n=| e ':29}

where fy, by, ..., b, | are functions of z, Putting v = dz / dx, this cquation reduces
4]

d" 'y d" %y
Hld_r_"' +b|m+'"+b‘,l_,1’=ﬂ (2.10)

which is a linear homogeneous equation of order n — 1. Since Hiy Upy weuy W, BTE
solutions of L|u] = 0, the equation (2.9) has » — 1 solutions of the form s ! Wiy

t, {1y and therefore, the solutions of (2.10) are

dfw) dfw) . dfu
dvlow ) dclw [ 7 dely,

which are linearly independent; otherwise a relation exists in the form
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d [ u, d [y d | u,
g = | ek e b e )
dx Tdx iy dx \ u

where ¢;. ¢3, ..., ¢, aré constants not all zero so that by integration, a relation ¢alln
1 ..+ e, + cqup = 0 exists where ¢ is a new constant, I[ » > 1, we may obtain

similarly a new lincar equation of order n — 2, and so on.

[Tence, il r independent particular integrals of a linear homogeneous equation are
known, then its integration reduces to that ol a linear homogeneous equation of order

n —r. When » = n — 1, the last equation will be integrable by a quadrature.

As an example, consider the second-order linear equation

2
% + p(x) ‘:5”; +2x)u=0 (2.11)

and let u| be a particular integral of this equation. I we put & = u,z, then this cquation

reduces o

d’z [ du, dz
W—=+ 2=+ py [=—=0
dx” dx dx

Setting % = w, this equation can be written as
ﬁ+[2ﬁ +p!tt)£: 0
v ax u
which, on integration, leads to

lugvf+ J'; pdx+logu; = loge

b
i:e' Iy
U

it S =
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A second quadrature gives z and consequently u. Thus the equation (2.1 1) has the

integral u, given by

I =1u fj. dl:‘ —Hﬂ ,|'1'£-ﬁ'
Bt T
i)

which is independent of u).

2.6 Solution of the Non-homogeneous Equation : We now proceed to find the

solution of the general non-homogeneous equation

L] = r(x) 2.12)
in which we suppose that a fundamental set of solutions u(x), ua(x), ..., 1,(x) of the
reduced equation L{u] = 0 are known. The general solution of the reduced equation
s

U= Cdy + e + .t ety

where ¢, ¢, ..., &, are constants,

To determine the general solution of the equation (2.12), w~ use the method of

variation of parameter. Lei
u= Vi + Vg + . + Vo,

in which ¥, V3, ..., ¥, are undetermined functions of x, satisfy the equation (2.12),
Noting that the differential equation itself is equivalent to a single relation between the
functions I and r(x), n — 1 other relations may be set up if these relations are consistent

with one another, We choose the set of n — 1 relations as
Vi + Vg +- 4+ Vi, =0,

Vil + Vit 4+ Vil =0, (2.13)

Vl.hlll'!r 2) I Vzruéu—z}l Siiva s dls V;Hin—i_} =)
As a consequence of these relations, we have
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¥o= Vg + Vs -+ Vo,
=V + Vg +eo+ Vo

e

J}ju—rj VH:JI 1) +V“m—l] 4 +i-; [n- 1:| Elﬂd

HFT

_]_Jl.ir‘.l = V”Iiﬂil + Vué"} e & V“{H? +,'Vf“1ﬂ h = Vr“{n L S Tt

r H

Hence the expression y = Vi, + Vatts -V 1, satisfies the di fferential equation

(2.12) in which the coefficient of " is supposed to be unity, provided that

V" 4 VA o T = ) (2.14)

U] JI

Since the solutions uy, ¥y, ..., u, form a fundamental set, the n equations in (2.13)
and (2.14) are sufficient for the determination of V| V5, -+, ¥ uniquely in terms of

Uiy Hay G Mg i., Fa, ..., ¥, can then be obtained by guadrature

In particular, for a second-order equation

_ i m(x)r(x) u (x)r(x)
v =—]| 1) dxand V, = j—W(uHuz} o

W (1, 4z) being Wronskian of u; and us.

2.7 The Adjoint Equation : The idea of inteprating factor arising in the theory
of first-order linear equations can be extended to the theory of higher order linear

gquations, Let
L!_Hl B (FHD” it PlD"-I R pﬂr—ID e pﬂ)u

and suppose that there exists a function v(x) such thal vL[u]dy is a perfect differential.

Then the result
Uﬂr}V = g {Drf."—”pr = L]r[i'—l]pﬂ ik (__-I}r—l LFV[J'—U} 3 {_i}r'uylri
e :

e




gives
wllu] = j_k 'Il“l: "_”{P{,V} = h,i::—I](pHv)-‘ Y (_]}M—I H{;FU\J)[” Ib}

[y

AU D ()~ D)+t () ulp) )
X

s %{H;(Jﬂn Ev} — H(prr—'.:.'v):} + IE:L {_Hp"_ﬂ’} A HE[‘IJ] {2 i‘”

where

IVl = D" ()™ + D (o)™ btk (p, W By (215)
The differential expression is said to be adjoint to L|u| and the equation
Livl=0 | (2.16)
is called an adjoint equation corresponding to L[u] = 0. :

Now the relation (2.14) may be expressed mn the form

wL{u]— ul[v] = dix{P(u,l‘)} {2,1.?)

The relation (2.17) is known as Lagrange identity. The expression Py, v) is linear

s 7| = : T
and homogeneous in u, ', <+, 1" " and v, ¥, e, M " and is known as bilinear

confocomitant.

In order that v may be an integrating factor for Lu], the necessary and sufficient
condition is that v should satisfy the adjoint equation L[v]=0. .

Now we show that the relation between L{u] and L[v] is reciprocal to each
other, or in other words, if L[v] is adjoint to L[u|, then L|u| is adjoint to L[v].

For, if not, let L[u] (# L[u]) be adjoint to L[v]. Then there exists a function (i, v)
such that .

VIl =[] = < (B}

= d
But vifu]|—ullv]= = L2, v)}
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Hence, vil|u|— Llu]} = fi{f-’,(u, v) = Plu,v)}
dx

But P (u,v)— P(u,v) is linear and homogencous in v, v/, .., v and, therefore,

w{L|u]- Llu]} does not involve W so that the coefficient of v~ in Fi(u,v)— Plu,v)

is zero. Repeting the argument, we prove that /(. v) — P{u,v) = 0 and, therefore
L[u]l= L[u].

An equation is said to be self-adjoint if it is identical with its adjoint. |
EXAMPLES
Show that the solutions ¢', e and e2* of

d’y d’y ey
dx’ dy’  dx

are linearly independent on every real line.

Solution : The Wronskian ol the solutions is

_ L e‘ﬁ““l I i
Wiet, e ", e =" —e' 2™ |=e*|l =1 2|==6e* £0
6.1.- E—J.: 4621 1 1 4

Hence. the given solutions are linearly independent for all real x,
Given that y = x is a solution of

(x* +1) Y 59y o0

i dx’ A
Find a linearly independent solution by reducing the order,

Solution : Let p = zx. Then the given equation is reduced to

i : 2"-
(x* + l)[l'%; +2 ji ] —Ex[.\'dzﬁ] +2zx =10
{ax :

dx
; d*z iz

O (3 +F=—=31+2"—=4
S ]dxl dx
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i {?T-:- = - .
Pufting = v, we have a first-order linear homogeneous cquation
e

x(x® + 1)%+ 9y =0 S0 = [—?L— Ejdx

v

e(x® +1)
e

the integration of which leads to v =

. dz 1 : .
Choosing ¢ = 1, we have 7 p=2 i . Integrating apain, we gel v = x—l_
X X X

Hence y = x> — 1 is the desired lincarly independent solution.
Find the general solution of
(x? +1}F_2xl& +2y = 6(x% +1)?

given that y = x and y = ¥ — | are linearly independent solutions of the
corresponding homogencous equation.

Solution : The complementary. function ol the given equation is
U (x) = ¢ x + ey (x7 = 1)
¢y, t3 being constants, To find the general solution, we let the particular integral

u(x) =V (x)x + Vz(x}[xz - 1)

so that

w'(x) =V, + 2W,x + x4+ (x* = )W
Imposing the condition xF'+ (x* = )V =0 (A)
we

w(x) =V, +20x, .. u'(x)=W+2Vx+2V,
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Substituting these in the given equation we obtain
(x% + D[V +200x + 2V, | = 2x[V, + 2xV, |
22V, + (2% =)W, ] = 6(x" + 1)
ar Vid 2Vx = 6(x* +1) (B)
Solving for ¥Fand ¥, from (A) and (B) we have
! 8 V= —6(x% —1), ¥y = 6x

so that V| = ~2x7 + 6x, V, = 3x* where the integration constants are chosen to

be zero. Hence, the general solution of the given equation is
¥ =u.(x)+u(x)
=ox+e(xt = 1) +(=2x° +6x)x +3x7(x* = 1)
e, y=cx+e(x’ =1 +x" +3x*

Show that if u(x) and v(x) are solutions of the self-adjoint differential equation
(pu’) +g(x)u =0, then p(x)(uv'—u'v) is constant.

Solution : Let L{u]l=(pu'Y +qu=0, ie, Lul=pu”"+pu' +qu=0. Iis
-adjoint equation 18

Livl=pv"+2p" — p'W +(p" = p"+g)v=0
'i._E,J I[V] = p-”” -+ pi'v.r e q1-|' i []
But the equation L(x) is adjoint and v(x) is also its solution,

Hence the L H.S. of the Lagrange identity (2.17) vanishes, and, thercfore
pluv —uv") = constant,

EXERCISE

| : g : :
Show that x¥* and — are linearly independent solutions of the equation
X

1 _+I_J...4_y=(} on the interval 0 < x < o=,
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Consider the different equation

7
dy riv+

dx* b

(a) Show that each of the functions e, ™ and 2 — 3-3‘“ is a solution of the

cquation on the interval —= < x < =,

(b) Show that the solutions ¢¥ and ¢'" are linearly independent on — = < x

< o

(c) Show that the solutions e* and 2¢* — 3¢* are linearly independent on

—m < x < o,
(d)* Are the solutions ¢ and 2¢" — 3¢ still another pair of linearly independent
solutions on —= < x < =7 Justify your answer.

Given that ¥ = ¥ is a solution of

dy dy
ey ——2 +2y=0
X =L e Y

Find a linearly independent solution by rcdt}cing the order and write the general
solution.

[Ans. : y=gx+e(14+x%)]

Given that ¥ = ¢** is a solution of

2

dy dy
2x4+1)—S—Hx+D)—=—+dy=0
( ) . (x+1) R
Find a linearly independent solution by reducing the order and write the general
solution.
[Ans, @ ¥ =¢ e** +e,(x+1)]

Find the general solution of

2
xzdy ﬁrj};+1ﬂy 3x' +6x°

4



given that y = x> and y= X are linearly independent solutions of the corresponding

homogeneous equation.

; 3
[Ans. 1 y=¢x” +ex —3x - 5_,(4 |

Find the general solution of

IE
(x? +2%) ;x—{—z(x +1) j"—”+1y = (x +2)°
X

given that y = x + | and y = x* are linearly independent solutions of the

corresponding homogeneous equation.
[Ans. : y=egfx+1)+ cx — %% —2x 4 x7 In|x|]
Find the peneral solution of

: d’y N s 3 :
sin® x - i— — 28X, Cco5% Y +(l+cos x)y= sin” x
dx ey

given that y = sin x and y = x sin x are linearly independent solutions of the

corresponding homogeneous equation.

: o |
[Ans. 1 ¥y =¢ sinx+cxsmx+ 5.\:g s x |

2.8, Summary :

The solution ¥ = p(x) of an sath order linear ODE

L) = B (x)p" + p () 4 p(0)p = r(x)

which assumes the value y = yg at a point x = xp and whose lirst (1 — 1) derivatives

are continuous and assume the prescribed values yj, ye, -+, pi" " at n = xp consists

of two parts : the complementary Tunction which is the general solution of the

homogeneous (reduced) equation L(y) = 0 containing # arbilrary constants and the

particular integral which is any particular solution of the non-homogeneous (complete)

equation L(y) = r(x). The complementary function can be obtained if we can lind oul

n linearly independent solutions w,(x), 1, (x), -+, u,(x) of the homogeneous equalion.
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The Wronskian of the n solutions W(uy, us, ..., u,) plays a crucial role in determining
whether the sel of solutions is linearly independent or not. The vanishing of the Wronskian
of the » solutions implies the linear dependence of the solutions and its non-vanishing
is sufficient for linear independence of |, us, ..., u,. We have also another important

result in connection with the n independent solutions of Lu| = 0
W= H{] EXP{—[:" E].. dx}
Py

which is known as Abel’s identity.

The Adjoint equation L[v] = 0 corresponding with the equation 7[u] = 0 is also

introduced which plays some role in solving the equation.
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Unit : 3 O System of Linear Differential Equations

L3

2.0 Introduction : The system of linear differential equations in n unknown functions
x, (1), x5(1), -+, x,(1) of the form
dx
— = A(DOx+ E(1)
i (6) (
where A(f) is a n x n matrix, x and F({) arc column vectors, f is the independent

variable can be solved just like nth order ODE if we can find out a fundamental matrix

of the homogeneous system

dx

— = A{f)x

dr
The fundamental matrix is the » x n matrix whose elements are §, (1), 6,(¢)++ 9, ()
and these functions are » linearly independent solutions of the same. In general, the problem
of construction of the fundamental matrix is a very difficult one when the matrix 4 is
a function of 1.

 However, il 4 is a constant matrix, the fundamental matrix can be constructed more

easily. In this case the solutions ¢, (r),¢,(1)-¢,(r) are ol the form ¢ = re™

3.1 Basic Theory of Linear Systems in Normal Form : The normal form of
a linear system of n differential equations in the generalised case with # unknowns ¥,

X3, 1o X, 18 given by

% =6 {r}xi L a'li'{r}xz et ahr(r}xn Y E(f}:
dx .
’r_l: k2 a?l “)xl + an('r)xZ i a'l.lr('f)xu S F‘l“]: (3-]}
L
% = dyy (1)%, + @y ()% ++ - am, (O, + F,(1)
or, more compactly,
ﬁZiﬂ&U}xJ+_F;(.!], (‘:zlrzm"';n) : (3.2}
dar = .
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Now we proceed to find a relationship of the normal linear system (3.1) or (3.2)

with a single nth order linear differential equation in one unknown.

Consider the normalized (i.e.. the coelTicient of the hi gher order derivative is one)

nth order lincar differential equation

HF

ik { dax

%+ a(r) {; T e o ,{.f] + a,(t)x= F(). : (3.3)
Lel

i dx o d’x ! d" X - d"!

= R = 5 = o Ky = = :

| 2 {H 3 dfh | l:f =1, Ef.!'" | (3 4}
Then we have

dx, dy, dx, x

— =X, —:x“..*—--_:x”‘—” =—a,lr ~d, (1)x,

dt 7 y lt df (0 =a, (),

—a,(1)x, + () (3.5)

which is a special case of the normal lincar system (3.1) or (3.2) of equalions in
n unknowns. Henee, a single nth order linear differential equation in one unknown function

is intimately related to » first order normal lincar system of differential equations in »

unknown funetions.

We now assume that all the [unctions a (G =1,2, ., myj=1, 2, ..., n)and
Filry (i = 1, 2, ..., n) in (4:2) are continuous on a real interval a < ¢ < b, If all Fi(n
=0( =12, .., n)forall {, then the system (3.2) said to be homogeneous, Otherwise,

il 15 called non-homogeneous.

The system (3.2) can be expressed in a vector form by using vectors and matrices

as following :
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Let the matrix 4 be defined by

aylt) axE) = aplr)

ay(f) anlt) = az,(t)
Ay = 1‘. : : (3.6)
E'!I.lt(:-] ﬂnE{'rJ i lﬂl-’h‘!(f}
and the vectors F and x by
Fi(1) *
K Y
F(i) = '_U} andx = :1_1 an
}J:P{” I!r

Then the system (3.1) or (3.2) can be expressed as the linear vector differential
equation
i :
s A(t)x + F(f) (3.8)

L

‘I'he equation (3.8) is referred to as the-veetor differential equation corresponding
to the system (3.1) and the system (3.1) is the scalar form of the vector differential
equation (3.8).

Example 3.1 : The system

dx,

—L = Tx, — x, +0x,,

dl' 1 2 3

-di =—10x, + 4x;, — 12, (3.9)
el
.Li’;l = —le + Xy = Xq

i B
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is a homogeneous linear system with » = 3 having constant coefficients, while the

system
il Tx, — %, +6x, —51—6
elt - '
d,
—=—10x +4x, —12x. — 47+ 23
ar | 3 3 (3.10)
d
25 ~2X Xy =Xy 2
elt i

is a non-homogencous system with n = 3, the non-homogeneous terms being
=5t — 6,— 4/ + 23 and 2 respectively.

The vector differential equation corresponding to the non-homogencous system is

el |
;rfT: A()x+ F(t) (3.11)
where,
A(t)=|-10 4 -12|, x=|x, |and F(1) = | —4¢ +23 (3.12)
AR Xy 2

Definition 3.1 : 'The solution of the vector differential equation (3.8) is given by
an* | column vector function of the form

¢

3=|"

: (3.13)

P

in which each of the components ¢, ¢, ..., ¢, has a continuous derivative on the real
interval @ < 1 < b such that

‘ﬁ#: AMOO)+ F(), Veina<i<h | (3.14)

It also follows that the components @, &, ..., & of .:Tn are such that
X = 'i’l('r)t X = ¢:UJ‘1 ey — ‘Jf’r;(”
éimuhaneuusly satisfy all the » equations (3.1) fora < ¢ < b.
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Example 3.2 : As an example, consider the homogeneous system (3.9) in vector

7 -1 &6 [ x,
form. i.e., j—J' =|-10 4 =12 |x, where x=|x, | It follows that the column vector
I
=2 1 -1 Xy
e
function § defined by ¢ =|—2¢" | is a solution of this equation on @ £ ¢ £ b; for
i
—e

x = (1) satisfies the equation identically, i.e.,

3¢’ T e
2o |=|-10 4 -—12||-=2e¥
—e” S R RN

3

Hence x, = e, x, =—2¢”, x, = —¢”' simultaneously satisfy all the three equations of

the given system for @ < f £ b and, therefore, these are a solution of the system.

We now state the existence and uniqueness theorem for the vector differential
equation (3.8).

Theorem 3.1 : Consider the vector differential equation

dx ’
o = A(f)x + F(t) (3.8)

in which the components of the ay(f) (i = 1,2, ., mj=1, 2, ., n) of the matrix
A(f) and the components (1) (i = 1, 2, ..., n) of the veclor F(r) are continuous on

a < < b Let fy be any point of the interval ¢ < ¢ < b and




be an * 1 column vector of n numbers ', Cs, ..., C,. Then lhere exists a unigue
solution

P,
ol the vector differential equation (3.8) such that
o(t,) =C, ¥tina<t < : - (3.19)
and this solution is unique in the interval,

3.2. Homogeneous Linear Systems : Let all Fi() =0 (i = 1, 2, ..., n) for all
i in the linearised system (3.1) and we consider the homogeneous linear system

. .
=g, (D)%, +a, (0%, ++ e, (Ox

dr e
{f_‘{'z - : .
i dy (%) + ay(1)xy +2-+ay, ()5, (3_.16]
dx
d_: - Jr]{r}xl +a}11("]x2 -I---~+am,{£}x"
or the corresponding homogeneous vector equation
dx
— = A(t)x '
o (t) (3.17)
P
Let 5 be any point of @ < + < b and ¢ = ¢.2 be a solution of (3.17) such
¢i?

that ¢(1,)=0. Then ¢(r)=0 for all 7 on a < t < b. For, these conditions are of
the same form (3.15) with € = 0, and by Theorem 3.1, there is a unigue solution of

the differential equation satisfying such a set of conditions. Thus ¢(1) = 0 forall f on
@ <t < b is the only solution of (3,17) such that ¢(,)=0.
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Theorem 3.2 : If the vector functions ¢, ¢,, -+, ¢, are m solutions of (3.17),

and Cy, (5, ..., C,, are m numbers, then a linear combination of these m solutions,

i.c., the vector function ¢ = Y C,0, is also a solution of (3.17).
k=l

Proof : Since cach :j: f is a solution of (3.17), i.e.,

dg, (1)

= Ao, (f sl
i (O, () fork=1, 2, ...

we have

: o : i 0
[g &‘F’g(f)} Z[ 7 C,;-‘f-';,(r}} = .EZ'ICI* [%qjk(r)}

i

- E Cy A0 (1) = E A@)Cyy ()]

i

= A3, C,0,(0)

k=l

i.c., %lﬁ(f] = A(r)é,f}{r), ¥t on a < t £ b. Hence the linear combination ?ﬁ: i(j‘kiﬁk
k=l

is a solution ol (3.17).

Definition 3.2 : Let ¢,,¢,,---,¢, be n vector functions of ¢ defined by

(1) P () By, (1)
. ¢’L21( ] o ¢22 U} 4 = “‘I’Eu(f) ’
61(1) = e =T e g = | T a8
:j}nt (fj 'i"nz (f) 'f]mr(r)
Then the n * n determinant
';bll ':Plz ‘Pln
PR b P P o Pay
W[¢|v¢zv"‘r¢n)— . o 1 (3.19)

‘ibnl ‘?’.HI S ¢’nrr
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is called the Wronskian of the n vector functions &f“[ﬁz‘.,,,@" and its value at r
18 W{&pﬁﬁz:“':‘}n}“}'

Theorem 3.3 : If the n vector functions ¢, ,¢,,.-, ¢, defined by (3.18) are linearly

dependent on a £ ¢ < b, then their Wronskian vanishes for all f on a < ¢ < b,

Proof : Since the vector functions ¢,,¢,,-+,¢, are linearly dependent, there exist
n numbers 'y, C3, ..., C, not all zero, such that

Ci (1) + Coho (1) ++++ C,9,(1) = 0, Vit €[a,b].

which in corresponding components reduces to
2 Ciy(1) =0, Viela,b] (i=1,2,....n)
1=l
In particular. for a point ¢; €[a,b], we must have

ﬁ:lc,#"y“n} =0 I:F == 1,2,...,1‘1‘)
j=

Since the numbers Cy, Cs, ..., C, are not all zérn, the determinant of this system
is zero, Le.,

ql’u(ru} ie']z{fn) sy, ()
¢2!{rﬂ) ¢'22“{I) ¢2H{Iu)

¢r|1“fl} ¢ir2{'rlll} :f’.nr.ll_:ruj

O, WP, @y v+, ,)t) =0
Since fy in arbitrary, we musl have (@, %, ..., ) = 0 for all r € [a, b

Example 3.3 : Consider the three vector functions

Ezr E'h {.’1'
b (1) =| 26 | d(0) =| 4™ |, dalr) = | €™

Se*! o 2’
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Noting that 3&,{?) + f—]]@z[.‘} + (—2}&53(1‘}: 0 forall t € [a, b], we lind that the
vector functions 4;}“ [pfz, e, , are linearly dependent and, therefore, by

Theorem 3.3, their Wronskian is zero for all + € [a, b]. Indeed. we have

2 o p
g e ¢

W, o, 05) = |2¢"  4e* e =0 forall ¢

. Z
Se  1le¥ 2

Theorem 3.4 : If the vector functions ¢,, ¢,, ---, ¢, defined in (3.18) are the
n solutions of the homogencous linear vector differential equation,

oy

o= Al (3.17)

and the Wronskian W(¢,, ¢,, ---
are linearly dependent on [a, b].

$,) (to) = 0 for some (g € [a, b), then ¢, ¢, -, ¢,

Proof : Consider the linear algebraic system

i’ﬁ-%(ru = 0@ =1,2,0.0) (320)

in the unknowns 'y, Cs, ... C,. This system has a non-trivial solution, because the

determinant of the coefficients W(@,, &5, . t_f}”} = () by hypothesis. Thus there exist
numbers ', Cs, ..., ¢, not all zero such that

Ciy (1) + Cofaty) +- -+ C,9,(5,) = 0 (3.21)

Now we consider the vector function ¢ defined by

B(1) = € (1) + Copo (1) +---+ C,8,, (1), ¥t € [a,b] (3.22)

Since §,, §,, -+, ¢, are solutions of (3.17), by Theorem (3.2), the linear
combination ¢ defined by (3.22) is also a sﬁluti::m of (3.17). But this [‘unctio;1 ;p
is such that ¢(z,) = 0 by (3.21). Hence from § 3.2, we find that ¢(s)=0 for all

t €la,b], ie, ClaIU]+c‘1@2(r)+"'+cﬂ$n“)=ﬂ for all fe[a,b], in which
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Cy, 05, ..., C; ate not all zero. Thus :-If:“ 4;2, T [;}H are linearly dependent on

a=i=h

Example 3.4 : It is casy to verily that the vector functions ,-111'.', 47}2__ ¢, defined

by
oM EE.'“. —jﬂ'”
6,(1) =|—2¢" | §,(1) =| —4e" |and §,(1) =| 6"
ir

3 3 3
= 5 3"

are solutions of the linear homogeneous equation

- Waeeetl 5 X
<10 4 -12|x vherer=]|x%,
dt .

-2 1 -l X3

on any interval @ <t < b. Also W(¢,, ¢,, #,) =0 for any ¢ € |a,b] containing ¢ = 0.

Thus by Theorem 3.4, ,, ¢,, ¢, are lincarly dependent for any ¢ & [a,5] containing
= (L Indeed, we have

B,(1)+ (1) + §5(1) = 0¥t & [a,b]
Theorem 3.5 : Lel the p solutions of the homogeneous linear vector differential
equation

dx

o (3.17)

- on the interval ¢ <t <b be given by the vector functions ¢, ¢,, .-, ¢, defined in
(3.18), Then

cither W(d,, .-, ) =0 for all ¢ e[a,b]

or Wi(d,, ¢ss -+, $,) =0 for no 1 e[a,b].

Proof : IF W(¢,, ¢,, . ¢9,)=0 for some [e[a,b], then the solulions
Bys Bys o, @, are linearly dependent on [a, b] by Theorem 3.4 and
Wy by, 9,0 =0 for all refa.b] by Theorem 3.3. Hence
W(d,, hyy s h,) =0 either for all t €la,b] or for no ¢ e [a,b].
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Theorem 3.6 : If the vector functions @, ¢,, -, ¢, defined in (3.18) be the n
solutions of the homogeneous linear vector differential equation

it A()x 3.17
dr (3.17)

on the interval a < ¢ < b, then these n solutions are linearly independent on a 5 t<h
if and Dlli}-' it (. il a i ;f:-"](.r) 20 forall tin a<t=h.

Proof : By Theorems 3.2 and 3 3, the solutions . B, ¢, are linearly dependent
on |a, b] ift W(g,, ¢, -, ¢, )(1) =0 for all 1 e[a,b]. Hence these i solutions are
linearly independent on [a, 8] iff W(d,, ¢, -+, ¢,)(1,) # 0 forsome 1, € [a,b]. Ilence
by Theorem 3.5, W(:,f:_“ By oo, i,f'}rr}(;ﬂ-) + 0 for some (, €|a,b] iff for all 1 e [a,b],
we have J/(fy, fas s §,)(0) % 0.

Example 3.5 : The vector functions ¢,, ¢, and ¢, defined by

E‘.t: i ﬂ'ja 395,-
g =|—€" | §,(1) =] —2e | §3(1) = | —6e*
_Gg'l _E:'” _zeﬁ.f

are solutions of the homogeneous lincar vector differential cquation

,, 7 -1 6 Bl

dx

= =|-10 4 =12 |x, wherex=|x; (3.22)
-2 1 =l 3

on any interval a £t = b, but _
Eli E3I 31?5:
Wy, By D)0 = |- —2¢" —6e™|=—e'" #0
—e —e g™ '
so that by Theorem 3.6, the solutions ¢, .:}fz, .},»3 are lineatly independent on every reul
interval [a. b].
.ﬂei'miﬁuu 3.3 : Consider the homogeneous linear veclor equation

%: Al (3.17)
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in which x is an »n = | column vector. A set of linearly independent solutions of
(3.17) is called a fundamental set of solutions of (3.17) and a matrix whose individual
column is a fundamental set of solutions of (3.17) is called a fundamental matrix
of (3.17). "

Example 3.6 : Since the solutions ¢,, ¢,, ¢, in Example 3.5 are linearly

independent, these three solutions form a fundamental set of the given differential equation,
the fundamental matrix being given by

{,Ef E]-r 3E?lh
_EJ: B Gt
_E:I _E]r _2E5r

Theorem 3.7 : There exist fundamental sets of solutions of the linear vector differential
equation

el
s Alt)x (3.17)

Proof : We define the constant vectors w(i = 1, 2, ..., n) such that it has the
fth component 1 and all other components 0, i.e.,

(1\. If'n'\ fﬂ‘ﬁ
] 1 ]
u={0[w,={0uw =|0

7 \LUJ "~.]J

Let the n solutions fpl, By, ioe, q';" of (3.17) satisfy the conditions 43—‘.{;0] = u,
(f=1, 2, .., n) where ¢, €|a,b] is an arbitrary but fixed point., By Theorem 3.1,
these solutions exist and unique. Now we have

11 0

= = . 01 -0
WD, @q -y 9 00) = Wilny, uy, -, Uy )= 0 e : =120
0 0 - 1
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Hence by Theorem 3.5, W(@,, ¢, -+, 0,)(1) # 0 V1 € [a,h] and thercfore the
solutions @, ¢y, +-, ¢, are linearly independent on [a, b]. Thus the soluiions

@y §ss -+, 0, form a fundamental set of (3.17).

Theorem 3.8 : If the solutions ‘EH , i{'}z, v éf:” of the linear homogeneous vector

differential equation

(1'11- —
R (3.17)

be a fundamental set of solutions of (3.17) and ¢ be an arbitrary solution of (3.17),

then § can be expressed as a linear combination of ¢, ¢,, «, ¢, on [a, b]

Proof : Let
¢, (1) 2 (1) %(01
a rd ! s . 2
0= 80=|"0) 60|
{pnl I:'r] ¢n2 I:.I'] tpmr“}
I Hyy
Han

and @(t,) = u,» Where t; €[a,b] and w, = is a constant vector.

W

Consider the linear algebraic system

Gy (1) + Coya (8y) A C (1) = tyq,
C]'Pj;(fn} i {:121]521{.!‘“:} ek Crr 2pr{fﬂ) o~ I!‘tIIZI" (3 23)

C'Il'j)nl (Iﬂ) + (‘12¢'rr2 “G} AL Cntpmr{'{ﬁ} = Uns

of 1 equations in the n unknowns C1, Cs, ..., €. Since Zﬁ], ¢y, =+, ®, 18 a fundamental
set of solutions of (3.17), they are linearly independent on |a, b| and hence
WG, Byy os 0,) 7 0. NOW WDy, by s §,)(1,) 18 the determinant of the coef-
ficients of the system (3.22) and hence this determinant is not zero. Thus the system
(3.23) has a unique solution for C1, Cs, ..., G, i.e., there exists a unique set ol numbers
Gl Gy oy SUGH TR
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Cl&i("ﬁ) i C:‘J;’z (fg) +o+ fjil%nl:!ﬂ} = Uy

and hence

Plly) = 1, ='§|{:&E’k("n} (3.24)
Now il we define a vector function yr(r) = i C,, (1) then by Theorem 3.2, w(r)
k=|

. is also a solution of (3.17). Since (i) = ZC'&{M (fy) we have by using (3.24),
k=l
W (ty) = ¢(t,) . Hence by Theorem 3.1, we must have w(t) = ¢(t) forall ¢ e[a,b],
E i -
ie, @(t)= 3, C,0,(r) forall ¢ €[a,h]. Thus ¢ is expressed as a linear combination

k=l \

of ¢,, ¢, -+, @, where Cy, Cy, ..., C, is the unique solution of the system (3.23),

Example 3.7 : Consider the vector functions ¢, ¢,, ¢, in Example 3:5 and these
functions form a fundamental set of differential equations (3.22) (by Example 3.6) and
the Theorem 3.8 shows that if' ¢ is an arbitrary solution of (3.22), the ¢ can be
represented as a suitable linear combination of ¢, ¢,, ¢, i.c., €@, + Cyp, + Cyf, i

a general solution of (3.22), where €y, Cy, Cy are arbitrary numbers, ie., a general
solution is given hy

1 E|
o ] ¢ f 3£5f
r 2 3 .
G| —e* |+ G| 2e |+ C,| —6e™
g M _9%

and can be written as

1 ; 3
X = e’ +ee’ +3ce™
2 |
x; = —cie’ = 2¢,e” —Gee”

= ) i S ray
X =—cet —gdet —Jpe

3.3 Non-homuogencous Linear System : We now consider the non-homogeneous
lincar vector differential equation
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dx
= Alx+ F() (3.8)

where A(f) is given by (3.6) and F{f) and x are given by (3.7). We shall see that the
solutions of the equation (3.25) are closcly related to those of the corresponding
homogeneous linear equation

dx
= = AlD)x
P (F)x o EAT

Theorem 3.9 ; If ¢, be any solution of the non-homogeneous linear vector differential
equation

I
;—r = A(t)x + F(1) (.8)

and @, P, s ¢, be a fundamental set of solutions of the corresponding homogeneous
differential equation

dx L
—= A Iy
o (1)x (3.17)
then (i) the vector function
Y=+ Ef&ﬂ_ﬁk (3.25).

is also a solution of (3.8) for every choice of the constants Cy, Cs, ... €y and (i)

an arbitrary solution {ﬁ of the non-homogencous differential equation (3.8) is of the form
(3.25)

Proof : (i) Since ¢ satisfies (3.8), we have

) s
S = AN+ E()

and since i“( ,'knfy , satisfies (3.17), we have
k=l
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| . - " .
d.; LE:'[ f_‘kqh.t (”] = A(f}l:étl Ck qf}t {f):|
i %F’“m g gc“'ﬁ*m] = AP,() + F () + A{r)[i Cid, (;}]

= A(”[‘Eu{f} + .Fi Cx?_j& (fj] + F{"}.

Ly & d{” = AT + (1)

and so W = ¢, + katp* is a solution of (3.8) for every choice of the constants

Gy

(ii) Let us consider an arbitrary solution ¢ of (3.8). Since both ¢ and ¢, salisfy
(3.8), we have simultaneously

de(r)

s - dp, =
82 = AWH0) + F(r) and % = AWFo(0) + F(1)

s0 that 160 = Ba(0)] = A ~,(0)]

Thus ¢ — ¢, satisfies the homogeneous differential equation (3.17). Hence for suitable
choice of the constants Cy, Cy, ..., C,, we have

L

0~ ¢ = Em

Thus for suitable choice of €, C5, ..., C, we have

*_T:' = ﬁ?’n +;Z’:I C.:_-J’,t (3-2':})
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Example 3.8 : Let us consider the non-homogeneous dillerential equation

A O -5t -6 X

%: 10 4 -—12|x+|-41+23| where x=|x,
t

- _2 1 "‘I 2 -x_1

We have seen in Example 3.5 that

Ezr : E,.“rf 335'
0.0 =| e |, ,() =] 2" |, 5(1) = | —6e”
"E:f _EJI _EE.‘IF

form a fundamental set of the homogencous differential equation

AT -
S=lall 4 12|
a0 fill =l

Noting that the vector function ¢, defined by

21

Po(t) =|3t-2
—t+1

is a solution of the given non-homogeneous equation, its general solution is

x= CI&'] (1) + Cz&'z{r} + C\"xt.'a{-") + E’n(f}

% e’ e 3e™ 2t
ie, | % =G =€ [+ G| =2e" |+ G| -6 |+]| 3 -2
X —g™ —e" ~2¢" | | =t+1

where (!, Cy, (3 arc arbitrary constants. The above can be written as

x, = Cet +Coe™ +3C,e™ +2t
%, =—Cie = 200" —6Ce™ + 3t -2
xy=—Ce’ —Cye’ —2Ce™ —t+1
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3.4 Homogeneous Linear Systems with Constant Coefficients ; T.et us consider
the normal lorm of a homogeneous linear system of n first order differential equations
(3.16) in which the coefficient ag(i = 1,2, ., m j=1,2, .., n) are real constants.
Introducing the # % n conslant matrix of real numbers

g Hyp TE Ny
A x ﬂ1] ﬂ:-!j H'}n
(3.27)
J“Irrl arr] S amr
and the vector

*
L
X = £
X

the system (3.16) can be expressed as the homogeneous vector differential equation

el

T = Ay
= (3.28)

in which the matrix 4 is called the coefficient matrix of (3.28).
We now seck non—trivial solutions of the system (3.28) of the [orm

Vst el
L adlh
X, =1,
At

X, = 0,e

2

where @, @, -+, @, and A are numbers, Tetting @ = . we lind that the vector

form of the desired solution ol (3.28) is
¥ = g (3.29)




substituting (3.29) in (3.28) we obtain

Ade™ = Aoe™
so that

(A= AD@ =0 ’ (3.30)
where [ is the n * n identity matrix. In terms of the components, this is the system

ol i homogeneous linear algebraic cquations

(ay — Aty +aptey +-+ao0, =0
5 0t + (G5 — )0y +etay 00, =0

_ . (3.31)
a0 + 00 + o+ (@, — Ao, =0
in the unknowns @, @, -, @, This system has a non-trivial solution i[l
a,—A 4, ey
G BaA M oy (332)
d, Ay 0 Gy —A
Tn vector notation, this gi'ves
|A= Al =0 (3.33)

T'he equation (3.32) or (3.33) is known as characteristic equation ol the coeflicient
matrix 4 = (aj;) of the differential equation (3.28). This is an nth degree polynomial
equation in A and its roots A, A, .., 4, are called the characteristies values of
A. Substituting each characteristic values A(i = 1, 2, ..., n) into the system (3.31), we
obtain the corresponding non-trivial solution

u1 :(x":az ={x1r-‘."'-aﬂ :(xm {f: i-!2| --.,H).
of the system (3.31). The vector defined by
ﬂ"h

s

i) = :“‘ (EZE:E:"H”}

(3.34)
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is a characteristic veclor corresponding to the characteristic value A(i = 1, 2, ... n)

Thus if the vector differential equation (3.28) has a solution of the form x = ge*,
then the number Amust be a characteristic value A of the coefficient matrix 4 and the
vector & must be a characteristic value &'’ corresponding to the characteristic value
1 i

We now consider the following cases for characteristic values :

Case I : Characteristic Values are all Distinet : Let the characteristic values
A Ay oy A, of the matrix 4 are all distinet.and let o™ o ... g be a set of
n respective corresponding characleristic vectors of A. Then the p distinct vector functions
X|y X3, ..., X, defined by

x,(6) = Vel x (1) = g et . x (1) = o Metl) (3.35)
are solutions of the equation (3.28) on any real interval [a, b]. This can be readily verified
as follows : Noting {rom (3.30) that for cach i, 2 o' = Aa" (i=1, 2, ..., n) and
using (3.35) we have
L rePeM = 4oMe™ = Ax (1)
dt

showing that x;(f) satisfics the veclor dilferential equation (3.28).

Next consider the Wronskian Wi(xy, x3, ..., x,) of the n solutions x, ¥, ..., Xi
defined by (3.35). We find

- l|! At W

ﬂl]E 05”{3 e 'D:iﬂ-e "

A Aatf s

oe™t w,e™ e @, e’

& = n 12 2
W), 050m,)(0) = (27 : A

l:|-|.r Lt Bl

%€ o™ e O et
i (e s g,
_ pthsda et (Fal Ot Oy,
l‘:}iiﬂ &,,2. arm

Z 0 for all 1 on [a, b
because the n characteristic vectors o', @ ..., o are linearly independent and,
therefore,
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Ly Ky o By,

gy Gy v 0g

o, O, v

nl nn

and obviously et *2++4) o for all f on [a, b]. Hence the solutions Xis Xy s
x,, ol the vector differential equation (3.28) are linearly independent on |a, b]. Thus
a general solution of (3.28) is given by

A 1 .T
CiXs =F G+t Cloe,
where Cy, O, ..., C, are constants,
The above results can be summarised in a Theorem as follows ;

Theorem 3.10 : Consider the veetor differential equation

dx
— = Ax
27 (3.28)

where 4 is an n * n constant malrix having n distinct characteristic values A, A, ...,
Ay oand let o o' ... @™ be the corresponding characteristic vectors of 4. Then
on every real interval [a, b], the n functions defined by

{I“]Eh“},ﬂujﬂh{ﬁ; 'y ,{ILHJE"""U}
from a linearly independent (fundamental) set of solutions of (3.28) and
o — C']G:“}e_ﬂ:{fi &+ £12&.{2]-Eﬂ:{fi i C"ﬂ{”]{?'l"r"l}

where '}, (3, ..., €, are arbilrary constants, is a general solution of (3.28) on
|a. &

Example 3.9 : For the homogeneous linear system

. 7 -1 6 X,
df ={=10 4 -12 |x, wherex=|x,
-2 | -1 X

3

: - : T M M
we assume a solution of the form x = pe® | that is x, = o,e™,x, = @™, %, = @e™ .
Then the given equation gives on the assumption of e™ #£0.
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oA = T0, — 00, + 60K,
oA = —100;, + 4o, — 12,
O A = =200 + 0y — O

ie.,
(7=A)u; — oy + 60y =0
“106t, + (4 - Ay, ~ 1206, = 0 (3.36)
—o:|+.-:x]—[1+?-.)a]' =i

Which has a nontrivial solution ifT

T-4 -l 6
~10 4-4 -12 |=0
—2 | -1-4

or, & — 102 +3141-30=0

which is the characteristic equation of the coefficient matrix

=l
A=|-10 4 -12
=2 15 =t

of the given system. The roots of the characteristic equation are

A= 2 m=3, k=5

o

I

A characteristic vector corresponding to A4 = 2 is a non-zero vector | o,
o)

i




whose components are a non-trivial solution @y, @, @3 of the algebraic system (3.36)
when A= 2. Equivalently, it is a non-zero vector such that

7 o6 (e (e
-10 4 -—12||o, =2 ey
-2 1 =1\ 0ty

that is aj, a5, @3 musl be a trivial solution of the system

Sot, — 00, + 60Xy =l
—10¢t, + 2, — 120, = 0
—2a 0, — 30, =1
Tt may be observed that the second equation is merely a constant multiple of the
first. Solving this system for @ and o3 we gets @ = — @) and @3 = — @, Selling
@ = k, @& = @y = — k, the characteristic vectors corresponding Lo the characteristic
value A= 2 i
—k
-K
In particular, letting k& = 1, we obtain the particular characteristic vector
1
a=1 =1

=]
Similarly, the characteristic vectors corresponding to xo = 3 and x; = 5 are

| 3
! =| -2 |and &' = | -6
-1 —2

respeclively. Thus a fundamental set of solutions of the given cquation is

oMt g@ehat oty

3
e?.f e s 335:
ie., |—e® || —2¢¥ |, | 6™
5
_sz —133: _22 I

respectively, A general solution of the given system may, therefore be expressed as
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x, = Ce” + Cye® +3C,e™

x, ==Ce® —2C,e" — 60 €™

xy == = Ce” — 20
We now return to the veclor differential equation

dx
i Ax (3.28)

where 4 is an » # n real constant matrix. In Theorem 3.10, the » characteristic values
Al Ay ooy A 0f 4 were assumed to be distincl, But we do not require that they may
be real. The characteristic values may be complex and since A is a real matrix, any
complex characteristic values must oceur in conjugate pairs. Suppose A, = a + ib, and
A =« — bi form such a pair, Then the corresponding solutions are

fxii}etrrli'ﬁ}.' ) a{l}e{u—rhjf

which are complex, @', ¢ being the characteristic veetors corresponding to J; and
4. Thus, if one or more conjugate complex pair of characteristic values oceur, the
[undamental set defined by a'/e™ /" (j = 1,2, -, 1) eonwins complex functions. However,
this fundamental set may be replaced by another (undamental set consisting of real

fhnctions.

FExample 3.10 : Consider the homogeneous linear system .

i) = Jx
et

3 2 X h
where 4 = [ - I] and x =( '} As a solution, we take x = oe” so that the given
- X

.

equation gives (assuming ‘e = 0)

(3-Ae, +20, =0

—S¢, + (1= A)a, =0 G20

lor non-trivial solution, we have the characleristic equation
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-4 : :
=0 ie, A —-54+13=0

=

This characteristic equation have complex roots 2 + 3i. A characteristic vector 4
corresponding to A = 2 + 3/ has components @, @ as a non-trivial solution of the
equation (3.37). i.e., @, @ must be non-trivial solution of the system

(-3, +2a, =0
=3¢, +(=1-=3)o, =0

A simple non-trivial solution of this system is M =2, &=-1+ 3 Thyus

i 2
=153

similarly the other characteristic vector g% corrosponding A =2 - 3iis

o :
=1-3i

Thus a fundamental set of solutions of the given equalion is

oDt gt

2 Z
. ! (243 (23t
Le., A . : 338
[—1+3ﬁ]L (—1—3:'} (3.38)

For the first, we may write the solutions as
x, = e*[(2cos3t) +1.(2 sin 30)]

%, = e [(—cos3l = 3sin3r) + i(3cos It — sin ]

Smcc both real and imaginary parts of this solution are themselves solutions of the
given systery, we obtain the two real solutions

x; = 2e¥ cosdt, x, = —e* (cos 3 + 3sin ar)
and x; = 2¢* sin3f,x, = e (3cos 3 —sin i)

Since these solutions are lincarly independent, we may write the general solutions
as

x, =2e”[C cos3t + €5 sin 3]

G7




Cand x, = e*'[C (- cos3r —3sin 3) + C,(3cos 3 - sin 30)]
where 'y and Cy are constants
We obtain the same result if the second set of .{3.321 is considered.

Case II. Repeated Characteristic Values : We now briefly discuss the case when
the matrix 4 of the differential cquation (3.28) has a repeated characteristic value. To
be specific, let the matrix 4 has a real characteristic value A of multiplicity m(l <
< ) and all other characteristic values 4.\, A5, -+, A, (iF'there be any) are distinct.
Now the repeated characteristic value 4 of multiplicity m has p linearly characteristic

vectors where 1 < p < m. We consider lwo subcases : (1Y p = m and p < m.

In the subcase (1) : p = m and there are m linearly independent characteristic
veetors A0 A2 ... A corresponding to A Then the n functions defined by
bt g@eM . alet a @ Wphwet L. Mt [form a linearly independent set
of 1 solutions of the dilfercntial equation (3.28); and a general solution of (3.28) is a

linear combination of these # solutions having » arbitrary constants,

Example 3.11 : Let us consider the equation

E=AJ|:
dt
where
el =l X
A=|1 3 =ljlandx=|x;
3.3 - ¥
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We assume a solution of the form x = oe” . Substituting this in the given equation

we gel

(B-Aet, +as—a; =0
e, ¥ (3-A)a, —x; =0

(3.39)
306, + 30, + (=1—A)ae; = 0

so that the characteristic equation of the coefficient matrix 4 is

The roots of this cquation are A = 1, b = 4 = 2.

We first consider the distinet value A, = 1. A Charactreristic vector o' corresponding:
to A = | has components aj, @, @ as the solution of (3.39) given by the solution
of

E{II +II2—|T$ :U
a|+2m1_ﬂj :'U'

3, + 30y —y =10

Mote that & = k, @3 = & and & = 3k is a solution of this system for every

real k. Taking k = 1, the characleristic vector is

|
S
3
|
and the corresponding solution of the given system is aVe*', ie., | 1]e'.
3

We futn now Lo the repeated charactleristic value A = A = 2. This charactleristic
value has multiplicity m — 2 < 3 = n, A characteristic vector corresponding to the
characteristic value A& = A = 2 is 8 non-zero vector a'?) whose components €, @
ay are a non-trivial solution of the algebraic system (3.39), ie., of
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ooy —my =1
Gt~ . =1
30:|+]ﬂ2_31x3=ﬂ

so that o + ¢, — oty = 0. To satisfy this, if o =1, @, = -1, &, =0, we obtain the

1 : 1
vector ¢!t = | -1 | while il o, = 1, &, =0, &; = |, we obtain the vector o™ —| |
0 1

Thus corresponding to the two — fold characteristic value A= 2, we gel two linearly
independent solutions of the form ae® of the given system. These are g'2'Y and
1 I
o' Me?, that is | —1 ™ and | 0 |¢*" respectively.
0 |
Hence a fundamental set of solutions of the given system consists of the three vectors
(h)

a', ¢ and &, ic.,
er szr El]
e | |—e |and| O
3o () e

A general solution may, therefore, expressed as

x = Ce' +(C, +C,)e™
%, = Cie' — Cye®

X, =3Ce +Ce™
where Cy, C; and Cy are arbitrary constants.

For the subcase (ii) : p < m. In the case, there are less than m linearly independent
characteristic vectors a'!! corresponding to the ¢haracteristic value A of multiplicity m.
Hence there are less than m lincarly independent solutions of the differential equation
(3.28) of the form o!'"e™" corresponding to A, and there is no fundamental sel of
solutions of the form '™’ A being a characteristic value of 4 and dM is a

characteristic vector corresponding to A, We, therelore, seek linearly independent
solutions of another form,

s i



For this, we suppose that 4; is a characteristic value of multiplicity m = 2 and
p = 1(= m). We then seek linearly independent solutions of the form ™', gre™ + Be™

where is a characteristic veclor corresponding to Ay, that is, @ satisfies the equation
(A=A l)o =0

and 4'is a veclor that satisfies the equation
(A=A DB =u

If A is a characteristic vector of mulliplicity m > 2 and p < m, then the forms
of the m linearly independent solutions corresponding to A; depend upon whether
p=1,2, .., m— 1. However, we omit the casc here.

EXERCISES

1. Incach of exercises (i) and (ii) determine whether the matrix B is a fundamental
Xy

matrix of the corresponding linear system = Ax where x =] x,
*3

e 0 2™ T IR

(i) B=|2e" 3¢' de" || 4=|0 -5 18] |[Ans. No
et &b 2eY 0 -3 10
gt et et 3 1 -1

(i) B=| e —e' 0 [ A=[1 3 -1|[Ans. Yes]
3. 6 e 3.3 o
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For cach of the non-homogencous lincar system, find (a) fundamental matrix of
the corresponding homogencous system and (b) find a solution of the given non-
homogeneous system ;

de (6 -3 (& e 3" 2e"
(1) E:[Z 1 }J”—F[_Eer [mls {ﬂ] [Em 2'&41} (b) (3&11'}}

B E_ 3 1x+ —2sin{
) dr 4 3 Grost

Find the general solution of each of the homogeneous linear systems where in each

cxereise x = | x,

%
e %, = G + Coe? + Cie™
(i) o | 3 1 |x |Ans: x, = _.Cze.\r = C.Je_g,
dl‘ a3 o | =]
=B Ll Xy =—Ce” —Ce” +4Ce
_5 _12 ﬁ : x! = Cle'r + 2[“33‘”
-7 =10 8 Xy = Ce' +2Ce" + Cae"”
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(iii) ‘;x= 2 3 0lx
A | T

x| :_2{“:‘.(_,{3**"331 +2C3£‘|': 54
Ans: x, = (35 +1}C]e{2+"'3'” +(+f5 = e Jsy

R ]
x;=0Ce

3.5 Summary : The lincar system of n dilferential in # unknown functions can be
written in the vector-matrix from

% = A(OX + F(1)

The solution of the system consists of two parts : The general solution of the
homogenecous linear syslem

ﬁ = Alf)x
i

which can be obtained il we can find out # linearly independent (fundamental) set ol
veetor functions 4, ¢4, ... ¢, which are the solutions ol the above equation and a
particular solution of the non-homogeneous equation. However, if A(7) is a constant
matlrix, the solutions can be obtained very casily.
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Unit : 4 O Second Order Linear Differential Equations

4.0 Introduction : If we consider a second order linear equation witly variable
coefficients we cannol in general, find the explicit form of the solutions but in many cases
we can predict the propertics of the solutions even without solving them. Tt can also
be seen that the non-trivial solutions of general second-order equations can vanish at
most once or can vanish periodically infinite number of times. Further it can be shawn
that the zeros of two linearly independent solutions separate one another that is lo say
that between two suceessive zeros of one solution lies a zero of the other (Sturm separation
theorern). It is also possible o compare the number of zetos of solutions of two di fferent
equations in normal form u" + p(x)u = 0 and v" + g(x)v = 0, where plx) 2 glx).
(Sturm comparison theorem), Lastly Sturm-Liouville systems witn separated boundary
conditions is considered and notion of eigen solutions of this system is introduced, The
orthogonal property of eigen functions of such S-1. systems is established and this property
enables us to expand an orbitrary function which is sufficiently smooth in an infinite serics
of constant multiples ol eigen functions of a Sturm-Liouville system. The constants may
be determined formally by integration.

4.1 Bases of Solutions : Let us consider the second order lincar diffefcntiul equations
of the form

2

A2 .
Polx)— ) T+ F‘l'[.x} st By (x)u = py(x) (4.1)

where p(x)(i =0, 1, 2, 3) arc assuned to be continuous and real-valued on an interval
{1a< x< b (finite or infinite) of the real axis. In the present chapter we shall devote
ourselves to the second order linear differential equations and the behaviour of their
solulions,
The equation in its normal form is
2

el +P(J~)—+q{xlu—!(t‘] - (4.2)

pi(x) () palx)
RIS et
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provided py(x) # 0. If py{xg) — 0 at some point x = xy, then the functions p(x) and g(x)
are not defined at x = x; and we say that the differential equation (4.1) has a singular point
at Xy,

For example, the Legendre differential equation

i{{l—x’jﬁ}mmn
d

clx x

has singular points at x = =1,

Now we know that if 7j(x) and f3(x) are any two lincarly independent solutions of the
reduced equation (homogeneous linear differential equation) of (4.2) i.e., of

il 00 =0 | (4.4)
dx e
ﬂl_l:'n F = h6)+ cj_fl':(,r} (4.5)

is also a solution ol (4.4). A pair of functions with this property is termed as a basis of
solutions. '

We proceed to show how Lo construct a basis of solutions of any sccond-order Inear
differential equation with constant coefficients given by

'+ pu+g=10 : (4.6)
where p and g are constants and prime denote differentiation with respect to x.

Putting # = e ™"*v(x) in (4.6) we get

. ]
e - p . R )
v+ [q —4 ]w =1 e (4.7)

Here, three cases arise according as the discriminant A = p* —4q is positive zero or
negative.

Case 1 : If A > 0, then (6,7) reduces to v = k%y, where k = (J/A /2) and has

* a5 a basis of solutions so that

the funetions v = & and v ="¢
= VI gpg g = pl-VA-pRi2 (4.8a)
arc a basis of solutions of (4.6) when p® — 4 > 0.
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Case 2 : If A =0, (6.7) gives v" =0 having 1 and x as basis of solutions, [ence
the pair

= ¢ ™ and u = xe (4.8h)
is a basis of solutions of (4.6) when p? = 4q.
Case 3 : 1A < 0, (6.7) reduces to v + kv = 0 with k =+/—A /2 and has cos |
ke and sin for as a basis of solutions, thus
g = g AREE EGS(Q}E ! 2)and u = e ™" sirl{v'qx {2) (4.8¢)
form a basis of solulions ol (4.6) when p* — dg < 0.
4.2 Initial Value Problems : From physical considerations, there arise differential

equations satisfying additional initial and boundary conditions. As an example we consider
the following initial value problem :

Example 4.1 : To solve the equation ¢” 1w =3 sin 2x which satisfy (he initial
conditions w(0) = 0, w(0) = 0.

It is casy to sec that the solution of the given equation is

w(x) = Acosxy + Bsinxy —sin2x
Since u(0) =0, w(0) = 0, we have A — 0, B =2, Thus the solution of the given equation
satisfying the given initial conditionsis
u(x) = 2 sin x — sin 2x

4.3 Qualitative Behaviour—Stability : We note that when A < (), al non-trivial
solutions of (4.6) are oscillatory in the sense of changing sign infinitely often. On the other
hand, when A > 0, a _nmlntrivial solution ol (4.6) cai vanish only when ge™ = — be'&, Le.,

=% — _ bl so that (i) @ and b have opposite signs and (ii) x = In | bla | /(68— a).

Hence a non-trivial solution can chang sign at most once; it is non-oscillatory. Thus we have
the result :

Theorem 4.1 : If A = (), then a non-trivial solution of (4.6) can vanish at most onee;
and i A < 0, it vanishes periodically with pei‘iud mi—A .
Definition : The homogencous linear diflerential equation (4.4) is called strietly

stable when every solulion tends to zero as x —» == It is stable wiv every solution is
bounded as x — . If not stable, the solution is unsiable.
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6.4 Uniqueness Theorem : Let us consider the differcatial equarion (4.1) or its
nomnal form (4.2) and assume that there are no singular points, i.e., py(x) # 0. We consider
the initial value problem and show that there always exists a solution for any initial value

(bt y)s uxg) = tg, w'(xg) = g,

Put L{u] = (pgP? + piD | py)u, (D = aldy) and suppose that u and v are any two
solutions of the inhiomogeneous equation L] = psyix). Noting that the operator I s lincar,
we have

Llu—v] = Llu]— L[v] = ps(x) — pola) =0
i.e., u— vis asolution of the homogeneous equation (4.4).

It is easy o verify that il w(x) is a solution of L[u] = r(x) and w(x) is a solution of L|u|
= y(x) and A. B are constduts, then w(x) = Au(x) + Bv(x) is a solution of the differential
equation L[w] = Ar(x) + Bs(x).

Now we prove a unigquencss theorem for second-order lincar differential cquations.

Theorem 4.2—(Unigueness Theorem) : If p(x) and g(x) are conlinuous, then
al most one solution ol (4.2) can satisfy the given initial conditions u(a) = by and u'(a)
= hy.

Proof : We have seen that if v(x) and w(x) are any two solutions of (4.2), then [J
— v w satisfies the equation

U™ 4 p(x)U" +g(x)U =0 (4.9)

where U(x) satislies the initial conditions Ule) = Ula) = 0. Now consider the non-negative
funetion V(x) = 0P + U with ¥(a) = 0, by definition. Differentiating we have,

Vi(x) = 2UU + U7y =2U'TU — p(x)U" — g(x)U]
= 2 p()U"F 4+ 2[1 — g(O]UTT,
Since (7 £U") = 0, it follows that 2UU’| < U° + U and, therefore,
21— ¢()UU’ < (1+]g(x) [NU* +U")

and 17(x) < [1+]q(x) |77 +[1+]g(x) [+ Rp(x)| U™
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Thus, il k=1 + max]||¢(x)]+2|p(x)]]. the maximum being over any finite closed interval
[a. b], we obtain F/(x) = kV(x), k < +o.

iie., 02 ¢ MI(x) = KV (x)] = dil Vix)e™]
o

5o that P’(,x]e"'“ = V(ae . Since Wla) = 0, we have H(x) = 0, Vxe [a.b], ic.,

U(x)=0 and v(x) = w(x) on the interval.
By superposition principle, we can prove easily the following theorem.

Theorem 4.3 : Let f{x) and g(x) be two solutions ol the homogeneous second order
linear differential equation

u’ + plx)u’ +glxiu=0 (4.4)
and (1 (xy), /() and (glx, ), £°(x,)) be the initial conditions of f{x) and g(x) for

some ¥ = xy. Then every solution of this differential equation is equal lo some lincar

combination fi(x) = A f(x)+ B g(x) ol f(x) and g(x), A and B being constants.

4.5 Separation aad Comparison Theorems : We now show by Sturm separation
theorem thai all non-trivial solutions ol'4.4 have essentially the same number of oscillations
or zeros. (A “zero’ ol a lunction is defined to be a point at which the value of the function
is zero, functions have two zeros in each complete oscillation),

Theorem 4.4 (Sturm Separation Theorem) @ Let f{x) and g(x) are two linearly
independent solutions ol the differential equation (4.4). Then f{x) must vanish al one
point between two successive zeros of g(x) and, similarly g(x) must vanish at one point

between two successive zeros of f{x). In other words, the zeros of f{x) and g(x) occur
alternatively,

Proof : Lel g(x) vanishes at x = x;. Since f(x) and g(x) are linearly independent, the
Wronskian

Fl5) =)

W(fgx)= !
i) glx) g'(x;)

Le., f(x)g'(x )« 0ilg(x,) =0, showing that f(x ) # 0, g'(x,) # 0. If x; and x; are
two successive zeros ol gx), then g'(x)), g'(x,). f(x)) and [ (x,) are all non-zero.
Moreover, the non-zero numbers g'(x,) and g’(x,) cannot have the same sign, because
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if the function is decreasing at x = x|, then it must be increasing at x = x, and vice-versa,
Sincz W(/, g x;) has constant sign, it follows that f(x,) and f(x,) must have opposite
signs. Therefore /(x) must vanish somewhere between x; and x,.

We can use a slightly refinement of the above Theorem to prove more useful result,
also due to Sturm,

Theorem 4.5 (Sturm Comparison Theorem) : Let f{x) and g(x) be two non-trivial
solutions of the differential equations #” + p(x)u = 0 and v" + g(x)v = O respectively
where p(x) 2 g(x). Then f{x) vanishes al least once between two zeros of g(x), unless p(x)
= ¢(x) and f'is a constant multiple of g.

Proof : Lel x| and x; be two successive zeros of g(x), i.¢., g(x;) = g(x2) = 0 and
f(x) # 0 at any point in ¥ <x < x,. Replacing f(x) and/or g by their negative, il necessary,

we can obtain solutions fand g positive on ¥ < x < x;. This would make

W(f,eg:x)=f(x)g(x)20and W(f.gix;) = f(x)g'(x,) <0

On the other hand, by noting />0, g > 0 and p 2 g on x; < x < x3, we have

IF . :
;,—r[i'l”{.f- gMl=/"—gf"=(p-q)fgz0onx <x<x

showing that # is non-decreasing, giving a contradiction unless
p-q=W(/,gx)=0.
In this event, (= kg for some constant £,

Corollary 4.1 : No non-trivial selution of #” + p(x)u = 0 can have more than one

zero if p(x) < 0.

Proof : We prove the corollary by contradiction. By Sturm comparnison theorem, it is
evident that the solution v= | of the differential equation »" = () must vanish at least once ;
between the two zeros of any non-trivial solution of the differential equation v + p(x)u = 0.
The preceding resulls show that the oscillations of 1” + p(x)u = 0 are largely determined
by the sign and magnitude of p(x). It p(x) < 0, oscillations are impossible and no solution
can change its sign more than ence. On the other hand, when p(x) > k* > 0, then any
solution of w” + p(x)u = 0 must vanish between any two successive zeros of any given
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solution A cos k(x — x,) of the differential equation #” + iu =0 and hence in any

interval of length 7/ k.

4.6 Sturm-Liouville Systems : A sccond order homogencous linear differential

equation ol the form

o o
—{.ﬂ(-‘rl —} +{Ap(x) —g(x) =0 (4.10)
o dx
where Ais a parameter, p, gand g are real-valued functions of x, p and obeing positive,
15 called Sturm-Liouville equation. Writing L = D{| p(x) D} — g(x), the equation (4.10)

15 abbreviated in the form

Liu]+ Ap(x)u =0 (4.11)
Such type of equation is selFadjoint lor real A The lunclions g and pare assumed to be
comtinuous and the function p is continuously d]ffr:rcnﬁnblc {of class ¢') so that the functions
are bounded in an interval a < x < b (say). The jirm-Liouville equation is said to be

regular in the interval @ < x € b if p(x) and g(x) are positive in the interval.

lor each A a regular Sturm-Tiouville system (or S-1. system) for a < x < b has a basis
ol two linearly independent solutions of class ¢’ AnS-L system is an S-L equation with
boundary conditions to be satisfied by the solutions, for example w(a) = u(bh) =0, or, two

separated boundary conditions

oyu(a) + oL’ (a) = 0, Bu(b) + B’ (b)) =0 (4.12)
where @, @b, 4, & are given real numbers, We shall exclude the two trivial conditions
ay= ay=Oand & = % = (0.

A non-trivial solution of an S-1. system 1s called an eigenfunetion and the correspond-
ing X is called its eigenvalue. Also each eigenfunction is said to belong to its eigenvalue,
The set of all eigenvalues of a repular 8-L system is called the spectrum of the system.

Example 4.2 : For the interval 0 < x < 7, the system of the dilferential equation
w” + A = 0 with the boundary conditions w(0) = 0, u( # = 0 has the eigenfunctions u,,(x)
— sin nx and the eigenvalues A, =n’, (n=1, 2, 3, ...)

Ixample 4.3 : The Bessel equation given by

B0



t—i[‘ud—l] -I—[Frzx—i]u =B g <x<h
dx | x

is an S-I. equation with p= p=x, A=k and g = n’*x.For 0 < u<bh, a regular
S-L system is obtained by imposing the boundary conditions u(a) = w(b) = 0 or any other
separaled boundary conditions. The system does not define a regular S-L system for
a = 0, because the coefficient p(x) vanishes at x = 0. We then obtain a singular 8-L
system,

Periodie boundary conditions : If the coefficients of 5-L. equations are periodic
functions with period b — @, sometimes the periodic boundary conditions

ula) = ulh), u'(a) =u'(b) (4.13)

arc used and we get another type of S-L system, called a periodic S-L system.
Example 4.4 : For the system 5" + Ay =0 in —x < x < 5 with periodic boundary
conditions u(—m) = u(x) and ’(~m) = w'(w) we have the eigen functions 1, cos nx and

sin v, where i is any positive integer. The corresponding cigenvalues are the squares of

integers; for » > 0, there are two linearly independent eigenfunctions with the same

gigenvalue fi‘z.

4.7 Sturm-Liouville Series : We now show that for the regular S-L systems

generally and for the S-L systems with periodic boundary conditions, orthogonalitics
hold.

Definition : Two intcprable real-valued functions fand g with weight function o> ()
on an interval [ are said to be orthogonal if and only if

| p)f (x)g(x)dx = 0 (:14)
f

whete the interval / may be finite and open or closed at either end; or it may be semi-infinite
or infinite.

Theorem 4.6 : Higenfunctions of a regular S-T, system (4.10) or (4.11) having
different eigenvalues are orthogonal with weight function g i.c., if 1 and v are different
eigenfunctions to distinet cigenvalues Aand 4 then

[ plxyutxyv(x)de = 0
Proof: Let Liu]=[p(x)u’] —g(x)u. Now the functions u and v are cigenfunctions
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of (4.10) with eigenvalues Aand #iff
Llu]+ Ap(x)u = L[v]+ pp(x)v =10 (4.15)
'l'o prove the theorem, we first establish the following lemma :

Lemma 4.1 ¢ If v and v satisfy an S-L equation (4.10) on a closed interval

a < x = h, then for al! values of the parameters Aand #

(A= W) peyute)v(x)dx = [pe) {u()v'(x) — v (L (4.16)

Proof of the lemma : From Lagrange identity

VL] = v = PGV () =G ()Y

we have by integration with respect to x belween the boundary poinls x =a and x = b

and substituting Z[u] = — Aow and L[u] = - gov from (4.15), the required result (4.16)
is obtained. .

The right hand side of (4.16) is called the boundary ferm.

Proof of the theorem : ‘1o prove the theorem, we show that the boundary term of
(4.16) vanishes in the case of separated boundary conditions. From the first of the

separated boundary conditions (4.12) we have
a i) + eau'(a) = 0 and o via) + ov'(a) = 0

so that
pla)[ula)u’(a) — via)u'(a)] = ::‘ pleauta)vie) — via)uta)] =0,
provided @, # 0.1 &, =0, the RH.S. of (4.16) reduces similarly al x = @ to
o,
a—'F(ﬂ}[If(ﬂ]“'{H) —v(ay'(a)] =0
i

Hence. unless @y = a5 = 0, we have p(a)[u(a)v'(a) — v(a)u'(a)] = 0. Similar result
' ' 82




holds when x = b, provided B, # 0, B, # 0. Thus excluding the possibilitics Q= ay=
0. 4) = % =0, the RILS. of (4.16) vanishes. Hence, noting that A # 4, we have from
" (4.16)

-[:p{x}”{x)‘l’{x}cf’r =0

Corollary 4.2 : The results of Theorem 4.6 also holds for S-1, systems with periodic
boundary conditions. For, in this case, the R.ILS. of (4.16) for x =g and x = b are equal

in magnitude but opposite in sign and, therefore, they cancel each ofher.

Now we know that any smooth periodic function f{x) can be expanded into a Fourier

series.
f{x)—a,+ i{nﬁ cos fx + b, sin kx)
i=|

which is an infinite lincar combination of the eigenfunctions of the S-1 system, of Exampie
4.4. Morcover, we can easily find out ¢y and by by the use of orthogonality of the

eigenfunctions.

We can obtain the expressions for general f{x) in the eigenfunctions of other §-1.
systems from the orthogonality relations obtained above; the resulting infinite series are

called Sturm-Liouville Series and this serics converges to f{x).,

4.8 Singular Systems : For an 8-1, equation, the interval / may be finite, semi-infinite
or infinite. If { is finite, it may include neither, one or both the boundary points. II

lim p(a) =0, limp(a) = 0 or il any one of the functions p, ¢ or pis singular at x = a,

B 11

then we exclude this boundary point . When [is a closed, finite interval 4 < + < b, then
an 8-L equation is associated with a regular S-1. systen. If s semi-infinite or infinite or
if'it is infinite and p or @ vanishes at one or both boundary points or if ¢ is discontinuous,
then a repular 5-L system cannot be obtamed for S-L equation (4.10), In such cases. the
S-1. equation is called singular,
A Singular 5-L Systems can be obtained from singular S-L equations by impnsiﬂgl
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suitable homogeneous linear boundary conditions. which can be described by formulas like
(4.12). For example, the boundedness of 1 near a singuiar houndary point is a boundary

condilion defining a singular 5-L system.

Definition : A real-valued function f{x) is said to be square-integrable on the

interval / relative to a given weight function gx) = 0 il

[ F(x)px)dx < +==. (4.17)
i

It the weight [unction p(x) = 1, then we simply say that [is sijuarc-integrable on

The eigenfunctions of singular S-L systems are orthogonal provided they are square-

integrable relative to the weight function 2

4.9 The Scquence of Eigenfunctions : The existence of an infinite scquence of
eigenfunctions of a regular S-L system with the separated boundary-conditions can be

shown with the help of the following theorem whicn we state runout proof

Theorem 4.7 ¢ A regular S-L system has an infinite sequence of real cigenvalues

Ao <Ay <Ay <o with lim A, === and the corresponding eigenfunctions wu,(x) of A,

n—ea

has exactly #zeros in the interval determined uniquely upto a constant factor. i
4.10 Expansions in Eigenfunctions : All sufficiently smooth functions can be

expanded in the form ol an infinite series whose terms arc constant multiples of the

eigenfunctions of S-T, system, The result will be proved for regular S-L systems. As an

example, we have the expansion into eigenfimctions by the expansion in Fourier series, At

first we recall two basic results in Fourier series :

Fourier’s Convergence Theorem : [ flx) be any continuously differentiable

periodic function of period 2 7and

ay = — [ f () cosksd.b, = I ) sinsds, (4.18)

then the infinite series
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; ty + f)‘:, (a, coskx 4+ b, sin ko) (4.19)
k=1

converges uniformly to f{x),

In this case; the non-zero terms ay cos kx, by sin kx(k= 1, 2, ...) are eigenfunctions
of the periodic S-1. system in question (Example 4.4). Ilence f{x) is represented as a sum
of cigenfunctions.

In the sequel, we shall consider normalised cos &x and sin kx in (4.19) as the
eighenfunctions of the system. Although there exist continuous functions for which the
Fouricr series do not converge, but the [ollowing theorem applies to all continuous periodic

fanctions.

Fejér’s Convergence theorem : If f{x) be any continuously differentiable periodic

function of period 2 7and

N-1

T, lx)= : {E Llnﬁ ks i{a# cos ko + by, sin bc}”
N 2 i=| It

g ]
1 N"I M N e .
= a + ;}_;(o:ﬁ cos x + smh'), (4.20)

where o) = [l - %}ai . f = [l — E‘)"’a are the arithmetic mean ol the lirst N paritial
sums of the Fourier serics of f{x). Then the sequence of lunclions gy (x) converges
unilormly to f{x),

Now we suppose that the function f{x) is continuous on () < x < . We define a
function g(x) on —g < x < by g(x) = f{|x]). Noting that g(x) can be expanded to an
even periodic function (since g(- #) = g( #), of period 2 % by symmetry all by(k = 1, 2,
..} are zero in the Fourier series of g(x). Thus applying the above two convergence

theorems we have the result

Any continuous function on (< x < m can be approximated uniformly and
arbitrarily by linear combinations of cosine functions. If the function is of class ¢! and
[0y = f*(m) =0, then it can be expanded into a umformly convergent cosine
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serics
y 1 oo
Xy = Eu” + ¥ a, coskx

k=l

Similarly, we can obtain the result :

Any function of class ¢' on 0 < x < 7 satisfying f(0)y= f(m) = 0 can be expanded

into & uniformly convergent sine series
fx)=Yb, sinkx
k=1

The above results are examples of expansions of eigenfunctions of the regular
S-L system 4" + Au =0 with separated boundary conditions #/(0) = #’(7) = 0 and
u(0) = u(w) = 0 respectively. We row show that analogous expansions are possible for

the eigenfunctions of any regular S-1. system.,

Orthogonal expansions : Let g (x)(k = 1, 2, 3, ...) be any bounded square-
integrable functions on an mterval [ g <x < b, nrlhdgmml with respect to 4 weight

function gx) = 0 so that

[ @, (), (x)p(x)dx = 0 for h # k, (4.21)
!

and a function f{x) can be expanded as the limit of a uniform] ¥ comvergent series of

multiples of the 4, i.e.

Fx) = Xed(x) (4.22)

fi=|

Multiplying both sides of (4.22) by #4 (x) dx) and integrating lerm-by-term, we get
by the use of the orthogonality relations (4.21) ‘ .

[ £ (x) (x)plx)de = il__ff;,%.(x)% (x)p(x)dx = ¢ [ 95 (x)p(x)dx

! hi=1 !

5o that

buls)



[ L), (x)plx)dx
)

[ )pd 4.23)
'

Ch ==

Definition ; The orthogonal functions g are said to be orthonormal if

_[a:;bi{x}p{xjd&r = |. Thus for a sequence of orthonormal functions, we have
!

¢ = [ [(2)0,(x)p(x)dx
!

EXERCISES

1. Show that
; Viom o
ay coshx +-by sindx = — [ f(r)cos|k(t — x)|dr
n

2. Show that

I inf(Zn+1)x/2
—+ZCDSA'1'=M'T ;I
2y 2sm(x(2)

3. For the following regular S-1. systems, find the cigenvalues and eigenfunctions
and obtain an expansion lormula for a function [ ee¢' into a series of
cigenfunctions :

(D) " +Au=0,u(0)=u(m)=0,0=x=m,
(1) "+ Au=0, w'(0)=un)=0,0=x =1,

4.8. Summary : The two important theorems, viz., Sturm’s separation theorem and
comparison theorem are discussed here wherefrom we can obtain the properties of the
solutions of the second order linear ODE without having o solve the equation itself,
Sturm-Liouville systems with specified separated boundary conditions are given as well

as the notion of eigenunctions and their orthogonal properties are louched upon.
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Unit : 5 O Green’s Function

5.0 Introduction : Supposc that we want to solve a non-homogeneous equation
Lulx] = f{x), where L is a Strm-Liouville operator, subject to some boundary conditions
at the end points x = a, b of the interval. If we can find the two Imearly independent
solutions of the homogencous equation L[u] = 0, the solution of the non-homogeneous
equation can be obtained in an integral form

u(x) = [ G(x,&)f (E)dE.

This function G(x, A is called the Green’s function of the problem. This function has
the symmetry property, some continuous and discontinuous properties and it satisfies the
homogeneous equation LG = 0,

The Green's [unction can be formed [rom its propertics and once it is found, the
solution of the non-homogeneous equatior is oblained in a compact integral form. The

same method may be extended to non-homogeneous linear equations of higher order.
5.1 Introduction : Let us consider the non-homogeneous differential equation

Lufx) = f(x) (5.1)

where L is an ordinary difTerential operator. /(x) is a known function and w(x) is an

urknown [unction. One method of solving the differéntial equation (5.1) is to find the

operator 7" in the form of an intcpral operator with a kernel G(x, 4 such that

u(x) = L'f(x) =] G(x,8) [(E) & - (52

The kernel G(x, & ol this integral operator is called Green’s function of the differential

operator.

Now applying the operator I on both sides of (5.2) we get

f(@)=LL f(x)= [ LG(x.6) [ (§)dE (5.3)
This equation 1s satisfied if Green’s function G(x, £ is chosen in such a ;wa}-' that
LG(x,8) = 6(x —E) (5.4)

where §(x — &) is Dirac JAfunction (defined in Appendix).
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Sturm-Liouville equation : Tet us consider the Sturm-Liouville equalidn
Luix) = f(x) (5.5)
o d . N
where L = = p(x) i g(x) is the Sturm-Liouville opetator, p(x) and ¢(x) are real-
by x

valued functions ol x and p(x) is positive. [In fact, any second-order linear dillerential
npm:atm' can be transformed into Sturm-Liouville operator after multiplymg by an
appropriate [unction. | Our objeet is to solve the equation (5.5) subject to cerlain boundary
conditions satisfied by n(x) at x = ¢ and x = 5.

Let us introduce a funclion U(x) which satisfies the homogeneous equation

d d
LU(x) = T {p{xj E} —g(x)U(x} =0 ! (5.6)

Multiplying (5.5) by U(x) and (5.6) by u(x) and then subtracting we get

U(x) f[ ?]—1( )-(ﬂiﬂ]—”(x}f[%}

Integrating between the limits « and x. we obtain
el du
Ji [f@ [ —5)— (&) ﬁ[ ﬂ = [,UE)/(8)dS

pOLU (x)ar'(x) — u(x)U " (x)] = pla)[U (@)’ (a) — u(a)l’ (a)]

which gives

— LU@ (G, c)
If we assume that on x = a .
pla) U (@)’ (a) — ula)U (a)] =0 (5.8)
then
U(x)u'(x) = u(x)U'(x) = = [ U (E)dE (5.9)
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Similarly choosing another function ¥(x) satisfying the homogeneous equation LI{(x) =
0 and the boundary condition

PNV b (h) - zr(h].V'{b}] ={) (5.10)

we pet,

o (x) — ‘(x)=— vy

Vo' (x) — u(x )V (x) oD I (E)/ (E)dE (5.11)
Multiplying (5.9) ¥{(x) and (5.11) by U(x) and then subtracting, we obtain

u() U)WV (x) = U () (x)] = '—[V(x} U@ 1) dt
plx)

FU@LVE©®] (512

which can be written in the form

u(.\'}f: Glx, &) f(E)d

where

———  V(UE), astsx
G{I.é}‘: P(J‘}Fir{xj

L G (5.13)
oy JBWE) xsE<h

in the Green's function of the problem and
W(x) = U)W (x) = U’ (x)V (x) (5.14)
is the Wronskian.
Itis easy to verify that the product p(x)W(x) is independent of x. For, we have

V(x)LU(x) = 0and U(x) LV (x) =0

d
so that Vix)—(pll') = U(I)—d (pV")
e _ ax

= i[P(x}{U[ﬂV’(-ﬂ — Ui =0
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= LW =0
el

= | p(x)W(x)] = const., independent of x. (5.15)
Some Properties of Green’s function :
(a) Since p(x)W(x) is independent of x, it follows from (5.13) that G(x, J is
symmetric in x and £ lLe.,
Glx, H = G(g ) (5.16)

Thus we may rewrite (5.13)-in the form

B, afxgE

- —  U(EW(x), <x=h
T R i i

(b) The 1‘un+:.1 ion G(x, & is continuous everywhere including the point x = £

n’f“ di ) ,
{L} and P;’I are discontinuous at x = £ For, we have
m:;] 1 o (7 | .
s e lﬁ}Vii.‘-ldﬂd[ } = TR
(tir Fagd T W) Y g PEIW(S) it
(u’(;) - [5’_6_ ] | : _
3t iy ) ey de Jo ey F"{.‘f) .18)
dG diz
- (x)— ——U{ ¥ and[u; —) LUEW!
Also [.b’ }dxl__é N EW(E) AR o W@ (EW(E)
50 that
([ .dG dG
x)— — =+
(Ph} - ]u [ o(x) dxl_g-n l (5.19)
[lence the functions i and p(x)d—b have jumps ; and +1 respectively at x =
dx dx p(g)
£ Therefore at x = & we have
{ () } = 8(x~§) | (5:20)
iy
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(d) Noting that G(x. & is proportional to U(x) in the domain ¢ <x<¢ and
LU =10, we have LGG = 0 for g <x <&, Similarly, LG = 0 for E<x=4h, Hence

combining (5.13) and (5.20) we derive the result

LG(x,E)=8(x—E),a<x<h (5.21)

(e) All the analyses above for the determination of the Green’s [unclion remain valid
provided

Wix) =U(x W (x)=U'(xWV(x)+0 (3.22)

I UCE) ) : : ;
If W(x) = 0, then = —— = V(x) = Cl/(x), C, being constant. Thus for the
Ulx) F(x)
existence of Green's function, F{x) must not be a multiple of U(x). In such cases. the
Green’s function and, thercfore, the solution of the inhomogeneous equation (5.5) does

not exist for an arbitrary function f(x),

Boundary Conditions ;: We have scen that Green’s function can be determined
if the two lincarly independent solutions Ufx) and F(x) ol the homogeneous equation
Lu(x).= 0 can be determined. These two solutions U(x) and F(x) respectively satisfy
the conditions (5.8) and (5.10) at the boundaries x = @ and x = b, Now, if
pla) £ 0 and p(bh) # 0 then u(x) satisfies the homogeneous boundary conditions given
by '

oty ufe) + o' (a) = 0
Bu(h) + Boar'(b) = 0 (323)
If, in addition, U(x) and ¥(x) satisfy the boundary conditions
ot (@) + o, (@) = 0, BV (D) + Bal () =0 (5.24)

then the equetions (5.8) and (5.10) are automatically satisfied. Thus U(x) and u(x) should
satisfy the same condition at x = a. Similarly, F(x) and u(x) should satisfy the same
condition al x = b,

On the other hand, if either pla) or p(b) is zero, then u(x) need not satisly either
of the equations (5.23) at the boundary of which p(x) =0, If p(a) = (. it is sufficient
that w(a) and Lia) are finite. Similarly, if p(b) = 0, then w(b) and F(b) should be
finite.
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l'or some problems, It may be required to solve the equation (5.1) with
inhomogeneous boundary conditions, L.e., '

o ula) +osu'(a) =7,

Bou(b)+ Bou'(b) =7, Sl
To solve such type of problems, we assume,
u(x) = u; 1) + 1z (x) ' (5.26)
where
Ly (x) = 0 and La, (x) = f(x) (5.27)
and u(x) satisfies the inhomogeneous boundary conditions
oty () + i () = ¥y
B i S
while u,(x) satisfies the homogeneous boundary conditions
o1t () + oty (@) = 0
Bt (b) + otz (b) = 0 @)

Thus a given problem can be split into two parts - (i) to obtain the solution of the
homogeneous equation Lut(x) = 0 with inhomogeneous boundary conditions (5.28) and
(i1) to find the solution of the inhomogeneous equation Lin(x) = f(x) with homogeneous

boundary conditions (5.29) by the use of Green’s function method.

2

Example 5.1 : Solve the equation d—:: = f(x) subject fo the hnunﬂa:y conditions
£y

u(0) = u(l) = 0.

Solution : We have p(x) = 1, g{x) =0, a =0, b= 1. The boundary conditions

1

(5.24) give U(0) = 0, (1) = 0. Since LU =_€£T{{=ﬂ. we readily obtain Ux) =
X
Ay and similarly, P(x) = B(l — x), where 4 and B are constants, The Wronskian is
Wx) =0V (x) — VO )= Ae(—=B)— AB(l—=x)= — AB, constant.
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Hence, using (5.17), the Green’s function for the problem is

=il=C) DeEx<f

G(x, &) = { ~(1-x)E E<x=l

e, Gr,8)=-¥(1~E)+(x-EH(x-E), 0<x,E<1

where H(x — 4 is the unit step function defined by

Hx=&)=5 x2&
=0, x<E

Thus the solution of the given cquation is

u(x) =—x[ (1 = &)/ (E) dE + Jy (x = &) (&) dE

-

I o
Example 5.2 : Solve the equation T f(x) subject to the non-homogeneous
boundary conditions u(0) = @ and u(ly = 4

Solution : Let u(x) = u,(x) 4 ty(x), where u(x) is the solution of the non-
3

. i : : .
homogeneous equation d—z' = f(x) subjeet to the homogeneous houndary conditions
x : :

A

&

u (0) = 0, u (1) = 0 and u,(x) is the solution of the equation d ? = () with inhomo-

i3
gencous boundary conditions 1,(0) = @ and us(l) = &

Obviously, w:(x) = e+ (B —o)x and i (x) is obtained as in Example 5.1. Thus
the mmplete solution of the L_wcn equation is

u(x) = =xf) (1 - 5};‘(&) &+ [[ (x = &) (&) dé + (B - a)x

-+

Example 5.3 : Solve the equation dT” = [(x). 0 £ x =1 subject to the boundary
ax"
conditions w(0) = e, u'(1) = .

Solution : Let u(x) = w,(x) + u,(x), where u j(x) is the solution of the inhomo-
geneous equation "= f(x) with homogeneous boundary conditions 1,(0) = 0, w(l)=0
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and ua(x) is the solution of the homogeneous equation — 13 = 0 with inhomogeneous
x

boundary conditions w,(0) = o, ui(1) = f.

Obviously u,(x) = ot + Bx. To determine u(x) we note that [7(0) = 0, V(1) =0,
Thus U(x) = 4x, F{x)= 8B, W =-4B. Hence

= | e o

G{x'&}:{-g, E<x<l,

['he complete solution is therelore

u(x) =~ & f(&) dE—x[ f(&) d& +a + P,

Example 5.4 : Solve the equation x*y” + 2y’ = x*. 0 £ x 1, with the boundary

conditions u(0) is finite and w(1)+ u'(1) = 0.

Solution : The given equation is Sturm-Liouville type with p(x) = x%. Thus p(0)
= () and we require u(0) |and hence L{(0)] to be finite. Since LU/(x) = x*U" + 2xU' =0,
we readily obtain U(x) = A and similarly F(x) = B(x) where 4 and B are arbitrary

constants. Thus using (5.13), the Green’s function of the problem is given by

l. 0<é<x
Gix, &)= 5"1'
&

e )|

*

Hence the solution of the given equalion is

0=~ -l =2-1

Example 5.5 : Solve the equation "+ k*u= f(x) subject to the boundary
conditions u(0) = 0, w(L) = 0,

Solution : ITere p(x) = 1. q(x) = — k%, a = 0, b = L. Using (5.23) to (5.25),
we obtain U(0) = 0, F({L) = O '
05
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Sinee LU= 7 + kU = 0, we have Uix) = A sinkx + A, coskr, The condition
I 3

U(0) = 0 gives 4> = 0 so that U(x)= A, sinkr.

Similarly. the boundary condition F{L) = 0 gives Vix)= B, sink(L - x),
The Wronskian is given by
W= A sinkx[— 8 kcosk(L—x)] - Ak cos kx| By sink(L — x)] = ~dA Bk sin kL

Hence the Green's function is

[ sinkesin k(L - ﬁl

. Pz v s
G(x,8) = _ ksinklL
S= }_smk{i.—x}mnkﬁ E e
k sin kL A

I'hus the solution of the given equation is

w(x) = _L:'G(-Teg}f{é} s

3in kx
fosin kL

sink(L—x) '
e A B R e =
ks kL J“ S iS) o i

j:'xin k(L—E&)f(E) e

Example 5.6 : Solve the equation »”+ k%u= f(x), (k #m) subject to the
boundary conditions’ a(0) = ¢, w'(1) = B.

Solution : Let w(x) = w,(x)} + u,(x), where y(x) is the solution of the inhoma-
gencous cquation w'+ k*u = f(x) subject to the homogencous boundary conditions
,(0) = 0, u{(1) =0, while wa(x) is the solution of the homogeneous equation

u?+ k*u, = 0 subject to the boundary conditions u, (0) = oz, wi(l) = fi.
Obviously, u;(x) = S0 ok cos k(1 — x)+ P sin h}
kcosk

To obtain u;(x), we note that L{0) = 0 and F(1y=0 so that U{x) = 4 sin kv,
Fix)= Beosk(l —x) and W(x) = — A8k cosk. Hence the Green’s function is

_ cosk(l—x)sinkf

= B<c=x

N Gos

G(x,6) = _Ma E<1
frcosk - '

06



Thus the complete solution ol the given equation is

u(x) = = éals_,sc [cosﬁr[i —x)[IsinkE - f(E)dE +sin kxf cosk(l - &) £ (E)dE

l
kcosk

+ fok cos E(l— %) + B sin e}

EXERCISES

| : : G it . )
1. Show that the solution of the differential equation g f— = f(x) subjeet Lo the
X

boundary conditions u(0) = u(a) =0 is given by
u(x) = [{ GO, E)f (E)dE

where

G{leg’} = é(ﬂ‘i x]

2. Show that ordinary Green’s function does not exist for the problem

x s,
4 = f(x), =12 x = 1, with the boundary conditions »'{—1) = «'(1) = 0.

dx*

¥

3. Show that the Green’s function for the equation a&—g = f(x), 0= x =1 subject

to the boundary conditions #(0) = #'(0) and w(1) = —u’(1) is given by

. —l(x+1)(2u€], D<x<E
]
G(x,E) = 1

—5{-§+1j{2—x}, & oxel

07
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and the complete solution is given by

u(x) = _% [C-0f €+ 7@ dE+ x Dl 2-8)1 @) dg).

Show that for the equation v” +u = f(x), 0<x<nm with w) = a and
u( &) = 4 the Green’s function does not exist for any arbitrary function f{x).

: . df
Show lhal. the Green’s function for the equation cix_l; —otu= gl WL s

subject Lo the boundary conditions w(0) = 0, u(1) = 1 is given by

_sinhet(§ — 1) sinh oo

o sioh ; O=xst
sinh o
Grb={ - °°
_ sinh o€ sinhot(x — 1) paye
o sinh e A

Hence wrile the complete solution,

Appendix

Dirac-delta function : Let us define a function &, (x) by the relation

0, x<0
d,.(x)= é,, Dex<g
D, x>e

; = e
Noting that [~ &, (x)dx = [ X — | we may regard &) as the limiting form of
£

0,(x) as £hbecomes zero, ie. limé,(x)=8(x). This function §(x) is known as
[ 14

Dirac-della function.

We list below some properties of Dirac-delta function 6(x) (without proof)

d(x —xy) =0, ifx # x, and undelined at x = x,

[ 8(x —x)de =1 il > 0,

anE
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3. [:f{x)ﬁ{x—xu)dx=f(xn}, when g<sx< b
= (], when x < g orx > b with a < b,
4. ['f(x)8(x)dx=f(0) if a <0 and b >0,
5. 8(—x)=4d(x)
6. xolx)=D.

8. [8(a—x)8(x—h)dx =8(a—b)
5.2 Summary : The solution for the Sturm-Liouville equation

Lu(x) = f(x)

with the boundary conditions (homogeneous or non-homogeneous) are oblained in the
form

u(x) = [ G(x,8) 1 (£) dE +v(x)

where v(x) is the part of the solution for the non-homogencous boundary conditions,
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Unit : 6 O Plane Autonomous Systems

LN

6.0 Introdaction ¢ Given a differential equation it may not be possible to find the
form of the solution even if we know that the solution does exist. This is due to the
fact that the well-known functions such as polynomals, exponentials, siﬁes, cosines, elc.,
are 50 limited in number that we cannot express the solutions of large varieties of differential
equations in terms of these functions. Actually the differential equations define new type
of function which are their solutions, It is better to consider if we can find the important
properties of the solutions without actually solving them. In the present chapter we
introduce a geometrical device called the phase plane method by which many properties
of the solutions like equilibrium, periodicity, stability, etc., may be deduced directly from
the differential equations of the type

x= P(x,7), 7= 00x. ).

These cquations are called the phane autonomous system in the plmlelnf xy. The
important technique is to find first the critical points in the plane of xy and linearise
the system in the neighbourhood of such points to the form % = ax + by, y = cx +dy
(a, b, ¢, d constants). The nature of the critical points such as nodes, spirals, saddle
points, etc., gives us a complete picture of the nature of the solutions in the neighbourhood
of these critical points in the phase plane.

6.1 Autonomous and Non-autonomous Systems : In this chapter we shall be
concerned with first-order ordinary differential equations in normal form, i.e., equations
of the type

dx
ﬂt?:-’ﬁ{xl*xh'“vxul” 7 T H} {6'”

where f; are given functions of the n + 1 variables x,,x,,---.x,,t. The solutions
%, (1), %3 (1)y++, %, (¢) of (6.1) are of class ¢' and f; are assumed to be continuous and
real-valued in an (n + 1) dimensional space R of the independent variables x,, x, . <+, X1,

The equation (6.1) can be written in vector notation as
dx -
= 1’ ﬁ.2
— =/t (62)
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where f = (f,,f2,'sf,) and x=(x,x,,»,x,). The equation (6.2) is called a
£ : -
normal first-order differential equation. It can be shown that the solutions of the

system (6.1) or (6.2) exist and are unique and continuous.

If the functions f; occurring in (6.1) depend on x;,x,,:+-.x, and not on {, then
the system given by

dx
| == XX x,) (6.3)

or, equivalently in vector form

dx =
= S(x) (6.4)

is said to be autonomous. On the other hand, if the time t occurs explicitly in (6.1)
or (6.2), the system is said to be non-autonomons.

6.2 Plane Autonomous Systems : Let us consider autonomous system of two first-
order differential equations in the xy-plane given by

x= Plx,y), y=0(x,) (6.5)
where P(x, y) and O(x, y) are continuous and have continuous first partial derivatives
throughout the xy-plane (except possibly at some points). Elimination of y (or x) shows

that the system of equations (6.5) is equivalent to one second-order ordinary differential
equation with one degree of freedom.

The solutions x(f), y(f) of (6.5) may be represented on the xy-plane which we call

the phase plane. As ¢ increase, (x(f), y(f)) traces out a directed curve on the phase
plane called the phase path or phase trajectory or simply the path of the system.

It follows from our assumption of the functions P(x, y) and Q(x, y) that if
(xp, yo) is any point on the phase path and ¢y is any number such thal
x(ty) = x5 ¥(1y) = ¥y, then there exists a unique solutions x = x(1), ¥ = y() of (6.5).

If x = x(f), y = (¢) is a solution of (6.5), then x = x(f +c),y = y(t +¢) is algo a

solution of (6.5) for any constant ¢. Thus each phase path is represented by many solutions
each differing only by a translation of the parameter. Hence there exist an infinity of
motions (or solutions) corresponding to a given phase path.
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Now climinating dt between the equations (6.5), we have
-j—'} = %E% P(x,y)# 0 (6.6)
The solution y = y(x) of (6.6) defines a one-parameter tamily of curves called the intepral
curves or solution cur es. If P(x, y) =0, O(x,y) # 0. we just interchange the roles
of x and y and the integral curves are r = x(y). A point, where P(x, y) and
((x, y) are not simultancously zero is called an ordinary peint and at such point the

phase path of (6.5) and the integral curves of (6.6) éoincide. A point (xg.yy) for which
P(xg,v5) = O(x5.¥3) =0 is called a eritical point or a singular point or an
equilibrium point, Through an ordinary point there passes one and only one solution
curve, but this is not true for a critical point. At-a critical point, x = x; p = y, is the
constant solution which does not define a phase path and. therefore, no path goes through
a critical point. The critical point is sometimes called degenerate phase path, We always

assume that the critical point is isolated by a circle with centre at the point and containing
no other critical point.

The signs of P and Q at a point determine the direction of the phase path at the -
point and the directions of all other points are settled by continuity. The diagtam showing
the phase paths in the phase plane is called the phase diagram and the point (x, y)
is called the state of the system,

6.3 Linear Plane Autonomous Systems : The plane autonomous system (6. 5)
i3 said to be linear if it can be written in the form

x=ax+by, y=cx+dy (6.7)

where a, b, ¢, d are constants, [t is obvious that the origin (0, 0) is the critical point
of the system (6.7).

Let.us now consider the system (6.5) and assume that P(x, y) and {(x, y) vanish
at the origin which is, therefore, the critical point of the system, By Taylor’s expansion,
we have

P(x,p) = ax + by + B(x.y). O(x,y) = cx + dy + O(x.p)

where P (x.y).0,(x,») =0(r") a8 r=x"+y* = 0 and
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the suffix zero indicates that the functions are evaluated at x =0, y = 0. We also assume
that ad ~ be = (), otherwise the point (0, 0) will be a non-elementary or higher order
singularity. Thus the linear approximation of (6.5) in the neighbourhood of the origin (critical
point) is given by (6.7).

A non-trivial solution of (6.7) is given by

x=reV, y=ge¥ (6.9)

where r and s are related constants and A is another constant. All these constants may
be real or complex. A substitution of (6.9) into (6.7) leads to

(a-Ar+bs=0,

cr+(d-A)s=0 (6.10)
which has non-trivial solutions (r # 0, 5 # 0) iff

a-A b
=)
c d-A
i€, A =pl+g=0 (6:11)
1 -
whose roots are Ay = -(piﬁ), (6.12)

where p = a + d,.q = ad - bc and A = p* — 4q. The equation (6. 1]) is known
as secular equation or characteristic equation.

If 4= 0, then because of the linearity of the homogeneous system (6.5), its peneril
solution is of the form

(1) = e’ +eyre™

y(1) = ese™ + ¢yn,e™ (6.13)

where ¢; and c, are arbitrary constants. If 4;, 4; be complex, ry, sy, r3, 57 are complex;
and, therefore, the solutions x, y to be real, ¢|, ¢; are to be complex in general. On
the phase plane, we have

dy _y_ J’L|clw,e'“ + Aqey8q0*"

(6.14)

¢ dat
dx % Aene™ +A0ne
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We now consider several cases :
(i) Ay, Ay are real, unequal and of same sign (node)
Let A < A < 0. Then from (6.14), we have

d_y _ A+ izczgzg‘."‘l—lzjr
ax Ayl + Ay iR (6.15)

Ife = 0, the solution (x, y) — (0.0) as 't —» + along the line % =2 (const.) from

2

the two opposite directions while for ¢; = 0, solutions give another pair or straight lines

into the origin in opposite directions along £ = 2L If ¢ #0, ¢, # 0, the paths have

x N
d 2 . _
slopes i—}il as [ — —oo and %_,ﬂ as { — +co. The paths are therefore

a 4

tangential to the straight line =5 arthe origin as t — +co and parallel to the straight

* h

line as 1 — —oo, Here the critical point at the origin is called a node and is shown

in Figure 6.1. when both 4,, 4; are negative. In this case the node is stable. The node

is unstable when 4y, A > 0, unequal and real and the figure is of the same type with
the arrows reversed. These cases-occur when

4> 0,q> 0 and p < 0 (stable node) while p > 0 (unstable node)  (6.16)

¥ Y8
.1'

- Fig. 6.1 . Stable node

d :
In particular, if one root is zero, say Ay, then d_i = const. for all solutions and,
therefore, describes a family of straight lines through the an'lgin. These paths converge
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to the origin if 4) < 0 or radiate from the origin if 4; < 0. The critical point (0, 0)
in this case is a particular type of node, called proper node or star (Figure 6. 2) The
proper node is stable if 4; < 0 and unstable if 41 <0,

Fig. 6.2 : Stable proper node or star

(ii) Ay, 4y are real, unequal and of different signs (saddle point)

Let 4; <0, A3 < 0. Referring to (6.13), it is seen that for ¢) = 0, the solutions
approach the origin as { — 4o and (const.) while (x, ¥} —>(0,0) as { = ~oo if

¢; =0 and y 51 (const.). When ¢, # 0, ¢, # 0, i L as ¢t —» -.|-u:: approaching
4l n
the straight line Z_-3 and j—;- — %2 ag | - — o departing from the straight line
X N ¥ .
2_2 The straight line pﬂths 3 and y 22 are asymptotes for other solutions

and are terned separatrices. In this case, the critical point (0, 0) is a saddle point

(Figure 6.3) which is unstable. The conditions for the critical point to be a saddle point
are.

A>0,q<0 (6.17)

W\
2N

Fig. 63.; Saddle point
05



(iii) Ay, Ay are complex with non-zero real part (spiral or focus)

We take A, =1, =@ +if.a and B being real, r =F, 5 = 5 and suppose

¢, =& so that (6.13) represent real solutions of the form

x = ce” cos(ft +£), y = ¢'e™ cos( B+ ')

where ¢.¢’, &, &' are arbitrary constans depending on the coefficients of the system. It
is easy to see that the family of curves on the phase plane is one parameter and consists
of spirals surroundng the origin and approaching it if & < 0 (Figure 6.4) and expanding
if @ > 0. Thus the critical point is a stable spiral if Re A < 0 and unstable ‘spiral
if Re A > 0. The conditions for this are

A <0, p <0 (stable) and p = 0 (unstable) (6.18)
y

Fig. 6.4 : Stable spiral or focus

(iit) A1, ; are real and equal (inflected node)

This is a degenerate case when there {s only one family of solutions of the form
(6.9). When 4, is very close to Az, the solutions ry, s, and r, §3 are nearly the same,’

We have seen in the analysis of node that the straight line £ = 2L s 5 path and all
X h '
|
paths are tangential at the origin and parallel to the line —‘li =22 g infinity. In this case,
o
the straight lines 25 and £ = i— become coincident. The critical point is an inflected
e Xy i
node, stable if 4; = 4; < 0 (Figure 6.5) and unstable if 4 = A5 > 0. The conditions
for this are
A =0, p <0 (stable) and p > 0 (unstable) (6.19)
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In particular, if ¥ = d # 0, b= ¢ =0, the origin is a proper node or star (stable
if 4y < 0, unstable it 4, = ).

A B
¥ ¥

o
|

W
'

;

Fig. 6.5 : Stable inflected node
(v) iy, A; are purely imaginary (centre)
Let 4y = i B and Ay = — i G, P being real. Then as in the case (iii), we have
x=ccos( + &) y=c'cos( [k +£) '

where ¢,¢', £, &' are arbitrary. These represent closed curves surrounding the origin. The

critical point is called a centre (Figure 6.6) and the paths are ellipses. The conditions
for this case are

p=014g<0 (6.20)

Fig. 6.6 | Centre
The critical point is stable but not asymptotically stable.
The above cases can be listed in a table as following :
The eritical point is
(a) node, if A, Ay real, unequal and of same sign (A > 0, g = 0)
(b) saddle point, if 4, 4, real, unequal and of different sign (A > 0, ¢ < 0)
(c) spiral or focus, if 4;, 4; complex with non-zero real part (A <0, p#0)
(d) inflected node, if A;, 4, real and ﬂdual (A=0,p=#0)
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(&) proper node or star, if one root is zero

(f) centre, if A, 4; purely imaginary (p = 0, ¢ > 0)

(g) parallel lines, if one root is zero and g=0 (6.21)
Examples :

1. Locate the critical point and find its nature for the system x = x + y,
¥ =x=y+1. Also find the equation of the phase paths,

Solution : To locate the critical point, we solve the system x + y =0 and

1 1
Xx—y+1=0 and get x—v-E y=E so that (—%,%J is the critical point.

Transferring the origin at [hé' -;.] by the substitution x = ;j_% and y =.,?+ % |
megivcnsystam-rcduccatn ¢=¢+tn fi=&-n whence a=1, b= Lesl d=—

and, therefore, p=a+d=0,g=ad -bhe=-2<0, 4= PP =4g=8>0. Thus the
critical point is a saddle point which is unstable,

For the phase paths, we have

so that d(xy) = xdx — y dy +dx

Integrating, we get 2xy = x* - yi +2x+¢, ¢ being integration constant, is the
required equation of the phase paths.

2. Show that the inflected node for the system % = ax + by, ¥ = ex +dy becomes

star-shaped if a = d, b =¢ = 0,

Solution : Here p=qg+d =2g.» 0, g=ad-bc=a®, A= p*—4g =0. Hence
the criltica! point (0, 0) is an inflected node, Since a=d « 0 b= = 0, the inflected
node is a star.

6.4 Autonomous Equations in the Phase Plane ; Let us consider second-order
autonomous equation of the form

W) (6.22)
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The constant solutions, i.e., solutions of f(x, 0) = 0 represent equilibrium states, Thc
state of the system at a time ¢ = £ consists of the pair of numbers (x(fy), y{1)) 1.8,

(x(ty), (t,)) on the phase plane-xy with % = y. This pair can also be treated as initial
conditions and therefore determines subsequent (also earlier) states.

Let & = p. Then (6.22) is equivalent to two first-order equations

x=y y=[flxy) ' (6.23)
The phase paths are given by the solution of i
e (6.24)

The constant solutions are obtained by putting % = 0, ¥ = 0. i.e, =0, j.= 0 in (6.23).
The critical point (xg, ¥q) is the solution of the pair

y=0, f(x,y)=0 (6.25)
We note that
() .the critical points are always situated on the x-axis,
(i) the phase paths cut the x-axis at right angles (by (6.23) and (6.25)) except at critical
points,
(iii) since the original state is returned on-completing a circuit and the motion simply
repeats itself indefinitey, closed paths always represent periodic solutions.

Next we consider the time taken between two points on a phase path. Let C be
a sepment of the phase path between two points 4 and B (Figure 6.7) and P represent
any intermediate state, The representative point P moves along C with velocity (%, 3)
or (x,%) and the time T,y taken is given by

AN dx
T, = [dis j(d_’;] [E)m -2 (6:26)

which can be calculated if ¢ is given.
Y

Araha

Fig. 6.7 : Phase path
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6.5 The Damped Linear Oscillator : Let us consider the autonomous system
= If'(,r:j} . The simplest of such a system is a linear oscillator with linear damping
given by the equation

4o+ fe=0 (6.27)
where a > 0, A> 0. As for example, we may consider a spring mass system with
a dashpot or a circuit containing inductance, resistance and capacitance. The nature of
the solutions of (6.27) depends on the roots of the auxiliary equation m?® + g + B

= 0. The roots are
my, ny = é—(—rx £A4) where A=a? _4p (6.28)

(i) Strong damping (A > 0) : Here the solution is M) = Ae™ + Be™' ml.and
ny being negative and 4, B are constants, Figure 6.8 represents two typical solutions,
There is no oscillation and the raxis is cut atmost once.

;T;, _

Fig. 6.8 : Two typical solutions
For the phase path, we put ¥ =y and Y =-—ay= fic so that the origin is the

critical point, The equation of the phase path is obtained from .4 =-a-f X which

dx ¥
is too complicated for solution. We, therefore, set

x= Ae™ + Be™  y = Ame™ + Bm,e™ - (6.29)

¥

Fig. 6.9 : Phase paths
This set constitutes a parametric respresentation of the phase path for fixed values
of 4 and B and the phase paths are represented in Figure 6.9. The critical point is
L1



a node. Since a slight displacement from x = 0, x = 0, the state returns to the crilical
point, the node is stable and all phase paths terminate at the origin as ; — w.

(ii) Weak damping (A < 0) : Here the roots (6.28) arc complex with negative
# N —l{.r.l I A=
real part and the solution 18 x(f) = Ae ~ CD{E VAL 5], where 4 and £ are arbitrary

constants, A typical solution is represented in Figure 6.10, which represents oscillations
with decreasing amplitude and the oscillation decays more rapidly for larger e, Its image
is plotted on the phase plane parametrically in Figure 6.11. The critical point at the origin

is a stable spiral.
X
‘4\\\_’//‘_‘\"--#’#—-‘

Fig. 6.10 : Typical solution

¥
’;J_..l—-

Fig. 6.11 ; ‘Phase paths

‘ I .
(iii) Critical damping (A = 0) : Here m, =m, = Sl and the solution 1s

x(1)=(4+ Br}e'é"“ . The solutions resemble those of stmné damping and the phase
diagram shows a stable node.

EXERCISES

1. Determine the nature of the critical points for the following systems :
(i) x==x-2y, p=4x—35y (Ans, Stable spiral)
(i) * =5x+2y. y=—17x -5y (Ans. Centre)

(i) % = —3x + 4y, y = —2x + 3y (Ans. Saddle point)
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(iv) s==4x -y, y=x-2y (Ans, Stable inflected node)
(V) ¥=4x—3y, y=8x~6y  (Ans. Infinite number of eritical
points not isolated)
2. For the system ¥ = ax + by, j = ox + dy with ad — be = 0, show that the system
has infinitely many critical points not isolated. Also determine the phase paths.
3. Determine the nature of the critical point for the system x =siny, j = cosy and
find the equation of the phase path,

4. Determine the nature and stability prqpérty of the critical point of the system
X=x,p=hky for k>0 and k <0, [Ans. (i) k> 0 and k # 1, unstable node,
(if) k = 1, star-shaped inflected node, (iii) k < 0, saddle point] |

9. Find the nature and the stability property of the critical point of the system
X=—ax+y, y=-x—qy fora<0and g > 0. [Ans. a < 0, unstable spir-al and
a > (), stable spiral]

6. Construct the phase diagram for the equation (i) ¥ + @*r = 0 and (i) ¥ - w'x =0,
6.6 Summhry : The critical points like nodes, saddle points, spiral points, etc., are

introduced for autonomous systems of the type |

X= P(x,y), ¥ =Qx.p)
and the pattern of the solutions in the neighbourhood of these critical points in the phase

plane are depicted. In particular, the phase plané characteristics of the second-order
autonomous equations of the form

¥=f(x¥)
in the neighbourhood of the critical points are touched upon.
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Unit : 7 O Special Functions

7.0 Introduction : So far we have considered the differential equations where the
independent and dependent variables are real variables; Now we suppose that both the
independent and dependent variables are complex variables and the coefficients involved
in the equations are also complex analytic functions. A typical linear equation of the second
order in the complex domain is

2
i; + plz) % +g(z)w=10
where the functions p(z) and g(z) are both regular for all finite z or p(z) and ¢(z) have
poles of order one or two atmost at a point of the complex z-planc. The solutions of
this class of sccond-order linear equations in the neighbourhood of ordinary points or
regular singular points define important new type of functions. Thus polynomials like
IHermite polynomial, Laguerre polynomial and important frunctions like Bessel function,
Hypergeometric function, Legendre function are ::-lﬁained as solutions of the second-order
linear equations of particular lype. Many important properties of these polynomials and
functions are discussed as well as their recurrence relations. These functions are called

special lunctions.

7.1 Homogenecous Linear Differential Equations : Before we discuss the
propertics of scveral imyp Hrtant analytic functions defined by dillerential equations, it is
desirable Lo consider whether there exists an analylic function w(z) which satisfies the
homogencous lingar differential equation

ﬂT "W ﬁ? =1 W

aw
o + pi(z) F+ L TR ) P +p,(2)w=0

where the independent variable z 1s real or complex and the cocfficients
piz)s pa(2), +++, p,(2) are analytic functions whose singularities of finite affix are poles,
and, further, if such a solution does exist what effect the singularities of the cocfficients

have on the nature of the solution.
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The simplest of this type t::-J + p(z)w = 0 presents little difficulty. The variables are

separable, and the solution is w = exp{—j p(z)dz} . On the other hand, the equation

of ordet two

2

dz”

e
+p(2) d—: +q(z)w=0 (7.1)

has no such simple solution. We restrict our attention to this equation for twa Teasons;
firstly, the analysis in this case is easily extended to the more general case, and, secondly,
the particular functions with which we deal in the sequel do, in fact, satisfy second-

order equations.

A point z; is said to be an ordinary poeint of the differential equation (7.1) if the
functions p(z) and g(z) are regular in a neighbourhood of zg; all other points are called

singular points or singularitics of the differential equation.

7.2 Solution Near an Ordinary Point : It can be shown that if z; is an ordinary
point of the equation (7.1) and if @y and a; are two arbitrary constants, then
there exists a unique function w(z) which is regular and satisfies the differential
equation in a certain neighbourhood of z;, and which also satisfies the initial
conditions w(z,) = a,, w'(z,) = a,. This theorem, which is due to Fuch, shows that
the only possible singularities of the function defined by the differential equation are the

poles of the coefficients p(z) and g(z).

['or simplicity, we suppose that z; is zero. Then since p(z) and g(z) are regular
in a neighbourhood | z | < R of the origin, they are expansible as Taylor’s series of the

form
plz) = &):nmz*; g(z)= Ya;z", (12)
= k=0

the radius of convergence of cach series being not less than 2. We now try to find

a formal solution by substituting

w(z) = a, +a|z+qz:1 k|
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in the equation

l:-"TW+'I‘?-_;_”U d +quz w=10

and equate cocfficients. This gives

—2d, = oy py + Ay,
—2:3ay = 2ay py + ay py + @y + Ay
and, generally,
—(n—Dna, = (n—Da, \py,+(n—2)a, .p, + - +ap, ,
ta, oy A, oy o Ty, 3 T, s
These equations determine the cocfficients a,, successively as lincar combinations of a,

and @;. We can show that this power series has a radius ol convergence which is not
less than K.

The function

w(z) = ia*zk (7.3)
k=0 _

is, therefore, rﬁguiar when | z | < R and satisfies the prescribed conditions at the origin.
The formal process of term-by-term differentiation, multiplication, and rearrangement of
power series by which this function was made Lo satisly the differential equation are
now seen to be completely justified, since all the series involved converge uniformly and
absolutely in every closed domain within |z | = &
Since «, is a linear combination of ay and &, we can express the solution in
the form w(z) = a,w,(2) + a,w,(z). Each of the functiﬁns wy(z) and wy(z) is a solution
| of the differential equation and satisfies the initial conditions wy(0) = 1,
wh(0) = 0, w(0) = 0, w{(0) = 1. Every solution of the differential equation regular in
the neighbourhood of the origin is, therefore, a linear combination of the solutions wy(z)
and w,(z) which we call a fundamental pair of solutions. Clearly wy(z) and w(z) are

linearly independent.
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So far, the functions wy(z) and w(z) arc defined only in a neighbourhood of the
origin, When we continue these lunctions analytically, they remain linearly independent
solutions ol the differential equation. The continuation can be carried out along any path
which does not pass through a singular point of the differential equation and so the solution

will ultimately be defined all over the z-planc.

7.3 The Nature of the Solution Near a Regular Singularity : The point z,
1s a singularity of the differential equation w” + p(z)w’ + g(z)w = 0 if it is a pole of
one or both of the functions p(z) and g(z). We call it a regular singularity if it is
not a Ningulaﬁll}' of cither of the functions (z —z,)p(z) and (z — z,)" ¢(z) ; otherwise, it

is called an irregular singularity.

If the origin is a regular singularity of the differential equation under consideration,
the functions zp(z) and z°g(z) are regular in a neighbourhood | z | < R of the origin and
s0 possess convergent Taylor’s expansions of the lorm

mm=§an%m=§mf (7.4)

where the coellicienls py, gy and ¢, are not all zero, We now show that, in general,
the equalion possesses lwo linerly independent solutions of the form

]

wiz) =23 a z" (7.5)

U

where @ is a root of a certain quadratic cquation. When we substitute these power
series in the differential equation and equate coellicients, we find that this expression

is a formal solution of the equation if @ and the coefficients «, satisfy the conditions

11
apF(a)=0anda, Fle+n) ==Y a {(e+s)p,  +q, .} (n=1)

L |

where F( 4) denotes the quadratic o — 1) pyer + ¢, . The first equation is satisfied by
choosing a, arbitrarily and making @ a root of the quadratic equation F{ @) = 0. This

equation is called the indicial equation and its roots the exponents of the regular singular
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singularity under consideration. The remaining equations determine successively the
coeflicients a, provided that F( @+ n) does not vanish for any positive integral value
of 1. Hence if the indicial equalion has distinct roots which do not differ by an integer,
this process gives two format solutions, one corresponding to cach root of the indicial
cquation.

Tf; however, the roots of the im}licial cquation are equal, or differ by an inleper,

we may obtain only one formal solution. We leave this case as it represents much
difficulties.

Now it can be shown that the series w(z) = z" Y @,z" docs represent a solution
¥}
of the equation (7.1) provided that the series Xg z" terminales or else that it has a
non-zero radius of convergence., '
7.4 Solutions Valid for Large Values of | z | : To discuss the nature of the solution
in the neighbourhood of the point at infinity, we make the transformation z = 1/t. Then

the differential equation (7.1) becomes

d*w 2 N dw 1 (1
i ) Bre SR | Mol | e ey, | =10 7.6
dr’ {, r? p[r)} a it q(:]w i

The behaviour of the solution for large values of | z| is determined by solving the
transformed equation in the neighbourhood of the origin.

Accordingly we say that the point at infinity is an ordinary point if
% - r]? FG] and I,ITQ’(IFJ are regular at the origin, i.e., if 2z — 2% p(z) and z'q(z) are
regular at infinity, The complete solution of the equation, valid in the neighbourhood

. I W LT a, . a
of the point at infinity, is in this case of the form a, + -+ — +---, where ay, 4,
Z Z

dy, ... are arbitrary constants.

Again, the point ¢ = 0 is a regular singularity of the transformed cquation if
I {1 | l ] : : S
-y and o if = are repular there; we say, therelore, that the point at infinily 18
T I 5
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a regular singularity if zp(z) and z%g(z) are regular there. In this case, piz) and ¢(z)
are expansible, by Laurent’s theorem in series of the form

pln=2ally Ee g 4@) =% + 4
Z &

3
&

N1|Hu::.

convergent in a neighhnurhm]d | z| = R-of the point at infinity

It may be shown as in 7.3 that there exist in the neighbourhood two linearly
independent solutions

w(z) =z "Za,z*, w(z)=z"Zalz™"
where @and ¢’ are the roots of the indicial equation ¢ — (p, — )at + ¢, = 0, provided
that these roots do not differ by an integer or zero.

7.5 The Solution When the Exponent-difference is an Integer or Zero : When
(¢t —@' =5, where § is a positive inleger or zero, the solution of (7.3) fails, For if
& = (I, the two solutions become identical, whilst if 5 = 0. all the coefficients in one
of the solutions from some point onwards are either infinite or indeterminate. Tt is, however,
well-known that a knowledge of one solution of a linear differential equation of order
n enables us Lo depress the order to # — 1. In our case, we obtain in this way a linear
equation of the first order which can be integrated immediately. |

To effect this depression of order, we make according to the usual rule, the change
of the independent variable w = w,(z)v(z) where w,(z) is the known solution of

exponent & The function v(z) is found to satisfy the equation

dy 2w dv
— 4+ —24pl—=0
dz Wy dz

whose solution is

wWz)=A+ J' exp {—_[: p{z}dz} dz

u( )}

where A and B are arbitrary constants, Hence the required second solution, valid near

the origin, 15

wiz) = wD(z}j P{- J'z P(z}dz} dz (7.7)

b n{ z)}?
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Now aand @— s are the roots of the indicial equation o +(p, — 1)t +¢g, -0 so

that p, = 1 +5—20. Hence we have

T €Xp {—f p(z}dz]- = zm—_l_

(ay +a,z S

5 { [ (% = pzz)dz}

=l

= Z
(e, +az+-+-)

w(2))

sexp{-J () + pa2) )

—I—s

£(z)

1 ; ; g % .
where g(0) =—-. Since a, # 0, the function (4, +az+---) " is regular in the
iy

neighbourhood of the origin. Henece g(z) is also regular there and can be expanded as

a convergent Taylor series g(z) = X g.2". Substituting this series for g(z), we find that

the second solution is

wiz) = w, [z)_[ % g.z'dz

r=x¢] T —&

=W {z){z : logz + Z 82 } (7.8)

In particular, when the exponent-difference s is zero, this solution can be writlen as

W(z) = gowo(2) logz + 21 3 b,2" (7.9)
=l

As g, # 0, this solution possesses a logarithmic branch point at the origin, When the

exponent-different s is a positive integer, the sccond solution takes the form
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w(z) = gowe(z) logz +2% Y e 2" (7.10)

r=l]

IT it happens, as may be case, thal g, is zero, the second solution does not involve

a logarithmic term.

7.6 Hermite’s equation : The differential equation defined by

d*w chw
W —Ezg+?.;ww={} (7.11)

where #is a constant, is known as Hermite’s equation. Evidently, z = 0 is an ordinary
point of the equation (7.11). So there exists a unique solution w(z) which is regular in
a certain neighbourhood of z = 0 and which satisfies the conditions w(0) = a4, and

w'(0) = @, where gy and a; are arbitrary constants.

Let wiz)= iaﬁz* and substitute this in (7,11) to get
4]

%k{k — Dat;z*2 —Ezi e, 2+ zy\,;:a,rz* =10

Lquating the coellicient of z* to zero we get
(k+2)(k+Da,,; —2ka, + 2y, =0

50 that

___2y-h
e = e

Putting £ = 0, 1, 2, ... we have

iy = —2—?.5:“

1.2
L - 2Ar=1h
-3 g
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goa 2(1;;) (=12 2y~ ;?:(:r )

[Tence

2 2%y =2
H’(Z}Iﬂul:1-2—yzl+ % )34 —]

wnl, 20=D 5 2O -D=3 s
. = : P

e, w(z)=agw,(2)+aw(z) (say) (7.12)
Obviously, wy(z) and w(z) are two linearly independent solutions of (7.11) and so (7.12)
15 the general solution.
It may be noted that one of the two solutions wg(z) and w(z) reduces to a polynomial
if ¥is a positive integer.

Hermite’s polynomial : Let ybe an even integer and )= a. Then clearly wy(z) reduces

. I
to a polynomial ol degree n. Let us choose @, = (=D"* - ﬁ ‘Then the term containing
, n

' in wylz) is

il nl i i?{”_— 2) "'f_.ﬁ— i ‘1‘2} il z "
(=1 o HZ}'{ —2) = 2 Ley(2a).

Similarly, the coefficient of 2! =% in the same solution is

2 n! ' (=272 ”{“_2}"'(”_ n -2+2 + 2) n-2
L B L L i) -
=1 (‘an)‘.( )l (n=2)!

' ma—
1.E., L

T AUBRDAC)

and so il
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Hence the solution is

'r!‘{Z) ot (23}” o Fi&’z%l) (Ez}n—z + ”{” = 1}(!22-; 2){” = 3}_{22:'” o

n!
(ni2y 713

+H=1)"

Similarly, wi(z) reduces to a polynomial if ¥= m, an odd integer. In this case we
have

f— 2 — —_—
w(z) = H]Z{l = E(H;' ]):zr1 + £ iﬁ(m ﬂzq sy

+ (—E}MI_] 2 (m — 1)(” 5 3) 2 S .]}
m!

(m+1)!

Talki =(—1 (=132 :
B = e T

the term containing 2" is

A{m-1)(2 (i + L)(m = D(m— 3)- -2
{(m+1)/2}

e

m+1_m-—1lm—3”
—om_2 2 2
{(m+1)/2}!

el

2" =(2z2)"

and the last term is (—1)¢"' JJEMZ. We have therefore
{(m+1)/2}1
w _ Mm=1) -2 -tz (mA+I)! :
- (22)" - 22y oo (i B -
W) = 9" - 2= 2z) ot e e

The polynomials defined by (7.13) and (7.14) or alternately, the polynomial defined
by

8 (1) w2k
H(2)= :":6 Fi2 k.}!(zz-} (7.15)
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where

[n/2]

nilz if nis even

(n — 1)/2 if n is odd
is known as Hermite’s polynomial of degree n.

Generating function for the Hermite polynomial : [t is interesting to note that the

)

Hermite polynomials are obtainale from the coefficients of - on the expansion of ¢
n!

T'or, we have

2'2 n-2% -1k

21 (n—2k)!
K{H o) 0 ey +}
2! 21 k!
[13/2] (;1)5’

so that the coefficient of (" in this ex ression 15 =
P

(Ez}rr—ﬂk
oo k'(n—2k)!

: - { 1}.\'.' 7(22)" -2k
Hence H (z)= ;} =201

and we can write

e L ¥ L H.r(z) (7.16)

irﬂ'”

The Rodrigues formula for H,(z) : We shall show that

H._.{z}=l:-1}"e” %(e"ﬂ (7.17)

which is known as Rodrigues formula.

To prove the formula, we note that

2 = iﬂ@ 1"

= 1
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or, et =t Hn{:]l+£|'l:,zjr +;Izgﬁ2}r3

H )
—”(ﬂf” 4 H;m (z—}fﬂ_'l
! {(n+ !

+...+

Differentiating both sides p'urliali}-' w.rt, £ # limes and then putting 1 = 0, we have

iﬂl-:r—:]l (_,:2 & w ml= H (z)
(]:I'”II‘I i=il n!

d J
Now let z - ¢+ = u so that r—:—'—— -and at t = 0,'z = . Hence
¥ [t

H-f](z) =[ 1.}" j?e "1“[”=:E:E

H,(z) = (=1)"e" i (¢)

Recurrence formulae for Hermite polynomials ;
L. Hi(z)=2nH, (2), n=1

Proof : We have

i_ﬁrﬂ{z} LA 6—124—2:.:

w=n 1!

Diiferentiating both sides w.rt z, we get

i H{ ] = —: +2r zr Efijj"(z} "

n={F ‘11 - =0 ”I

E {z) .lr1| _22 |{z} .r:

et 7l H=l [H—l)r

Fquating the coefficient of ' from both sides, we have
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En(z_}:z ,1(2) . ie. H(z)=2nM, (2)
n! (n—1)!

L 2z, (z) =2nH, (2)+H,,(2)

H .
Proof : We have L ”{Z) =g LAl
n=0 ml

Differcntiating both sides w.rt.  we get

e H z fo ST Ry
rl( }! | _—Efﬂ' i +2L+22& ~+diz

.,);u{n—u! Y
Qince term of L.H.S. corresponding to # = 0 Is zero, so
{2} .lr I EI'-Z (Z) rr EZi Hgﬁrir
] ﬂ'! si=0 ”!

Y {.i? 1! '

'”n["} p 22 rr{ } ml+i£”“{difu_]

n! u=|.{ﬁ‘-1}!

Or, s Z

n i ! 1=l

'Hn 1(-‘) r| +i_H¢r+l{z} .f“

- Ijr"lZ] r| =TT e
%( —nl =l !

or, 2z —
n=0

Equating the cocfficients of " from both sides, we get
H"{Z]I 'Hn—l (Z} “IH+I {E_}

2z -
n! T (n- 1][ n!

, 2zH (=) =2nH, (2)+ H”H(z}

Note : Eq_uating the coeflicients ol (%, we have 2zH,(z) = H,(z)

. H!(z)=2zH,_(z) - H,,,(2)

Proof : From the 1‘ecuﬁcnce lormulae 1 and TI, we gel
H'(z) = 2z11, (2)

and EZHH':E] = ZJEHr—I{z} +."I‘rrr1; (E}
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Subtracting we get the required result.
IV. H(z)—2zH,(2)+2nH (z) =0

Proof : Hermite’s differential equation is

d*w dw
i 2z o +2nw =0

Since H,(z) is a solution of this equation, we have the required resull,

Orthogonal property of Hermite polynomial : To prove that

G ooy xf'ri;'I_T'!?[ iftm=n
I_ML’ " H (2)H (2)dz =

0 itm 2 n

}: Jr2"nls,

where 4, is the Kronecker delta,

2

Proof : We have ¢~ %% — ZH,,(Z}I—r and ¢™ 1?7 = i H (z) -
n!

m
=10 =0} il

: L (e s
5o that ¢1" 2% . g _ 2HLD - Y H (-
”! i m!

n=ll

1
milnl

H,(2)11,(z) = coefficient of s™" in the expansion of

(7.18)

|7 e H(2)H,(2)dz = min! times the coefficient of " in the expansion of

GEan oy 2 2
j- e E ar +2xz e 1 +2fzdz
3 2 2 T x
- £ T ot (- Bt L E -
Now [~ g7 g @12 o 128 g, _ = S e e

e R P T A A El 2
— g : | J.,,E {z(r+a1] +:rf.-r:| i
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- 2
- Eln]_n E'_" o, where z— (." v .5'} -

A EZI.:-' _JE

—J_LH(ZI )+(_2f +-~-+{2+'T)" +jl

21 !

Hence the coefficient of ™" in the expansion of

- 2 2z ?
=% o T S e J
J e g 42 {4

is 0if m#n and — m=n

2'Jm
i
Thus

JEZ"H! ifm=n

J-m e_zz =y {z‘) H (z)dz =
0 ifm#n

} = _\Ezﬂ n! amrr

7.7 Laguerre equation : The differential equation given by

d?
z—+1— —+ =0
7 (1—2) T (7.19)

is known as Laguerre cquation.

Comparing this equation with (7. 1] we have p(z)=——, g(z} T 5o that
z

zp(z) = 1—z, 2°¢(z) = 1. The point z = 0 is a pole of both p[z} and g(z) and that
zp(z) and z *q(z) are regular at the origin. So z =0 is a regular singular point of the
differential equation (7.19). '

The indicial equation of (7.19) corresponding to the singularity z = 0 is
oo -1 +1-0+0=0 ie, a=0, 0. Hence the equation has a solution of the form
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iz =t Za W2 -ay 20, the power series being convergent in the neighbourhood of
k=0

the origin. Substituting this value of w(z) in (7.19) we get

Y k(k—Daz" +(1-2)Y ka,z"" + e iaﬁ:»:Jt =0
k=2 k=l k=0
Equating lo zero the cocfficient of 2%, we have
(ke + Dkay,) +(k+Day,, — ka, +ya, =0

: K=y
ey Wy = (k+1]2£

Substituting £ = 0, 1, 2, ... we get

a . =¥ = I_—_L?! (- T}{"T‘Jau‘
1* 2 (21*

2 -1 )1 =y)2—
alz?’*’af(_?)( (33;3;( D,

Hence

.H’(E)f(c‘u[l DR it PN ok 23'z‘+---].au=en (7.20)

5 (oIF @3

Laguerre polynomial : If 3= », a non-negative integer, then w(z) is a polynomial of
degree n. If @y = n! and p= n, then the solution given by

R VGV
M= g’n{k'} (.r.-—k}'

is called Laguerre polynomial of degree n and is denoted by L,(z). Thus

) 1)
Ln(z}_g,[k!}l(n_k)!z (?*21}
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Generating function for the Laguerre polynomials : The Laguerre polynomials L, (z)

are defined by the following generating relation :

g - — (1—?‘}2 :4(:‘3)

n=0 .

For, we have

2 (1)t =tk

=l |;:_ =
(1-t¥"¢ (1—-1) RE& Il (l_r}k

ol
_Eu k

]i’

; z*fﬁ{l—f}_:“”

_ e ST,
a.Zu k! Eﬂ fele!

k
fr{ +") zr k+r

k=0

Lo (=D'n!

The coefficient of " in this expansion is Z-—— and so
ik (= k)!
= te =3 p
ny nl
.
i.e., i (l—r)z L"{z}
n=ly M
The Rodrigues formula for L,(z) : We shall show that
3 d” N——=X
L(z)=¢—(z"¢ (7.22)
dz
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which is called the Rodrigue’s formula for Laguerre polynomial of degree n. Since,
by Leibnitz rule for the nth derivatives of the product of two functions, we have

ﬂT" ” < du— s Ef W
PR J—%[J e (@) ()

Ji!Z

}ukr(n ! k! (=D)'e

(1) (nl)*2*
=5 .:ZE:(E”’} TR

=e "L (2)

- (z"e .

so that L (z) =é”

Recurrence formula for Laguerre polynomials :

L, (2)+(z=2n—1)L,(z) + 'L, ,(2) =0

Proof : We have g'-j = (1 - ")Z H(Z)

w=0 n!
Differentiating both sides wir L. f we pet

: 5 LEC 5 L),

L% | 7o
1—-!] T J,;E; =0l = nl
o [ | -5 L
or, —-zZL“-’—Ez}r” ={l=)" Z "f‘z)'r (1-0)Y iﬁ;"
n=1 M wt (1= Ur g H

Equating the coeflicient of " from sides, we get
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1l

—z L“(Z} it LJH_!{ZJ s 2 LJJ{ZJ 4 !‘n—l(z} o i['_.{l_{_z_}_ s 'LJr—lI:E}
n! ! (n—11 (n-2)! n! (n—1)!

of, —z L (z) = L, (2) =20l (z) +n{n—1}L, (2= L.(2)+n L, (2)
ie, L (2)+(z=2n=-DL(2)+n’L, (2)=0

Li(z2)—nL, (z)+nL,_ (z)=0

=

S il . .. |
Singe. e ¥ =(] TIJE---“LE—Z—)-.'”ﬁ we gel by differentiating werl, z
n=t M, :

il =

_.]_f ; f:'? ={I_”E "r“.'r{zjl.n

n=f M

=0 Lt
or, =i Ll )r” =(1—r}2—"£2}r”
=0 ML we=il M !

Liquating the cocfficient of " from both sides, we get

= f{'n I{Elz L::(Z) = L:q(z]
(n=1! n! (n=11

e, Liz)=nl () +tnL (z)=10

 ddDr - Lz tnl ()=

We have L/(2) =n{L ,(2)—L (2]}
Raising the index by 1, LI, (z2)=(n+ D{L(z) - L (z)}}
Differentiating wirt. 2, L7 (2) = (n + D{Ez) — L (2)}
Apain raising the index by 1,
Lia(2) = (n+ DL, @) - L)) (A)
Now differentiating both sides w.rl, z of the recurrence relation

Ln+1 (Z) i (Z B 2” = I}L"{Z} A ”1 Lﬂ!—l(z) =.D
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we petl
Lia(2) + L2+ (z-2n=DL(2) +A’ Ly (2) =
Raising the index by 1,
L (2)+ Ly (2) + (2= 20 =3) L], (2) + (n+ 1) Ly(2) =0
Differentiating w.rt, z
LY (2) +21,H|:zy +(z=2n=-L" (D +(m+ 1) L2 =0
Using the relation (A), we have
(n+ 2L (2) = Ly (@) + 2L, () + (2= 2n = 3) Ly (2) + (0 + 1) L(2) =
of, (z—=n-0L"(2)—nL. . (2)+(n+D*LAz)=0
Using (A), (z—n—Din+ DILAz) = Li(z)} = n(n+ D{L(2) - L,(z)}
+(n+ 1) Lz) =
ie., zL(2)+ (1 =2)L(z) +nL,(z)=0

This shows that w = [,(z) is the solution of the Laguerre equation (7.19).

Orthogonal property : We have

v 1 l :'?E
Z I_Lul:z) t"=——¢e [—r H]'ld E m{ :I"-"m = g Bt
=) 1l 1=t =41 ! ].—-5'

o ol . | i
! e — 2 L(2) L (z2)=eF———e g

n%:n n! m! () (2) (1—1)1-%
Thus
[oe 1—l—r L,(2) L, (2)dz = coellicient of r” " in the expansion of
il
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1 _£ Xz

i LSy ci=
b aha=a®
1 __J_ &
W —eg g oz
Now |y ¢ (1—1)(1 - )
1 ot :[11- : ++J
:{—l_f}{l__”'[”‘e Lo }dz
= ! ‘ .]_ e :[lllrfi.lf.s] A
“-—f}{l—.ﬁ'} 1+L+ L o
1-t =%
|

= ==Y = s () +
=i

in which the coellicient of "s" is zero if m#n and 1 ifm = n.

o 1 {ﬂ if m#n

Hence |, e~ = L2V L. (2)dz =
Him.

if m=n

4] if m=n

I “e L ()L (2)dz=
ws | e L,(2)L,(2) {{ﬁ.-!)l o

which is the

7.8 Bessel equation : The differential equation

tz—+ (2~ )w=0 (7.23)
where wis constant (real or complex) is known as Bessel equation.

) : {
Comparing this cquation with (7.1) we have p(z)=—, le., zp(z) = 1 and
: z

2 2

iT—~ ie., z'g(z)=z" —y*. Thus z = () is a pole of p(z) and also of g(z)

o

g(z) =

4
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and that both zp(z) and :2:}‘{:«:) are analyticat z=0. So.z2=01is a regular singular
point of the differential equation (7.23). The indicial equation of (7.23) corresponding

to the singularity z = 0 is o(a—D+0o—-y* =0, ic, =47y,

Case 1 : I'irst we suppose that v is neither zero nor an integer and Re Y20
Then the solution of (7.23) can be written in the form

wiz)=z" Yz = Fa 2™, 420
&=l k=0
Substituting this in (7.23) we get

(Y + &)y +k— ].]Iﬂkzrhll-j + ziﬁ,— + k}crkz"""

k=0 k=0

Wk

=) Y a T =0
i |

Equating the coefficient of z"'* to zero, we have

(¥ + k) (y +k—Da, +(y + k)ay +a,_, —7?a, =0

of, @ =——k2__
| T k@2y k)

Since a_; = 0, it follows that @) = 0 and by repeated application a, = 0 for every
odd integral value of k. Putting &k = 2, 4, 6, ... we get '

el o T T VR SO\ o
S 22y+2) 2%y +D] 42y +4) 221y + Dy +2)’
'HU 3 ﬂn
f= = () _ e
6(2y + 6) 2% 310y + (v + 2)(¥ +2)
In peneral,
tyy = ‘:“n* ' s

225 kW y + Dy +2)-(y + k)
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Thus a solution of (7.23} is given by

w(z) = ez’ i-— = (_1]"‘21_* e
_ T A R+ ) D) (r +B)

Taking a, = 57 F(l—l)’ the solution becomes
¥+
: 1 2y = _1yk g2
JT(E:I — [_) Z —5p— {- )
Ciy+D\2) S 2%k y + Dy +2)--(y + k)

; o (=Diz/2r*
B whilg) = e
Le. Jy(e) E;Ff‘]f+k+l)r{.ﬁ:+1)

This series with — #1n place of sdefines a second linearly independent éﬂluti-:m of the
Bessel equation given by
a _(___1}#(2 .I'I 2}'—]"+1#

F =¥
T %u F(=y +k+ Dk +1)

Hence the general solution of the Bessel equation (7.23) is
w(z) = AJ'F{E} + BJ__T (z)
where 4 and B are arbitrary constants.

Case IT : When the exponent difference is either zero or a positive integer, the second
independent solution of (7.23) is v(z).J, (z) where

dv _ 1 e—.f;_-d: _ 1
d {J, @) z{J, ()}
pN dz
so that the solution is J, (2) | ——5
z{J, (2)}

Bessel function : The Bessel function J,(z) of first kind and of order # (real or complex)
is defined by

: by 2 (—I}*{zfﬂ}"ﬂk
J(z) = ;‘E;n]"(n +k+ 1Tk +1)
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If n is a positive integer; then

_— & ( I} (ZJII 2)—11-1-"!; . (_-HA (,_ / 2]—"+3.Ir
Jl2) = *E;, F(=n+k+DCk+1) E I(=n+k+ DIk +1)

(il k is an integer, I'(~k) is infinity of k 20, so we get terms in J_, equal to

i
zero till —n+ A +120 1, k=n-1)

{ 1]Fr+.1:(d}.l2)ﬂ+1t :
ol Putting - n + k =
EF{S+I}F[H+3+1} b e £

el EDE
= }gnf‘{n+s+l}1"(v+l}

= (=1)"J,(2)

Henee J_, (2) = (= 1D" J,(2)
Recurrence relation for Bessel function :
L EJ,,{Z] = EJ“_]{Z} == H‘Ir.r{z}

Proof : We have

( l)k 2n+ik
J
dz [ e )] :’z[?”*“]’“{n+k+l}r{k +1)

L, i { I}kz(n_i_k} 2n42k—1
2" H Cn+ k+ D)k +1)

o l} (zfzjzawﬂr L
g T+ T+ T+ D=nl0m)

=] .z

Thus IIi—"f[z"J"{z}] =z"J, (2} L.e., 202+ ue () = z'J,.4(2)
dz

so that
zli(z2y=20 _{z)=nJ (2} ; {A)
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. zJ/(z) =—2J . (2) + 0], (2)

Proof : We have

Y = ke w2k
4 ey e 5 LEDCID
dz dz T+ k+ D) (k+1)
-3 (D" 2k - 22
2 2" i+ e+ DIk +1)
_ % CVGE 2
2 rin+k+DI(k)
e aa {-I]m{_zf 2}{r|1 13423 .
73 e Tesa DT Geed) Lusg & =2l
q _.z_"'fu-a-'l(z}
Henee z l(z)— nz“_1J"(z) =—z "J (2) SO that
z2Ji(2) ==2.J,,(2) +nd,(2) (B)

”;'l' 2"’;{3} = Ju—l(f-) = Jrhl I{z)
Proof : Adding (A) and (B) we get the required result.

Iv. IH'J“{Z} = ZIJ"_| (Z] + Jlll-l(z]l
Proof : Subtracting (B) from (A) and reatranging, we gel the required result.

Generating function for Bessel function of integral order : We shall show that when
n is an integer, J,(z) may be defined by means of the expansion of

Proof : We have




if n is a non-negative integer, and if k = » + ¥, we have

5 I' e M
Al 5 i [i ;.J r

i, 5=0 {” +5)ls!

Hi25
5 {—U‘[% ZJ (" s
= j‘" e ¢ — fn,)rl

=l r(ﬂ g G2 o I}F{\ +1) JE; ”(Z]

Hence the coefficient of 1" in the above expansion is J (z).

Apain, if & — 5 = n where n is a positive integer, we have

_l] ;'2 2 ““: 2k -

{50 ¢ et :

> A — - — _1 ”r .
i n}.—.{] (k+n)'k! f ;EE;{ ) (2) ¢

= i VES AT

=il

Hence the coefficient of (" in the above expansion is J (2),

Some trigonometric expansions involving Bessel’s funetions : We put t=¢g" in
the relation

of 1] 4 &
P s ree

fi=—=

e

We get ¢™" = ¥ J, (2) (cosn + i sin nd)
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Equating the real and imaginary parts, we have for real z

cos(zsing) = E‘ J,(z) cosnd

and sin(zsin@) = i J.(z)sinnd

From (C) we obtain

cos{zsinf) = J,(z) + i |/, (2)cosnf + .J_,(z)cos(—nB)]

m=1

=.J,(z) + i[.f,,{z}msnﬁ +{(—1)"J,(z)cosnd]

n=1

= J,(2) + 23 Sy, (2) cos(2n0)

1=l

Putting @ = /2 we gel

cosz = Jy(z) +?i L @D

n=|
b, cosz = Jy(2) = 2J5(2) + 2 (z)—+
Also putting #= 0 in (F) we get
L= J,(2) + 20, (2) + 2., (2) + -+
Agai_n from (D), we obtain

sin(zsin@) = 3, [Jn{z}sinnﬂ +(=1)"J,(2) sin{—:_'.*E}'}]

=l

= 5 [4,@)sinng + (=)', () sinn6]

=1

=23/, (2)sin(2n—1)0
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Putting 0 = n/2, we have
sinz = 2.J,(2) —2J,(2) + 2.J.(2) — -+
Bessel’s integral formula for integral order ; Let m be any mteger including zero.

Multiplying (C) be cos m #and (D) by sin m #and then adding- we obtain

cos{mf - zsinf) = i.}’ﬂ{z} cos(m — )0

ar=—ir

bl J”{:}jrf cos(m — n)8 do

h=—oa

and zo J'r:r cos(mO — zsin@)d8

= J ()

m

1 oz : e

Hence — [ cos(nb —zsinB) = J,(z), which is called the Bessel’s integral formula
s

ol order n.

7.9 Hypergeometric equation : The differential equation

dz i 5 »
;(I—-z}dz—1;+{c—(cr+b+ I}z}i—:—abw = () (7.24)

where g, b, ¢ are constants, is known as Gauss’ hypergeometric equation. Comparing
cquation (7.24) with (7.1) we find

c—(a+b+1)z ab
e =——— . qlzl=————
p(2) O
[lence z = 0 is a singularity of (7.24). Further

c—(a+h+1)z > abz
an
-z f—z

zp(z) =

Thus z = 0 is a regular singularity of (7.24). The indicial equation ol (7.24) corresponding
lo the singularity z = 0 is e{e—1)+ex=0 so that =0, 1—¢

We first find out the solution corresponding to the exponent a =0, Tf 1 — ¢ is
not a positive integer. L.e., ¢ is not zero or a negative integer, the equation (7.24)
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has a solution of the form w(z)= L{E& .y # 0. Substituting this in (7.24) we
k-l

obtain

2z D)5 k=D +le—(a+b+ DA Tk, 2"
ko0

k=l

—-‘.{E?iﬂ&:k =D

k=11
Equating the coefficient of z* from both sides, we obtain
(k + Dka,,, — k(k = Da, +c(k+Dag, —(a+ h+ Dka, —aba, =0

(a+ k)b +k) ﬁ:)
{fc+l}{.:+k}

VG iy —

‘lakine an = 1. we calculate the other a’s i1 suceession :
] r

H =ﬂ “ _{i+1)(h+l} _3{a+|]-b(b+t}
FE e ey 2e(e+1)

s (a+2)(b+2) sl afa + (e +2)-b(b + Db+ 2)
: He+2) 3te(e + (e +2)

Thus the solution of the hypergeometric equation (7.24) is given by

= ala+1)a+2)(a+k=0bb+ 1D +2)--(b+k-1) J

Wz =2, kle(e+ (e +2)(e+k=1)
.- , (@), ) i )
ie. w(z) = Eb K(0), (7.25)

where (a), = ala+1)--(a+k—1), ete. The infinite series in (7.25) is known as
hypergeometric series and is denoted by Fla, b, &} z).
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We now find out the solution of (7.24) corresponding to the exponent | — ¢, [f
¢ 15 nol zero or a nepalive integer, there 15 a second independent solution of the equation
(7.24) near z = 0. We find the solution by substituting w = z""u in the equation (7.24),
We get

=" +[(2—c)={(a+!-c)+(h+1-c) + Bzlw' —(a+1—cWb+1- chu=10

which is a hypergeometric equation of the type (7.24) with the constants a, b, ¢ replaced
respectively by @ + 1 — ¢, b+ | —¢and 2 — ¢. So the equation has the power
series solution w = M(a+1—e¢, b+1—¢, 2—¢2) and, therefore, the second indepen-
dent solution of (7.24) is

w(z)=2z' “Fla+1l-c, b+1—c, 1=¢c;2)

Hence, if ¢ is neither an integer nor zero, the solution of the hypergecometric equation
(7.24) 15 '

w(z) = AF(a,b,c;z)+ Bz' “Fla+1-c,b+1—¢,2—¢:2)

Let us now proceed to find out the solution of (7.24) valid in a neighbourhood
ol z=1 (we note that z = | is also a singularity of the equation (7.24) and that it
is a regular singularity). For this, we introduce a new independent variable f by

{ =1~ z. This makes z= | corresponding to / = 0 and the equation (7.24) is transformed
(L8]

ML= 0w" +]e = (a+ b+ (1= ))(—w') —abw =0
e, Hl—Ow +[(a+b+] —c)—(a+b+1)t]w —abw=0 (7.25)

whete the prime now denotes derivatives w.rt. 7. The equation (7.25) is a hypergcometric
equation of the type (7.24) with ¢ replaced by @+ &+ 1 - ¢. The general solution
ol (7.25) near ¢ = 0 is, therefore,

w=AF(a.ba+b+1=c;i)+ Brlmdri-a
Flatl=(a+b+1-¢), b4 l=(a+b+1-¢),2-(a+h+1 —eRit)
Hence the general solution of (7.24) near z = 1 is
.w{z} = Al(aba+b+1—-¢;l —2)

+B(1-2)"""Ple—b,c—a,c—a~b+1; 1—2)
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In this case. it is necessary to assume that ¢ — a — b is not an integer or zero,

Solution near the point at infinity : Putting z=1— in (7.24), the cqualion is
f
transformed to

2
t{l=i)- —+[{i—u—b) {E—L}fld—w+a7bﬂ-'=ﬂ (7.26)

[Tere t = 0 is a singular point and it is a regular singularity. The indicial equation of
(7.26) corresponding to (= 01is ct(er = D+ (1—a+b)a + ab=10, i.e., &t = q.bh which
are the exponents of (7.26) at the singularity f = 0.

We first find the solution corresponding (o the exponent ¢. Changing the independent
variable w by the substitution w = t“ - u, the equation (7.26) is transformed to

2
;qz_r}fi,}+[{1+a—m—{a+(1+a—c}+1}r1%—au+a—clu=ﬂ (7.27)

which is a hypergeometric equation of the type (7.24) and so one solution of (7.27)
near { = 0 is
u=Flal+a-c, 1 +a-b)
Thus one solution of (7.24) near the point at infinity is
w(z) =z "Fla,l+a-cl+a-b )
Similarly, the other solution of (7.24) corresponding to the exponent b is
w(z)=z"F(b,1+bh—c,l+b-u.y)
Hence, il @ # b and if @ and b do not differ by an integer, the general solution is
w(z) = Az Fla,l +a—el+a—b i—) + Bz Fbl+b—cl+b-a; }}
Some properties of hypergeometric function :

I. Symmetry property : We show that [F(a.b,ei2) = I'(h,a.¢;2)

Prool : We have F(a,b,c;z) = E'{T!(g;:* g{b)l’::g;z* = f(b,a,c:2)
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Il. Differentiation of hypergeometric function ;

E('ﬁ’}a. b)a o

We | F(a,b,
¢ have F(a,b,c; & ki),

: (@ (B2 _ o (@,),z" o (@) ,,(b),,,
=g 3_1 e e — Lt A PR, e BT
F(a I e } 1:] {k 1}1({.}* E {R 72 ”-'{'-"h =0 I{C-}:ﬂ zr’

where j = k -1,
Now (@), =ala+1)a+2)(a+ ) =al(a+1)Na+2)(a+1+ J—=0]
=ala+ l}_J

Similarly, '”1);.1 =Mb+ 1}, and (¢) .y =cle+ I}j

[ bola+l) (b+1), .
Hence — F(a.b.ciz) =22 Vi {.—}I{ iz-" = ﬁ;:{a +L b+l e+l 2
iz G = j!{c+1}j c
Similarly, 4 (a,byc;2) = L9+ oAb +1) Fla+2, b+2,¢+2; 2
dz” efc+1)

By repeating the process m times we get

d—,F[a B m{r;+l]-..{a+m—1)h(b "-"_1]“-{fl'+m— 1) ;
el=™" c{c+!)---(c+m—l}

Fla+m, b+m, ¢+n; z)

E.C._, ﬂr—_lr(ﬂ h, ,. {I} {b.}

B a+m, b+ + nt:
4 {L (e m, ¢ i)

In particular, for z = 0 we have since

Fla.b,e,0) = lim E{ )5 (0 = By

T ke,

i I+— +a{a+l}h{h+ljbz
=0 & 2le(e+1)
= |
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So, imFla+1, b+1, c+1; z)=1 and hence
==l

_ub

\‘i {F‘I{cr,:";l;c;'z”,l}J =

F={]
1. If @ is a negative integer, then the series stops after certain terms ;

For example, let « = — n. Then

I ) ) I S O ()
ST a):u k(e), ;.Zn k'(e),

since (n + 1)th term is zero.

Similarly, when b is a negative integer then also the series stops after a finite number
of terms.

But the scries which stops at a certain lerm for ¢ or b, a negative inleger, may
be made (o start again after certain terms when ¢ 15 also a negative inleger of specihied
value. For example, il @ = n and ¢ = —(n + m), then

; A G M I
F-nb—n—mz)= ) — z
i U IrE.IUk!(-“H"—.FH}i

—ee -_ o B N k 1l
Bul (—m), =(=n)=n+1)(=n+k=1)=(=1) =y
e g
and (—n—m), = (-1) LT
ey __nt (atm=k)!

He =
g (=n—m), (n+m)! (n—k)!

- {rn+m)!

[(n+m—l)n+m—k—1)(n—k+1)]

_{ntm- k.)[r.:-f-m—k —1}(n—k+1)
i (n+m}n+m—1)(n+1)

(st
n+m M4 n—1 1+

PG (MT) 03 (g A& B)—10




Thus F(—n.b—n—nnz)= i[] - % ][1— k ],,.[1__’1‘_)%3*

ko0 1t m m+m—1

Lhe terms in the summation are non-zero for k = 0, 1, ., m for k=5 + 1,
2, .., 0+ m, all lermy are zero. Bul the terms corresponding to n + m + |
and following are nol zero. So for a or b = —n and ¢ = —n - m, the scries stops

at pth term and starts again al (n + m + 1)-th term.

Integral formula for the hypergeometric function : We know that

ok = @) (h)y
Hauiesn) &E# k\(e), -

by, BB+ (b+k-1) 12bb+1D)(b+k-1) ()

[N ow =

(), cle+l(e+k=1) 12ele+)(c+k-1) T(h)

[(b+k) T ()  Te-bHrp+k)
“Tlc+k) T®) L[HIe—b) etk

I'(c)

T T (c—b)

Blc=b, b+ k) [ Beta function B(m.n) = &?}M)
I'(m+n)

L’{h- _[“{ Ij"“" "'t (by the definition of beta function)

Hence jl {ﬁ" h t"71:| = H{h :- h) {EF;J: -’-j’ {1 —fJ—j 'fﬁ.M_I,dg'
= K=

Interchanging the order of summation and integralion, we get

Flab,e;z) = TR : hl'l“ =yttt {Emj;f” ]

: 2
_ ,[ (=0t g alr) _l_”[_ﬂ"‘l}f” b ceelialt
mfc ¥ T

. - . d |;|IJ— b=l o i
e, J’f{a‘h.t',z}~ b}L'( 4 (1 —zt) "l
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which is called the integral formula for the hypergeometric function.

In particular, we have for z = 1
l | o—=h—]  h— el
Fla,b,c;1) = ml,:l:] —1) 1l I{l -{) il'rl"
= ; J‘I (1— r}c'-u.—&--llrb iu?
Bib,e—b)"
_ B(h,c—qg-b)
Bb.e—0)

Replacing beta functions by gamma functions we get

_I{g'e—a-b)
I'(e—a)[(e—h)

Fla.be:l)

This is known as Gauss® formula,

7.10 Legandre equation : The differential equation

d

W el
7]
iz

—2z—+nn+Hw=10
zdz nin+Dw (7.28)

(1-2%)

where n 15 a constant, 1s known as Legendre equation, Comparing (7.28) with (7.1)
e +1
ZE and g(z) = ”10?—1)

_z ey

we sce that p(z) = l both of which are regular at the origin.

So z = 0 is an ordinary point of the differential equation (7.28). Ilence there exists
a unique solution w(z) which is regular in a certain neighbourhood of z = 0 and which

satisfics the conditions w(0) = ay and w'(0) = a, where a, and g, are arbitrary constants,

Let w(z)= i”ﬁ* and substitute this in (7.28) to get
k0

(1-2%) i k(k—Da,z* 2 — Ezi ka2 +n(n+1) inkz" =0
= k=1 k=0
Equating the coefficient of z* to zero we get _
(k +2)(k+ Day,, = k(k—Day ;_-y-'i'&nk +na(n+ Da, =0
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2 (n=k)n+k+1)
(k+ 1)k +2)

L.y, = @y (= 0,1,2,:-)

Pulting £ = 0, 1, 2, ... we obtain

_n{n+ 1)

o= > ys

_ (=D +2)

' 3!

ja

(n=2)n+3) .

mln—=2)n+ 1)(n+3)
3”4 3 — i e ————

41 &

2y =

_ (=3)n+4) (== +2)(n+4)
3 4.5 28 51 Sl

5

Thus. the solution of the equation (7.28) is

w(z) = a{l _ 1) 2% nin=2)n+ Din+3) 1 J
2! 41

5 [ (- 12:? B W AR

Le., W(z) = agy(z) +apw (z) (say)

(7.29)

It follows that wy(z) and wy(z) are two particular solutions of the I.egendre differential

equation valid in a certain neighbourhood of z =0 and so (7.29) is the general solution
of (7.28).

Tt may be noted that if n is a positive integer, then either wy(z) or w(z) reduces

to a polynomial.

Solution near the point at infinity : Lef » be a positive integer and =z = = I'hen

the Lepgendre eguation (7.28) is transformed to

T ’
1t = 1}%+Er* j: +nin+hw=0
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i
—

(% 1)

[}

Comparing this wilh %—%p{r} d;—r+;}(r}w:ﬂ we have p(l) =
i cif

; : o _nn+l) i .
e Ip(t)y==20°(1—1")" and q(f) = R qy bes () = —n(n+ D1 =My

Since (p(f) and t%g (1) ate analytic al-r = 0 it follows that ( =0, is a regular singularity
of (7.30) and so the point at infinity is a regular singularity of the equation (7.28). The
indiciﬁl equation of (7.30) at 1 = 0 ds a(t—D—n(n+1)=0 so thal o= —n. n+ 1.
which are the exponents of (7.30) at the singularity. We now find the solution

corresponding to the exponent @ wherc ais either —n ot n + 1. Then (7.30) has

a solution of the form w(t) =" Y a,t* = ¥ a, 1™, a, # 0. Substituting this in (7.30)
k=0 k=0

we get

(¢ =YX (0 4 k)0 + k= Diat™ 2 4205 (o + k) 12!
k=0 k-0

+a(n+ 1) Y a0 =0
k=0

ok

Equating the coefficient of *™* to zero we have

(+k =20 +k =3, , —(a+k)o+4&— Deay +2{(a + & —2)a, ,
+n(n+ lja, =0
or, f(o0+ k)0 + k—1)—n(n+}a, = {(et + & — 2)(c + k = 3)
+2( e + k—=2)a, ;
Lc o+ ke + k=D —nln+Dia, =(@+k—2)o+ k- P, (7.31)
Putting @ = »n in (7.31) we pet
(Cntk)=ntk-D—nn+ Vg, =(—n+k-2-n+k—Da,, - (7.32)

(n—f+2)(n—k +1) ' al
: i 33
or, @, A a, - (7.33)
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Since @_, = 0, we have g, = 0=ga, =+ =@,, . For the L.H.S. of (7.32) is zero
and (7.32) reduccs to an identity. We may then take for a3, an arbitrary constant
B (say).

Again, taking & = 2, 4, ... in succession

(- 2)n=3) . nip=1){n=21r=3)

i ___.n(wi (- 2 i
2 4.(2n-3) °  24.@2n-1)2n-3

i 2(2n-=1)

Ay, @y =

We observe that all a;’s with even suffix for k = x4+ 1 are zero, since a; g for
=pnt 1land & =n1 2 So the solution takes the form

W) = 1 "[(ag +ast’ +agt’ +) + (azM,IE"'I S O ks |

So. a solution of (7.28) in a neighbourhood of the point at infinity corresponding Lo

the exponent —» 15

w(z} = ZJJHH{I MZ_I = E{ﬁ_l}(wz“‘ S }

S 2@n-1) 24.(2n—1)(2n—13)
+:_“_I[”3u| | o+ asz - 3_1 + a?.u+5 HE : = s ] i (?'34.}
P e S et LY ]
e _&T ') = wg where 2 SR
% {20+ 3%-2) 22n+13)
G {n—211—5+2}{:?—2n—5+1}a . (u+1}{n+2}{n+3}{1?+4}3
WSS e Ye=—S I ZatD) 24.2n+3)(2n + 3) :

So. one required solution becomes (on putting ap = A)

wiz) = Az"

(A=) o nn=D=2)n=3) . _ }
22m—1) 24.2n-1(2n=-3)

] Jl | (i 4+ 1)n+2) S (s =+ D)+ 2)(n + 3 +4) A, } o
S [T PR T 24.(2n+3)(2n +5) :35)

= Aw(z) + 8wy (2), (say).
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Again, for = n + 1, we get another solution of (7.28) where g, are given from
(7.31) as

Since g, = 0, 1t lollows that a; - for all odd suffix & Pulting k= 2, 4. ... we

have
= (n+1Dn+2)
2 dn+3) -
_(n+3)(n+4) = (n+D{n+2)n+ 3+ 4 .
= S =

42n+5 ° 24.2n +3) 24 +5) s

S, the solulion becomes

() =" ey +aat® Fagtt o)
and so another solution of (7.28) near the point at infinity corresponding (o the exponent
n+lis

s (n+ 1]_||£r_?_t2)_ Ry aln+ D+ 3)n+ 4) Loy

2A2n+3) 24.020 + V21 +5).

w(z) = an,z'”"[l

= cwalz) where ¢ = ay

Thus there are two linearly independent solutions of (7.28), viz. w = 4w, and

W = cws.

Legendre’s polynomial : Legendre’s polynomial P, (z) may be defined by the

generating relation

(=221 +£2)7 = 3 B ()" (7.36)

n=(1

In fact, we have

(1—2zt %) P {].‘.;(2:_”} 1
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i (1
E;{gz_,) 2[2 +1}'2('23-sz

=142 42N L
1! 21
%(%+1).,,[%+n—_k—l]f”“*{?z—r’)”_k
o : i A
(n—k)!

-k —k
(2z— " F = (22)"" 4 [n : ](lz}“‘*"{--l): +[” ; ](zz}"‘*-z(—n: 4

n—k .
+[ ; ](Zz)"‘*'* (=D" ¢* + finite number of terms,

Thus the cocfficient of (" in the expansion (7.37) 1s

mﬁl (=D (m = I (22y" 7 P @n=2k—1)

S kn—2k)! 2" (= k)

e nfet L @n-26)
& ki —2k)! 24 (2n—2k)

a1y (2n - 2k)!
" 5T =20 )]

2" = P(2), (say)

where [17/2] = w/2 il n is even

= (n— 1)2 il' n 15 odd

Rodrigues formula @ We show that P (z) = - LI (22 =1)" (7:38) |
_2“ 1! d_-,;” |

which 1s called Rodrigues formula.

Proof : We have

R s N e it
Z.—. _1 L] =3 o [ ]zzﬂ 2_’; {_1}*
2t onl dz” ( ) 2" nldz” 1; k
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| d"

() _2u-2k h
= == z =1
2" - nl dz" ;’Ea [k] )

| [} ”![(—[]-'ll di _.‘.'ln—ZR)
2 ) o kW n—k) dz"

[mi2] {_-l}k
= 7 I s _zkfz _Zk—l 2 —Zk_ +'l MLl
ST P Byl D ) n+1)}-z

(D @n-28))
502" kM= k)Nn—2k)!

=iz

[We require the following result of complex variables to get the next property ol

£, (2)

Cauchy’s integral formula : If f(1) is an analytic function of a complex variable
¢ regular in a region bounded by a closed contour ¢ and continuous within and on ¢.
it possesses derivatives ol all orders which are regular within ¢, the nth derivative being.
given by

(2 )~—J

)
—z)
7z being a point within ¢, |

Schlifli’s integral formula : To show that

]

2y
Py= S

EHU ]rrll £ (?3‘}]

where ¢ is a closed contour surrounding the point f = z.

Proof : In Cauchy’s integral formula, we put f(f)=( 1*—1)", Then

d" il et =1
— = Y=
dz 2mi . (t — 2)
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and by using Rodrigue’s formula (7.38) we get

u-—n 1 (* =5
=—— f=— ———df
{ } zpr”' 2?1? .[ z}nll ZJT.I' { 2."“ "‘-E]"H
Laplace’s integral formula : To show that
I T 9 _rl L
B(z)=—; {z +(z2 = 1) cnstp} dp (7.40)

Proof : In Schlifli’s integral formula (7.39) we take the contour ¢ o be g

circle as c:|,*-—-z[=,|i|['r 32—1|. We prove the theorem when |z|21. On o
t=z+(z" —1)"?e®, —w <9 < 7. Then

a4

£ —1=2% 4 (22 = 1)e¥ 4 222 — 1) e — |
=2(z% = l)e ‘*’L 3 ; L‘¢]+23{z ~1)ie"
= (2% — 1) e*¢[(zz ~ )T cosp+ z]
Again, di = i(z* - 1)} " dg.

|
So, P(z)=—-
s, 142 27i I‘“

2M(z? = 1) ’"*"[( -1)? cn3¢+z:| i(z* 1]%3""::1’-;!;

2"{32 = l)iiHI:l.l’?EJ[iHI}ﬁ

s B@)= L1 e+ (1)} cose] dg
Recurrence relations
L (n+ 1P, (2) = 2n+1)zP,(2)+ P, (z) =0
Proof : We have

(=221 +£2)7F = 3 P ()1" (7.36)

]
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Dillerentiating both sides w.rl. 1, we gel

| 2
~§{1—Ezf+r2) ’(—22+2r)=r§!}‘;,(z}~m (7.41)

o, —(1-2zt+ ﬂ"i (t—z)=(1-2z + rz)i P.(2) "

n=l
o —(-2)3 PN =022+ )T Pz) n"
#=l =1
Fquating coefficient of " from both sides, we get
s ] 4 }+"F{ )= (n+ )P, () = 2zmP,(z} + (n — 1} F,,(2)
Le, (n+ DL, (2)—(2n + 1), P.(2) + nfl, (2) =
IL zP)(2) — P, ((2) = nP,(2)

Proof : Differcntiating both sides of (7.36) w.rt. z, we gel

——{ =20)(1 =2zt +1°) = Z ‘(2"

=i}

ot Hz—0( =2zt +67) 7 =(z—r}): Pl(z)t"

n=l

o,  (SnR(" = (z-03 B2x"  (by using (741))
= n=i
Equating coefficient of 1 we have
nP,(z) = zP)(z) - I ((2)
ie., nP(z)— 1 (2) = nly(2)
rr+| (z)— P, (z)=(2n+ I)Pnr{z}
Troot : Diﬂeruntiating both sides n-i“ the recurrence relation | wirt. z, we gel
(4 VP (2) = 2n+ DIzPiz) + B2)]+nE (z) =0
155




or, (n+ DB (2) = 2n+ DB (2)+ (n 4 1)P,(2)] + nf,_\(2)
(using the recurrence relation 1)
or, (n+1DAP, (z)—(n DA (2)=(2n+1)(n+ B (z)=0
o, PLi(2) = Bi(2) = @n + )P, (2)
IV. Py(2)—2P(2)=(n+DP,(z)
Proof : Subtracting the recurrence relation 1T from th.at ol TIL we get the resull,
V. (1-2")P/(z) = nP,_(z) — nzP (z)
Proof : Replacing n by n — | in the recurrence relation IV, we have
B B Yo [ ni (2)
or, P(z) —zlal (z)— }'JJLI{Z}] =nk_(2)
(by .rf:curr::ncc relation 1) -
or, (1=2%)B/(z) = nl,_,(z) — nzP (z)

P,(z) satisfics Legendre equation : Di fferentiating (he recurrence relation V Wt
Z, Wwe get '

(1=2")Bll2) = 22P)(z) = nP;! | (2) - nP,(2) = nzP!(2)
= nlzE{z) —nl(2)] - nEy(2) - nzPl(2)
(by using recurtence relation 11)
e, (1- 2 Blz) = 22P(2) + n(n + 1) P.(2) = 0 - (742
which shows that P,(z) satisfies Legendre equation {'?.23}.

Orthogonal properties : We shall show that

| 0 form +# n
f—' AulEI (e = < form=n
21

where m and n are positive intepers,
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Proof : We know that the Legendre polynomial satisfies the cquation (7.42), ie.,

the equation

—{(1 —:-IJP:,'(:}} Fnin+ )2 (z)=0

oz i

: r'
Similarly, éﬂ{ ~ )P, {z}}+m{m )P @) =0

Multiplying the first equation by £,,(z) and the second by F',,{z} and then subtracting.

we pet
Fi\z }d {(1— Pz } ,,{”]—{{1—" yE }}= tm(m+1) -

—a{n + D} P (=) P (z)

or, (m—m(m+n 1) PN,{:}P:,{.:;} = ;—i[{] — WP, ()P (2) = B.(2) £ (2 }t]

Hence (m—n) {m+n+1;j[ P ()P (2)dz = [(1 - 2 )P, (2) Pl(=)
~P () E(2)}1L =0
so that if m # n. then
j1ﬁ,,,( )P, (z)dz =10

Again, using Rodrigues formula, we have

[ R@dE =], ,,(4—{ :_1y'ds

1 .-11 _; ¥
:—-T l:{ (:'_HI‘-Izr _]}} j]‘f:r dTl{z _1) dz

{"'I} l:lr1
= P
r.-.j' gs }d_" ’

<l bl

(22— 1)"dz




WG (.
K G VA ) (001
_2"-:1['[" dz"{?.”n!n!}{z e

=Y

[“ P2 leiz] (—1}*(2n-2k}!z"‘”_
i=0 2" (n = k) (n—2k) L k!

the term l:loniﬁinfng z" is -(EM}
. 2"n!n!
= (=1)". 25}’{‘”‘}3 [Lnl=1" = 22y g
. 23.(.2”} [y =2%)" ds
= ﬁ%‘% i " cos? 6 do [Putting z = sin 4]

2l e 2 _(”_”2_
2“”(nl} (2n+1)!

Note : We have seen in equation (7.35) that the solution of Legendre equation

in descending power of z is

T R —iz 2 1= 1)(n=2)(n- 313_,, N
% 22n-1)" " 24-(2n-D2n=3)
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L '{1 _|; (+nt+2) o (2F 1)(n + 2)(n+3)(n +4) i, }

2(2n+3) 24.(2n+3)2n +5)
Whiting
p2) = ﬁ’f-’-!—zz"{l =) o A =2)0 = 0) +} and
2" (") 2(2n—1) 24.(2n-1)(2n—23)

gm- {1 LA DEtD) o (D N+ D) +}
(Zm)! 2(Zn+3) 24.(2n + 3)(2n +5)

we note that P,(z) and (,(2) are two particular solutions of the Legendre equation.

The funetions P,(z) and Q,(z) are called Legendre functions of the first and second
kind respectively.

EXAMPLES
1. Prove that H;(z) =4n(n - 1}H, .(z)

Soln. From recurrence fotmula H'(2) = 2nfl,_,(z) we get by differentiation w.ri.
2, HAz)=2nl_(z)=2n[2(n— D1l _,(2)] (by replacing n by n-1 in the
recurrence formula). Hence H(z) = 4nin— 1)1, _,(z).

2, Evaluale
[z H,(2)H,,(2)dz

Soln. Noting the recurrence formula 2zH,(z) = 2nH, (2) + H,,,(2), we have

.1_,; P H(z)H (z)dz = j: s {nf-i:,_t{z:} 4 ;— Hi {z}}ﬂ’m (z)dz

< nfe (D H, () + [ e H (D ()

I

= T2 1= )18, + 5 VT2 14 D18,

= J'.J_I-EH_IP?! {5”_.“,, ek 2{” e 1)3;p+|,.lrr}
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Prove that (i) H,,(0) = (=1)

w (2n}!
<o I . '.}.n+'|{{']l} v D
N

o gl

i f ET P o
Soln. Since Y H,r( )=e "%, we have by putting z = 0

W= IP”

e i - Tl .51 | 2an
EF {.(0)=¢ r_=T—.n*3-1-(|f_:I _u+....| {_I}HU_} 4

si=i} “ :J..-l 3!. ”!

(i) Equating the coefficients of /2" from both sides. we get

I " I : (.2'”}
H = e £, A = i
(2m)! () = (=) nl’ & Hy (O =(=1" nl:

and (i) equating the coefficients of "' from both sides, we get

ol
II 1+ 1)!

Prove that if m < n

1”+|{{.}} i.E.. HZJJI]{D} =ﬂ

!fﬂl 2.’”,?!
= A
f - ”( }} { 4 —,,I)[ H—Hr{ }
Soln, We have i J H(2)=e""
=472 5
2 g r,l”" a7t
%m' L i#,(2)} = elz™ & )

_{zr]m —7 421

B H

= fEF)”Z—f

non i

1
— Emz I ff'HJ'f Jr {,,)

n=011.

]

_ 2”"
rom (r=m)!

Equating the coeflicient ol " from the two sides, we have
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1 a"‘" Hrj(z}} - zm i 1 Hn_m {z)

nl dz" S (n—m)!

) d" 2"n!
ie, —={H,(2)}= o _m][Hn_m{Z}

Prove that P,(z) = J— I et H (zt)dt

(4121 K
Soln. We have [, (z)= 3 — D™ (-2
5 k\(n—2k)!

so that

J! —F
\.G::nr'[ H (zt)dt
m l[an’ZJ [_I)ﬁ ) —
——— 22" it
J_mj 2 Tl 201

_lflzn_n”( l}k i!—zk-j E_; < lkdf
k=0 'Jr_k]{ﬁ' 2k)!

: _Lm’ZI e 2*”r 1}*_*1 s _,:rgf,,..;.%;_nﬂ,r
Pyl Jnﬁ{n k)l

lmi2] 9 # 2kl e gk -2k
= Lokl -1r(n—k+l),j;
i Jrkln—26)1 2 2

[ 2" g =T 'f”)]

[1f2] 2!}—2* {_1}# Eﬁ—zﬁ: {zn = E.I!f:l !
5 k= 20)127 7 (= k)

[ r[n+%] __Cn)! ﬁ]

2% nl

[#2] —15% -
- D'@n-2k)! - P()
koo 2"k n—=2k)(n—k)!
lal

PG(MT)03 (g A&B)-11



Hence P(z) = ij;f"e' " H, (zf) dt

J:Eﬂ!

6. Prove that L,(0) =1

Soln. We have i;“}_’,ﬂ{z)z I | o 1)

" on=0

Pulting z = 0 we have ir“L,,{:J) = ]—l (1=1)7
. =f

n=ll

=l+t4+£7 4= 3"

Equating the coefficient ol 1" we get L,(0) = 1

7. Prove that

.[u e Lzl = L [] - l]
N

&

Soln. Since ("L, (z) = —— g 10
n={l =i

5 A
Zr“.[i; .‘_?_L-L" z) ﬂrz. = _]'_J':""e -t ] ﬂTz
=0 1_, [¥]
sl ™
=L I i l_lf Ei——F
1=t s+t(1-s)

il
=—'=1[1_r[1_l)]
s+H{l—u) & 5

-5
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9.

Equating the cocfficient of (" from both sides, we get

L, e L (z)dz = g [l - l]
5

5
Show that J,(-z) = (=1)"J,(z) when » is an integer

. o = L HEZK
Soln. We have J, (z) =, (=1)"(=/2)
i Mn+ 8+ DI(E+1)

Case | : Let n be a posilive inleger. Replacing z by —z, we get

i (_]}k {_zfzjmzk =i - {—ljk{z}"lij”lzk
J = - i = —1 - -
2) ;Z:JF{HHHI}FU(H} i E‘dr{nﬂrﬂjr{kﬁ}

=(=D"J,(2)
o (=2)=(=D)"J(2)
Case 11. Let n be a negative integer, say n = —m vﬂmre m s 4 posilive integer.
Then J (z) = J_,(2) = (=1)"J, ()
Replacing z by — 2z, we gel

L (~2) = ()" T, (=2) = (DU (2) = T, (2) = T (2)

= (1)',(2)
J,(=2) =(-1)"J,(2)

Note : It may be noted that J,(z) is an even function of z if n is even
(0 J(~z)=J,(z)) and J,(z) is an odd function of z if n is odd
(o J (=2} ==, (z))-
Show that

_ 2 5 12

(i) J (z) =,/—cosz and (i) J1{z}=\] sin z

] e 7 iz y

Soln. We know that '
% {_l}k (zll,l 2}!r+2k

S = A kDI D
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(i) Put n=- ; and pet
. &) = G 2 2
J @)= T—— : =2 S
2 k=093 r(,rﬁ 2)F{k+ S r(k+ ]r(k+ Lyt

In Legendre’s duplication formula for Gamma function

JrI@x) =22 r{.\:)f'(x + %]

we put x = R‘+% and get

Jr @k +1) = 2% F(k + ]F‘(k +1)

o (<)t \/i 2 =) 1)*
= l t J LZ)=
50 tha ‘E{ )= Eﬂ\l‘l'_r(zk +1) ;Zu nz {2:‘[5}[

2 22 ! JE
=, —|l-—4——=:i|=_|—Cpsz
4! nz

Nm| 2
(i1) To prove (ii), put # = 5 m Bassel function and x =&+ 1 in Legendre duplication
formula and then proceed as above |

10. Prove that
{” l- z’jju+2 T (” + 4}Jnl4 el ]

2
Jn == —FHJ" i
z
and hence deduce that
(n+ 3)"};&] + (o )
Joal=2nd . we have

n

lZJ" = {” T ]}J"” =

Soln. From the recurrence formula z[J
(1)

Ju+1 + ‘fn—l = H“'Irn
Z
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11.

Replacing # by n + 2 and changing sign, we have

2
=l =des == 2L
3= S Z( )i (2)
Apain replacing n by # + 4 in (1), we get
2
Jﬂr+.‘5 + "'ru+’l = ;(” + 4]Jn+-l {3)
Replacing » by n + 6 in (1) and changing sign, we gel
2 ;
_JH-;-T == J-.lr+$ s : (H 1 E}JrHﬁ {4_}
Adding (1). (2), (3), (4)) cerenrne , we have

il

2
J, b Tl HJ" i {!‘I + E}JJHZ + {:H i 4}Ju+4 i (” + G)J:nﬁ s I:

Replacing n by n + 1, we have

%z.}'“ =m+DJ . —m+IDJS ;+H(n+5]

¥

EJ%{Z} = %sinz—cnsz

z" z* z
J(2) == = = o
2'T'(n+1) 22n+2) 24.(2n+2)(2n+4)

S (” i ?}'J-.IJ+T s

Show that

Soln. We have

we have

3

) 3
Putting =—
599

/2 2 4 f
4 = 4 &
Sy o E Ases
2 Pl B G ey 25 2457 245679
2z 2’ z z*
S 31| 25" 2457 24567

4 (s} £
: ﬁi,(z]:l LS SRR AT L
2 3 3 2.5 2457 245679
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0 (SO O DO Y S T L A = S
*(EE_E‘I)Z _[E 5!]2+[5! ?!]z [3! o1)° "

|' S
Hence EJ;{Z) = —5inz — eosz
7 z

12. Show that
(1+2)" = F(-n.,1;2)

Soln, We have (1+2)" =1+nz+ Hp=1) ¢ s =B =2 i, 0

21 3!

o (—=n):(2) i (=m)(—n+ 112 (=2 4

1! 212

—n+ 1=+ 2123
(_H:I[ -’___3_1_3{23 ) - (—Z}] e
o (=m) (1) ¥
=%t = F(—nllz)
13. Prove that log(l + z) = zF(1,1,2;-z)
2 4
Soln. We have log(l+z) == -%+§—%+---

| 1 1
=gll——z+—2t ==z  +in]

1223 2 Y 2nes)

La6

2{1_._%(_3”%- 2 m{_ﬂu,}



14.

zz(”"m*( )" =zF(1,1,2;—z2)

eo K1(2),
Show that
laﬂ_'z=zF(2'-,l,%;—zz)
Soln, We have
tan”' z 23+35 z?+
i § BT B ey g P =t
3 7
2 2 £
=g l- 4 =y
i SR Y
I 1 ;—(%+1],],_(I+H
=21+_(Z}+—3 o (=z*)" +
fis== 1-2-—[—+1]
4 202
11 ]
—[— + l](— -+ 2}1. (1+1)(1+2)
200 2 (_22]3_‘_“.
1.3.3.§(E+1][:‘.+z]
AN 2
1
nb)mk 1
= Z- : I:—Z?)k=ZF[-—,|, ’___22)
k=0 kr(iJ 2
5 *
15, Show that

B(2)=1, B(2) =z, By(2) =

Soln. We know that

50D, (2) = (1- 221 + )

={l—1(2z~— I}}_;
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102 1), B@) = 5 (5~ 3),

B(z) = %(35:“ —30z* +3)




16.

17.

f 1:3 5 135
=14—Cz=t)+——1*(2z-1)* + == (22— 1)?
g e RN R Gt

1357
P
2468 Q=1

or, F(2)+tB(z)+ 1 B(2) + P P(z) +1* B(2) +-+-

1 1 - -
=1+z+ 5(332 - 1) +5(523 - 3z)¢" +%(353‘ —302% +3) + «.

Equating the coelTicients of like powers of ¢, we have

R =L AE) =z BE) =562 -1, AE) = (2 - 39),

B = ; (352 =30z +3)

‘Express P(z) =2z"+22"+22" —z— 3 in terms of Legendre polynomials.

Soln, From Ex. 15, we have

352" =8P, (2)+30z" —3und 327 = 2B (z) + 1 ie., 2 = i £ (z) +%

8 I3 3.8 4
Hence 3d=£ﬂ(3)+£{5}3ﬂ3}+3} .{5 35 4(3)"‘ P(z}—

Also 527 = 2P(z)+ 3z = 2P(2) 4+ 7 P(2) so that z° = % F(z) +§ f(z)
8 1 4 4 6 4
Hence P(z)= Ao Py(z)+ % i = E(z) + - A(z)+ gﬂfz) + 3 £ (z)

+i:—ﬂ(z)-3

)+ 2 Mﬂ+uHJ+Pm—%

i”’[z}—i 4(z]+ P(z)+ 2{z)+ B(z) — -Pu(z)

Show that (i) A(Iy=1, (i) H,{—z]:{—])”ﬁ,{z}. Hence deduce that .
£ (=) =(=1)" '
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Soln. (i) We have i:‘" P,(z) = (1—2zf 'Hz)_;

n=0
Putting z = 1, we get
. h P B -
YA'P () =(1-2t+1") 2 =(1-1) "=l t+ += 31"
=0 ' =0

Equating the coefficient of 1", we get P, (1) = 1.

(ii) Since (1-2zt +1%) i Zr P.(z), we have

n=0

422 +£)% = i(-f}"ﬂ.(z} =Y (-1)B,(2)t"

n={

Also (1+2zi + rz}'% = ir"ﬂ,{—z}
=0

Hence 31"P,(-2)= 3,(-1)P,(2)!"

ri=ll =i

Equating the coefficients of " from both sides, we get

P,(=2) = (~1)" B(2)
Deduction. Putting z = 1 in the above relation and noting that £,(1) = 1, we have
Py-1) = (1) |
18. Prove that

(Din!
2 DY

(i) P,(0) = 0, for n odd and (i) F,(0)= for n even.

Soln. (1) We know that

13.5:-+(2n = 1).[291' ( ]} Jr—!

W)= 7! 22n-1 %

_LH(H — 1}[?1 = 2){” = 3) zr:—4 e
 24(2n-1)(2n-3)

when # is odd, the last term contains z. Hence P,(0) = 0
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p.

ce

(ii) Again, we have 3" (z)= (1 -2zt +2) * so that
k=0 .

éwﬁ.{ﬂ) =(1+17)72 = (|- (1))

135
....T I‘ 1 23
+t J+ {r} ?45“}
135--2r=1) . .,

+_—_ Al

IRE DR TEE

Here all powers of { on the R.ILS. are even. Equating the coefficient. of /2" o
both sides, we have

135 (2m—1)
24.6:-2m

(2m)! _
2% . (ml)?

P:Zm_(ﬂ} - { Jm _l: )Hr

(=1)"n!
Le., when n = 2m, ie. evern, F[ﬂ}——- ;

2%{(n/ 2)1)?
EXERCISES
For what value of n, H,(0) = 07 [Ans. odd integer]
Prove that

II”{Z} 2H+I J’ e HI-IP (ZJ‘”J {ff
[Hints : Proceed as in Ex. 5] -
Show that for n = 0, 1, 2, ...

y . 2"+|{_'l)”. e oy
(1) H,,(2)=" < Jy e " cos2atd

2H42 rr
() H,. (5= 4 (

I
r e " ™ gin2ztdr

Show that
H(z) = 2zH(z)
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10.

11.

12.

13.

Prove that
H.(z) = 322° - 160z" 4120z

[Hints : Use Rodrigues formula for Hermite polynomials.]
Prove that

[Ce L(0)dt = e[ L,(2) = L, (2)]

Find the values ol
(i) |5 e Ly(2) Li(=)dz
(ii) [Te " Li(z)dz. [Ans. (i) 0, (ii) 1]

Expand L(z) =z’ +2° —3z+2 in a series of Laguerre polynomials.

[Ans. L(z) = ~6L,(z) + 20L,(2) = 19L(2) + 7 Ii(2)]
Show that '

L) = %n{n -1)

Show that
- 2 Jz' 3 2 3
Jﬂ(z):(_] {‘ zz Hiﬂz—_CDSZ]
1 = E z
Show that
.II;|I z”""rrl—] {l‘:)dz = .ZNJ"{Z:I
Show that
Jy 2" (2)de = 270, (2)
Show that

@ L, (H=0" %_[: " cos 2n cos(z sin @)d

(ii) J,, ((2) = (=D % [ cos(2n +1)¢ sin(z sin ¢)dp
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14.

15,

16.

17,
18.

19.

20.

21.

22.

Prove that

Fhs

& Ll

Prove that

: b
[} 2, (az)dz = ~J,(ab)

Prove that (i) 4[J,, (2)dz = [ J,_ (2)dz - 2J,(z)

f”} 4 [JH{-'T}] -2(3} o= 2-—_!;,(3} + ":a w2(2)
Show that

(1-2)" = F(a, B, B:2)
Show that

2" = F(—=nLLl =72)

Express 2 as a series in Legendre polynomials,
[Ans. 28 p 4 ——P “palp

529 33 3
Show that

=1
fiot@h, = T [ P ()P, (e

2
2n+lj (ha(2)} dz

Show that

I_'J'(z)ﬂiz)dz: 0 if n is even and fis odd,

Use Redrigues formula P (z) = (z —1)" to show that

2"nl dz"

@B =T, e -1y
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in which f’is a continuous function in (-1, 1) and /"(z) denotes the nth derivative
of f. Hence show that

_[_Ilz”'ﬁl(z)dz =0 form <= n
2:'"“(_”1.}2
T
23. Prove thal
|
J: (@) = (B (@)~ B (2)]

7.11 Summary : Various types of special functions are introduced as solutions of
some second-order linear differential equations of the form

w” + plz)w’ + g(z2)w =0

in the complex z-plane, in the neighbourhood of ordinary points or regular singular points.
In particular the orthogonal properties of the polynomials like those of Hermite, Laguerre
and Tegendre are obtained. The recurrence relations of these polynomials and the functions
such as the Hypergeometric function and Bessel function are deduced. These special

functions satisfy the typical second-order equations.
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UNIT 1 O FUNDAMENTAL CONCEPTS

§ 1.1 Introduction

The basic concepts from solid geometry and some properties of ordinary differential
ecquations (ODE) play important roles in the theory of partial differential equations (PDE),

We, therefore, first discuss those before the sutdy of partial differential equations,
§ 1.2 Surfaces and Curves in Three Dimensions

Let P(x, y, z) be a point in three-dimentional space and the coordinates are connected

by a relation of the form

F(x, ¥, 2) = 0 (1.1)

Then the equation (1.1) represents the eugation of a swrface on which the point P
lies. lo demonstrate this, consider the increments (&x,8p,82) in (%, y. z) related by the
cquation

OB B
5 ax + = e i fz =1

in which any two can be chosen arbitrarily. Thus, in every neighbourhood of the point
P(x,y,z), there exist points P(x+Ey+n,2+1) satisfying the relation (1,1) for which we can
choose any two of the variable &, t orbitrarily and the third is given hy

AL LA ) I
II;E].T-'-T]E[].! i e

The projection of the initial direction pp on the xy plane can be chosen arbitrurly.

"Hence the equation (1.1) represents a relation satisfied by points lying on the surface,

Consider now a set of relations of the form

x = filuv)y=Gluv)z= Aly) (1.2}

so that to each pair of values w, v there corresponds a set of numbers and hence

a point in space. Iowever, every point in space does not correspond to a pair of values

of u and v. Solving the first two equations in (1.2), # and v can be expressed as a function
¥ and y of the form

= FKxy).v=Flxy)
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which when substituted into the third equation of (1.2). determines z as a function
of ¥ and v in the form

z= f(x,y)
Hence there exists a functional relation (1.1) between the coordinates x. ¥, z and
the relation shows that the point (x, y, z) lics on a surface. The equation (1.2) exresses

the fact that point (x, y, z) determined from them always lies on a fiexed surface.

Equations of the type (1.2) are called parametric eugations of the surface, However,
parametric euqaions of surface are not uniug. For example, the following two sets of

parametric equations.

X =asinucosy, y=asiny sinv, z=gcosu

and

- f W i
X=- a‘%smn.;mjf—*gcnsn, g1zt

14w I+¥ 14
represent the same spherical surface 2437 422 =g

A surface may be thought of being generated by a curve. If a point has coordinates
(x, v, z) satisfying the equation (1.1) and lying on a plane z = &, then the coordinaics
salisfy equations.

== Flx, ), k) =0

Thus the poidt (x, y, z) lies on a curve (x,),z)r, say in the plane -— . As for
example, if we consider a sphere S: x? + 3% 4 22 = 4, then the equations ; = £, +2 + 3% = g% — 42
shows that 1 is a circle of radus (uz—k])% , real il k=g, Since ¢ varies from —g
10 4, each point of the sphere is covered by one such circle. We may. therefore, think
the surface of the sphere of being peneraled by such circles. In general, ‘we can say

that the surface (l1.1) is generated by the curves B 5

Alternatively, the curve represented by the pair of equations (1.3) may be thought
of as the intersection of the surface (1.1) with the plance - =, or, more generally, the
intersection of two surfaces. For, if the point (x, y, z) lies on both the surfaces 5;: A(x; 3, z)=0
and 8;:6G(x, y,2) =0, then the points common to both § and &, satisfy the pair of equations

F(x,¥2)=0,Glz,3,z2]=0 (1.4)
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Thus the locus of a point whose coordinates satisfy a pair of equations (1.4) is a

curve in space.
A curve may be spuui.ﬁtﬁ:tl by parametric equations of the form
x=fil)y= A0 2= G0 (1.5)

in which t is a continuous variable. For, if the coordinates of Point P are given by

{1.5) then P lies on a curve whose euqgations are of the form
Di(x,)=0, Py(r,2)=0
ohtained by elimination of  between the equations x = £,(r), y= £ (1), = = () respectively,
Let us now consider a point P on the curve
x=x(s), y=(s), == 2(s) (1.6)

characterised b}} the arc length s, measured from some fixed point £, along the curve.
Let @fx(s+ 85), p(s+ 8s), z(s + 85} be another point on the curve at a distance §g
from P. Let the chord PQ =

EC’=E

Then lim 5 =L Now the direction cosines aof the chord PO are

e — 1) .
x(s+Be)—x(s)  plr+8e)—p(s) z{s+85)—z(s) 7
8 s B Be /N
p 2
i 3 E
e, Bt o8], %{%m{aﬁj}, Be e, o(ss)) Li’/ e

(By Maclaurin's theorem)

dy dy ds
r?‘.rdﬁlﬂr

as b5 — 0, ie. Q.—ar P

/-
and the chord Q) takes up the direction to the tangent to the curve at P. Hence

the direction cosines of the tangent to the curve (1.6) at the point P are ( P 3{: m,]

Here we have assumed that the curve (1.6) is completely arbitrary.
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Now suppose that the curve T Given by the equation (1.6) lies on the surface S

characterised by the equation I (x, y,z) =0 so that the point {xls), wls) z(s)} of T lies on

Jhe surface S

Flx(s), y(s). 2(s)} =0 (1.7)
If the curve lies entirely on the surface 5, then the equation (1.7) becomes an identity
for all values of s. Differentiating (1.7) with respect to s, we get

5, we

(1.7)

aFde  OFd I _
de ds  dy ds  dsods

(1.8)

so that the tangent lo the curve T at the point P is
perpendicular to the ling whose direction ratios are

Fig 1.2

[%l—r%—f, %E]lt may be noted that the curve T is arbitrary except that it passes through

the point P and lies entirely on the surface S. Moreover, since the line with direction ratios

[%1%%) is perpendicular to the tangent to every curve lying on S and passes

through P, this ,must be normal o the surface § at the point P.

Now let the surface S has an equation of the form z=f(xy) so that
Fx,pz)= flx.¥)—z=0, Then the direction cosines of the normal at any poont (x,,2)

of the surface are

| :
WEE%_]} “‘g)

where

= Elz
p=if g2 (1.10)

Now (he equation of the langent plane wx; at the point P(x,pz) to the surface |

S kx z)=0 s
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(-0 +(r-) 3 +(z-98 =0 @

Where (X,Y.Z) arc the coordinates of any other point of the tangent plae. Similarly, the

euqation of the tangent plane nat the point Px,yz) to the surface S3:G(x, v z)=0 is

I[X—x}aa +{I—J:I +I[2 }%g:l} (1.12)

The intersection L of the planes m; and m, is the tangent al P to the curve  generated
by the intersection of the two surface S and S;. From (1.11) and (1.12), it follows that
the equations of the line L. are

X=x F= o Z—z

A dG  dF 9G T IFAG_AF OGOk G oF aG

Dy dz dzody dzor orxdy ox oy oy ox
o ) Z—z

o ORG) EG) A(FG)

1.3
i z) iz x) I:x _].l:| ( )
Hence the dircetion ratios of the line L are
a(I,G) A(F,G) 9(F.G)
"Mz " zx) T alx, ) (1.14)

Example 1.1 : Show that the condition that the surface Fx,y,z)=0 and Glx,y,z)=0
should touch is that the eliminate of x, p, z from these equations and the ecugations
F:G, = E:G, =1:G, should hold.

Hence find the condition that the plane Ix + sy + sz + p= 0 should touch the central conieoid
ax® 4+ by’_’ tezt =1,

Solution. I the two surface tauch each other at some point P(x,y,z). say, then they have

the common tangent plane, ie. the equations

= T—}{I’ y]%}fﬂ? z}*’”
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: AT S ST |G . €
and (X=x) Jv +(F—y) % +(Z-2) A 0

must be the same, Thus we have

(1.15)

Henee the required condition is obtained by eliminating x, y, z from the given equations

of surface and the equation (1.15).

Second part . Let

Fle,z) =i +my+nz+p=10

and (_'.'[1',_]:,2}:&!‘2 +¢’.1::JE tezt—1=0

If these two surface touch, then we have by using

o T cl e iRl

e gl 1
Zox 28y 2oz Y o Ty T ez k
where £ is some conslant. Hence

Y (N N
ek YTk T

2 2 T
su that from (1.16a) we pet k=—%[%+%+%)

Again (1.16b) and (1.26¢) give

2 2 2 2 2 2
T SR el . N IO T
eI AR i

using 1.16d)

This is required condition.
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(1.16b)

(1.15)

(say)

(1.16c)

(1.16d)

(by




1.3. Simulatancous Differential Equations of the First order and the Tirsi

Degree in Three Variables.

An ordinary differential eugation of an order higher than the first can al'.'-.ra},fs
be reduced to a system of first order differential equation. For example, consiser a ditferential

equation of the n th order
H_, n-1.,
d_;] :f[xlylgir:ll""""ld_}_)

This may be replaced by the following system of » equations of the first order :

oy dy )y
%il—_:yhﬁl =Yasen e ‘;r]_:f{x-rjf.yl,.}"1'__“"_}'”'_[] [1.1?}

.Similar results hold for more than one dependent variable, Hithere are m dependent variables,

the system contains m equations each of the form

where ¥ v» ¥, are the m dﬂpcnd;ut variahles, Thus we may always assume the
differential equations to be of the first order and of the first degree.
let us now consider equations in three variables given by

Fide+ Gydv+ Rydz =10

Pdv+hdv+ Rydz==1

where each of the functions PG R,(i=1,2) is a function of x, y, z. it follows that

' _ &
Ui —hE /b -h Ao -5,

which may be written as
(1.18)
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We take these equations as a sel ol simullaneous equations ofthe first order. The
evistomee  and wnigueness of equations (1.18) lollow [rom the following theorem which

we stale without proof :

Thearem 1.1 : Let the functions fi(x,3.2) and falx,3.z) be continvous in the region
defined hy |x - al<k, |v - b|=l, |z - ¢l=m where |, m, n are constants, and satisfy

Lipschirz condition
!ﬁ (eoz)= filemt) = Ay—1l+ B ||:—1:|

| (5:2.2) = fo(2.1,%) < Aoy~ |+ By =~

in the defined region, where A, By, 45, Boare some finite constensts. Then there
exists a wnigue pair of functions y(x) and z(x) contimous and having continnous

derivatives in a suitable imterval |x-a|<h which indentically the differential equations

e Z
:_i-!Ezj]{x’y‘z} Hﬂ'ﬂ’ ??;':_ﬁ{xsys:}

and  have  properties Wa)=b, z{aj=c, where a, b, ¢ are arbitrary numbers,

According to the above theorem, there exist two eylinders y= y(x) and z = z(x) passing
Irhmug,h the points (& b,0) and (& 0c) res;:rectivel_y such that %= 1, and %= 5.

The complete solution of these pair of equalions,
therefore, consists of the set of points which arc K =y =yn)
common (o both the cylinders, ie. it consists of their
cutve of intersection . ‘This curve [ passes throngh
the point (a, b, ¢) and satisfes the pair of differential
equations. Noting that a, b, ¢ are arbitrary, it follows
that the gencral sdution of these pair of eguations (o.e)| [~~—r&T e 7 = 2(x)
consists of the curves formed by the intersection of a

one-parameter syslem of cylinders of which y = 3(x) / 2y
and z = z(x) arc two particular members. [In other % 7
wordswe can say that general solution of a set of {a, b, o}
simultaneous equations of the form (1.18) will be a Fig : 13

two-parameler family of curves in three-dimensional space.
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Method of Solution

In salving the eugations of the form (1.18), we firstg note that if we can derive from
these equations two relations of the type

mlxpz)=e, wlxnz)=c ' (1.19).

where ¢ and ¢, are arbitrary constants, then by varying thesc constants, we obtain
a two-parameter family of curves satisfying the differential equations (1.19).

Methoed 1+ Let w(x,»z)=c; be a suitable one-parameter system of surfaces. Since

any tangential direction throngh the point (x,y,z) to the surface u(x,y,z)=c; satisfies the
relation

LB

aﬂ] ﬂui 0
o D bmndpt =0

dy o
this langential direction lo the integral curve musl also be tangential direction fo this
surface, Hence we have

L LS

% o +Q dy oz

¥

To find w, we iry to look for three functions p', ¢, g such thal

PP OO0 +RE =0 (1.20)
and R L} o) =aﬂ R = Py 2

! =5 Yo Bom Chel)
so that Plav+Qdy+ R dz i (1.22)

is an exact differential du.
Similarly, we find u;.

Example 1.2 . Find the integral curves of the cquations

e dy dz

x{zy*—z“) y(z“—lx-’q) z

e
t
B
|
b
-
L S |

Solution, lere P=x(2y4 —-:d). 1',;?=_,i'{15:t —214), 1"~'=!{14 —.P4}~
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Let us choose # =%,£¢" :%, fims

¢ [t

. Then the condition (1.20) is satisfied and the

K

T

2 y ;
cxpmssiun%n’r* _%d‘”;ﬂ'-’ = fl’{luﬁ(xﬁfz ]} an exact differntial. Hence we have by = xyz*.

Again, if we choose p' — 3, ¢ =%, & .4 then also the condition (1.20) is satisfied
and the expression x v +P3rﬂ‘+23ﬂ'+=d{4i(x4 +,1‘*+24)} is an exact differential so that
4 |

g =xt4ytyet,

Hence the integral curves of the given differential equation are the members of the two-

pardmeter family.

4

xyzs =gand x +_p" +o it

Method 1. Suppose we can find three functions F.0,k such that

Pdc+ O dy+ R de
PP +00 +RR

is an exact differential AW, say. Also, let p”.g'. R be three other functions such that

Plav+ O dy+ R dz
PE' +00 +RR

becomes an exact differential dW", say Noting that each of the above ratios is equal to
dx/P, it follows that dW=dW" so that there exists a relation ' — jp" 4 o between Xy
and 7, C being an arbitrary constant.

de __ & i
mz—ny  nx—fz  ly—mx

Example 1.3 : Solve the equations

Solution . Each of these ratios is equal to

Adfe + ey + iz _
Almz = ny) o+ e — dz) + o ly = mx)

If &,p,v are constant multipliers, then this expression will be exact differential proyided

it is of the form
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| hedx + ey + vilz
PN py+E

and this is possible if

I+ U =My = 4]

—nh+pp—fw=10 (1.23)
mh—Ip—po =0

These equations possess a solution if p is a rool of the equation

- n —m

:: :"; -—f,n =0 e g +p[a’1 o +uz) =0 (1.24)

The roots are p1 =0, (pa2,p3) — +4/{2 4m? +n® . Substituting the value of o, in (1.23)
and solving to find X, =1, pi—=m, v, =n We se€ that Ix+my +nz= constant = ¢,

say,

Again, Substituting the values of p2 and p; in (1.23) and solving for Aipi,vi(i=123),

we pet
AW =L.?qdr.-r.#.zdy + u;ﬂ W’ : 1 Asele + flaely + vsdz
P2 hax tlay + Uz P3  A3xX +[ay +Uaz
ol _ 1
We get W =F1"F"H{h1x”"1}“ : ”iz}, W =p_3f‘)g{h3x”-"3}‘+”33} so that

{hzx Ty vzz}{?\ax iy + uaz}=mn.wr.—-(j2 -

where C i¢ constant, Noting that p; =p3 we find .

{?\:;x + oy + Uzz}[hx +pap + Usz) =gohst.=Ca, S8Y.

Thus the required solutions are

be+my+nz=Cry (Nax o g2y +vaz)(Nax + pay +vsz) =const=Cs .

Meihod HI. Suppose one of the variables, say z is absent from one equation of the
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set (1.18), Then we can derive the integral curves in a simple way. Then if # is absent
) dx _dy dy O . i ._ .

in P and @, we have P Q i.e E=E which has solution of the form (_t,_},',m:] =y
Elimination of cither x or y [rom one of the other equations in (1.18), we obtain another
relation between x and z or p ; y and z ; this will be the second equation of the solution.

Example 1.4 : Solve the equation

dx _dy dz
4zl —x2 2xy  2xz
e : dy _ ¥ _
Solutivn, From the last two equations we have — =" = y=¢iz,¢y being constant,
z =z -
Also [rom the first and the last relations, we get
dx oz g 2
—_— = =,|:c|:a+1:]dz=_hmb. Xdz _ 3
(CF + I}z2 —x* -2x = -
: 2] 2 1
= X ¥ X R, s
=:-{r;;- + I}z = A ki =’[z—1+]}z =——+01, g being integration const.
Z

so that x* +y2 +2° =gz

Hence the required solutions are
yEoz, ¥+ yi=zt=nz,
§ 1.4 Orthogonal Trajectories of a System of Curves on a Surface.
Let - Fx,y,z)=0 (1.25)
be the equation of a surface and there is a system of curves on it. Then a system
of curves of which lies on the surface (1.25) and cuts every curve of the system at

right angles is called system of orthagonal trajectories on the surface of the given system

of curves. We may, thercfore, think of the original system of curves as the intersection
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ol the surface (1.25) with the one-parameter family of surfaces

G(x,y.z)=C (1.26)

As an illustration, consider the system of circles |
(shown by full lines in Fig. 1.4) on the cone
¥4yt =z fant o
by the system of paralel planes z=(), where () is
a parametcr, Obviously, the generalors (shown by dotted

lines Fig. 1.4) are orthogonal trajectories in this case.
In general the tragential direction (dv.dy.dz) to the

given curve through the point (x,y,z)on the surface

(1.25) satisfies the equations

oF /i ar
de aydy"'az z=0 *  Fig. 1.4
s ﬂf" alr '
dx .:Fy dz

su that 3 Q ®

(1.27)
: P_H(F,c;) Q_H[F,Lﬂ S i(F,G)
where ay.2) ay.z) ax,y)

Since the curve through the point (x, y, 2) of the orthogoal system has tangential direction

(dx. dy, dz) (cf. Fig 1.5) lying on the surface (1.25) implying

Ea‘ + (Z—r dy’ + —dz = (1.28) (dx,dy.dz)

ax

[z tp 'vp)

and is perpendicular to the original system of curves,

" we have from (1.27)
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Pdx’ +Ody' + Rz’ =0 (1.29)
Equations (1.28) and (1.29) together yield .

' _dy _df
o - Q' o R (lE{}}
| ar ar , ar aF . ar ar
: Pl=pll _o S it ot B el
et ay oz @ ke o ay (131)

The solution of the equations. (1.30) with the relation (1.25) gives the system of

orthogonal (rajectories,
Example 1.5 : Find the orthogonal trajectoriés on the conicoid (.1.' + y]z =1 of the
canics in which it is cutl by the system of planes x y+z=k, where k is a pa-ramaten
Solution. Here the given system of coines on the conicoid is chal'acteriéed by the
pair ol equations.
zdv +zdy +(x + y)dz =0 and dy—dy+dz =0
which are equivalent to

el dy _ dz

X+y+z _x+_}f-—z_—2z
The system of orthogonal trajeclories is, therefore, determined by the pair of equations

zex +zdy + (x + y)dz =0

anil (x +y+2z)dx +(x + y—z)dy—2zdz =0
ie. b 4 = dy _
i 228 —(x+y)xty-z) (x+pxeptz)+222 272

= . ]
From the first and the lasl relations we have by putting x+y=-—

=
‘Tr.
:‘L—Iz HTZT Le. ‘:ﬁ:(l-" 111 --%]dz
25 +—(— —z] 2z° 2% 22
z\z
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Integrating, we get X +& =2 ——=+—— where ¢ is a parameter. Hence the orthogonal

el
trajectonies are given by the equations
b (LN S
X+Ho=Z E“' Eq |I_T+_],.l}z:1

1.5. Pfaffian Differential Equations

Let F(i=12, ... n) be Tunctions of some or all of the »n independent variables
X Xgs avvems X Then the expression of the form
ZE(J-||I2|----'.IKH}EJ&I' ; ([32}

is called a Pfaffian differential form and the equation

‘ZI:H(JH,I] ...... ,x,.}dx, =) {!33}

r=]
is known as Pfaffian differential equation.

There is a fundamental difference between Pfaffian differential cquations in two

variables and those in higher number of variable.

For two variables x, y, we can write the equation (1.33) in the [orm

P(x p)ds + O(x,2)dy =0 iec. %=f{-*-y} (1.34)

where F(x,y)=—F/Q.If P and Q are defined single-valued in the xy-plane, f{x._v}
is also defiend uniquely and is single-valued in the same plane. Thus the solution of (1.34)
subject to the boundary condition y =y at x =y, consisls of the curve passing through
this point and the tangent at each point of the curve is defined by (1.34), Hence the
differential equation (1.34) defines a one-parameter family of curves in the xp-planc. |

other words, there exists a function.

By, y)=c - (1.35)
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¢ being conslant, which defines a function y(x) satisfying the differential equation (1.34)
identically at least in a certain region in the xy-plane.

The differential form  Pdx + Ody is said to be exact or integrable if it can be written

in the form dd(x,y). Otherwise, we write the equation (1.35) in the differential form

a il
lﬁdx +£dy =0
dx ay

Thus there exists a [unction :In{x. y} and a function ,Lt{.x. y}sm:h that

1as 109
Pax_Qﬁy-#

By multiplying the equation (1.34) by &, we see that it can be writte as
0= p( Pelx + Ody) = dg

The function pi(x, ) is called an infegrating factor of the Pfaffian differential equation
(1.34). Thus we have the following theorem :

Theorem 1.2 : In the case of two variables, a Plaffian differential equation alweys
possesses an integrating  factor

Now we consider Pfaffian differential equation in three variables x, y, z
P(x,y.z)de + Ox, y.z)dy + R(x, y,2)dz =0 (1.36)
Or, in vector notations
X.dr=0 (1.37)
where X' =(P,Q,R) and dr=(dx.dy.dz). Before the discussions of the equation (1.37)
we consider the following two lemmas,

Lemma 1.1 : A necessary and sufficient: condition that there exists a ' relation

Fuv)=0 berween two functions u(x, v) and V(x,y). not involving the variables
x or y explicity, is that

o) _
E{jr,ﬁ_n _ (1.38)

Proof For necessity of the condition, we [irst note that

Fluv)=0 (1.39)
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is an identity in x and p. Differentiating this wirt x and y, we get respectively

oF du  OF dv _
e e———

ey 0
du dr  dv dx

oFu O v _,
du dy  dv Ox

dF
Elimination of o between these two equations yields
v

ar dmv)

=)
du d(x,y)

aF uv) _
Since (1.39) involves both w and v, Eﬁﬂ and henece ﬂtx,y}_u

To prove the sufficiency, we eliminate y from u=(x,y)and v=1(x,y) and obiain
the relation

Fliv,x)=0

Differentiating this wrt x and y, we obtain

af  8F du  aF dv
+ =+ =0

Ax  dudx v dx

aF dv +3€ Au.v)
dx dy  Bu d(x,y)

and
which by using the condition (1.38) gives Z—F? =0. Since v=y(x,y), s0 L = () and,
X ay

dF ;
therefore, -a—=ﬂ. Thus the function F does not contain variable x explicitly. Similarly,
X

# does not contain the variable .y explicity.
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Lemma 1.2 1 Let X be a vector function of x, y,. z such that X curi X = 0
and u iy also a function of x, y, z. The I[,U.X} curl (X }—' 0.
Proof : Let X =(F, Q, R). Then
a di d a
¥y = 5P (uR) - = + 0 —(uP) = Z(uR
(1 X).curl(pX ) = ¥ { av (uR) az':'“Q}} “Q{ Fa (uP) i (i }}

+pg{£{ngl—%w}}

=yl p| IR _9Q), 3P 3R) [30 9P
EJ{P(&V ﬂz] Q[az &1:) R[Bx ﬁy]}

' a au au a a T,
PR-—— _PO— 4+ PO _OR-= 4+ OR-" - PR
-”J-{ Eiy Q az ¢ az Q iax +o dx dy
=X curlX
=1}

Which proves the lemma.

1
By the use of the [actor Qo the converse of Lemma 1.2 follows easily.

We now refurn to the Pfaffian differential equation (1.36). All equations of this type

do not possess integrals. However, il we can find a function ,Ln[x, y,z} such that the
expression pu( Pelx + Qcy + Ra’z] becormes an exact differential d, say, then the equation (1.36)
is said to be infegrable, p{x + ¥ +z) is termed as an integrating factor and the function

#(x,»,z)is known as the primitive of the differgntial equation,

The criterion for the Pfaffian differential equation [1.36} to be integrable is given
by the following theorem.

Theorem 1.3 : A necessary and sufficient condition for the Pfaffian differential
equation Xdr=0 to be integrable is that X.curlX = 0, where X = (P, 0, R) and
dr = (dx, dy dz)

Proof : For necessity of the condition, we first note that if the equation Xidr = 0
ie. Pdx +Qdy + Rdz=0 be integrable, then there exists a relation between the variables
¥, v, z of the type =C, C being constant, so that
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A iy S
ix Eiy gz
and, therefore, there exists a function pu(x,y,z)such that

aF oF aF .
PP =—— uQ=— puF =— je.pX = grad F
ax ay iz

Hence, curl (1X)= curl grad F=0, ic. (LX) curl (LX) =0,

It, therelore, follows from Lemma 1.2 that X.curl X =0
To prove the sufficiency, we suppose the z is constant. Then the differential equation

Xdr=0 reduces to P(x,y,z)dx + O(x.y,z)dy =0which, by Theorem 1.2 possesses a

solution of the from U(x, y,z) =C,, where the constant C, may involve z. Also there exists

, at/ Mo
a funciton p(x,y,z) such that pP = e and uQ :i—u. Substituting these in the equation
X Iy

Pelx + Ody + Rdz =0, we get

atll ar’ atf !

Eﬂh +a—a’ [;LR—E]dz=D I, dt5+ Kelz=0 (1.40)
where

K=uR-gt
Since M’:(“P_HQ,#R)=[£,‘B_U,£+k]=grad U-P{U,G,K], we have
ax 4y a8z
alr atl atf 4K  ak
Xourl(pk)=| —= 2= =iy gl 28 08,
it (JLLX] [E'x dy a8z & ][By ax ]

_OU aK _ 9u 3K _ (U, K]
x ay dy ax  dx,y)

U,K)
3(x,y)

using Lemma 1.2, it follows that there exists a relation between IF and X which is inde-
pendent of x and y but not necessarily of z. In other words, K ean be expressed as a [unction

Now by lemma 1.2, X.curlX = 0 implies (4 X). curl(it X) =0 and so0 — 6‘{ ={. Hence

195



i/
of Uand z alone, fe. K =K(U,z)and the equation (1.40) gives —- +K(U,2)=0 which by

Theorem 1.2, has a solution of the form ¢"[U,z} =constant = C, say, Replacement of U hy

its expression in terms of x, ), z, we obtain the solution in the form F{x, v.z)=C. Hence
the equation X 4r =0is integrable.

Theorem 1.4 : If the Pfaffian d ﬁerennm’ equation Pex + Qdy + Rdz =0 has an
integrating factor, then we can find an infinity of them.

Proof. Let ;.c(x, y,z)be an integrating factor of the Pfaflian differential equation

Pdx + Ody + Rdz=0. Then there exists a function (x,).z) such that

If @(d)be an arbitrary function of ¢, then we can write the given cquation as

b ©oddb| ap i dg
= (Pd v+ Redz) =0 ; —dx A+ —ely —d
— b =0 so that @(¢)=constant = C, say.

Thus if ¢t is an integrating factor yielding a solution ¢ = constant, and if ® is an arbitrary
function of &, then & is also an integrating factor of the given equation. But @ is arbitrary
and, therefore, there exists an infinitely many integrating faclors,

Example 1.6 : Verify that the differential equﬁtion yedx + 2xzdy —3xydz=10 is integrable
and find its primitive.

Solution, Here X =|[xyz.2xz, -3.ty]sn that curl X ={—5x,4y,z]. Hence X.Curl c =10,
and, therefore, the given differential equation is integrable (by Theorem 1.3).

dx 2y
Now if we treat z as a constant, the given equation reduces to == s 1* =0 which has

the solution U(x, y,z) = xp” =const = C,, say.

et 1 o

_ a X
Thus # Poax i s z and in the notation of (1.41)

ali

= ‘uR——zﬁ { 3,1}:] H‘P
Fi
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so that the equation (1.40) reduces to

I e
yidy + 2xy -y — o dz=0, je. d[ly 1:[]

ZJ

leding to the solution of the original equation as xy? =0z, Cis constant.

§ 1.6. Solution of Pfaffian Differential Equations is Three variables.

We now discuss the methods by which Pfaffian differential equations in three variables
can be solved.

(a) By inspection. 1f the condition of integrability is satisfied, we can find the primitive
of the equation by inspection. In particular, if the given equation is such-that curl X =0, then -
X = grad ¢ and the equalion X.dr=10 reduces to

g ]
'-Erqd.\: +£f.ﬁ.J + fa dz=10
ax - ay oz

which has the primitive 'P{L J-',z]=cm:s:_
Fxample 1.7 ; Solve the equation (yz +z }a’x —zx.dy + zydz = 0 by first showing that it is
integrable.

Sofution, We have X = (,‘J*Z p L JJ}’} so that curl X = {Ex, 2z, —Ezy} . Hence
X.curlX =0. Thus the given cquation is inlegrable.

Now (e given equation can be written as

z(y + 2)dx + x(ydz - zdy) =0
or, (y v z)(zdy +xdz) - xzd(y +2)=0

dlzx) _d(y +32)

zX Pz

Qar,

Thus the primitive of the given equation is ) +2 = czx, where ¢ is constant.

(b) Variable sepovable. Sometimes Plaffian differential equation can be written in the
[orm

P(x)x + O(y)dy + R(z)dz=0
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for which the integral surfaces are given by
_[ P(x)edx + JQ{ Vidy + J- R Z:}dz. = constant,
Example 1.8. Solve the equation xy’dy + zx'dy - x>y dz = 0.

Selution. By dividing both sides of the given equation by +23’z we get

: Ry

wby
Integrating the required integral surfaces are obtained as ze ™ =¢, where ¢ is constant.

(¢) One variable separable. 1t one of the variables, say z, is separable, then the Pfaffian
differential equation is of the form :

Plx,y)de + Ox,y)dy + R(z)dz=0

Noting the X ={P(x,y), O(x.»). R(z)}, we have curl X :[[}, %Q-zf] so that the
¥

= : s e TR ar .
condition of integrability X, curlX=0 implies a—Q = = and hence Pdx + Ody is an exact
f E i y

differential du, say. We may, therefore, write the given equation as du + R(z)dz =10 so that

the primitive is
ulx, y) + jR[z]ﬁﬁ = const,

Example 1.9 : Verify that the equation 2 yzdy — 2xzdy — (.Jr2 -y ){32 = I)dz =015 integrable
and hence solve it,

Solution, The given equation can be written as

2
o Tl
X* -y X =y z
2_
so Lhal X"‘[ 22}* T 12x 2,—2 1] and curl X:[{],ﬂiﬂ} and hence the
X—y xt—p z
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condilion of integrability X.curlX = 0 is satisfied. We can rewrite the above equation in the
form. :

Integrating, we get Iﬂg':: —Ezz +logz =loge, where log ¢ is constant.
=]

¥y

[

Thus the required solution is (x—y) =cx + y)e =

(d) Homogeneous equation. Let the functions EU.R in the Praffian differcnt equation
P(x,p,z)dx + O(x, y.2)dy + R(x,y,z)dz =0 be homogeneaus in x, ), z of the same degree .

Then this equatiori is transformed by the substitutions ¥ =wx,z=vx, u and v are functions
of x only, to the equation in the form

P(1,2,v)ex + O, u,v)(udx + xelu) + R(1,,v)(xdu + velx) =0,a factor »

canceling out. This equation can be wrillen as

ﬁ + A(u.v}du + B{H,v} =0
x

(1,42)

where

A{u,l-}= Q{l,u,vj

P[l,u.v} + HQ[ I u,l:'] + 1:'R[1,;:. v}

] R(1u,v)
B(u,v} E P{I, v} + HQ{:LN.V} - HR[I,H, v)

The equation (1.42) can be solved by the methad (c).
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We may put the above result in another way. If the condition of integrabitity is satisfied
and £ (), R are homogeneous functions of x, 3 z of the same degree and xP+ 130 +zR %0,
tien its reciprocal is an integrating factor of the given equation.

Example .10 : Verify that the equation ( Yzt -5t )dz = 2xpedy = 2zxdz = 0 is integrable
and find its solution, ' :

Solution. Here X =y~ +z° - x° ,—2xy,~2zx and curlX = {0, 0, 0) so that the condition
of integrabitity X. curlX=0 is satisfied. Since the components of X are homegeneous
lunctions of x, ) z of degree 2, we can reducc the given equation by puiting _p=1.-(x)._r,

z=v(x).x,to the form
(ui Py 1}&5\' — 2 ety + xelu) — 2o velx + xelv) = 0

A

dy A’ v +1)

or, e
x w v+

b s o2 .
whose solution is _x{u + ¥ +i} =¢, where ¢ is constant.

Returning to the original variables, the required solution is
2

B

XAy 4t =,
Exampl. 111 : Solve the equation (yl + 12 +zl}\d::+(z3 +2% +x3}.riy +(,1c2 + 2 +_51“}t!z:ﬂ
Solution, Here X :fP,Q,H} :(y! A R e + Xy +y3) and curly =

2(y—z,z—x,x—y) so that XcurlX = 0 and thus the condition of integrability is satisfied.

Alsa Fl= Px+ Oy + Itz =x{y1 +yz+2:3)+‘1-*(.::2 + zx +_=:3)

+;:(:4r2 +xy+y2}=|[x+y+z:}{yz+z:x+xy]:ﬂ

and dF =(yz +yz +2y)d(x + y +2) + (x + y +2)(ydz + zdy + xdz + zd + xdy + yelx)

), |

The integrating factor is p(x,y.z)= = T ]
x+y+z)(pz+zx +xp

I
¥

Multiplying both sides of the given equation by p(x,p,z) we get

(yl +yz r+z1}dx + (zz 42X+ xl)d_'v +(xz.+ x) +y3)dz'_
(o4 y vz)(pz vzx v xp) =
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dar (yztzx +ap)d(x+y+z) _
F (2 +y+2)(pmx +2x +xy)
dF _d{xvyrz)

—-2 =10
or, F X4z

0,

leading to the solution F=¢(x +y +z]|: ie. (yz+zx +xy) =o(x + 3 +2). where ¢ is constant,
(e) Method of reduction. Suppose one of the variables, say z, is constant and then
consider the equation Pelx + Ody =0 whose solution can be obtained in the form ¢{x, ) =¢.
say, where ¢ is independent of x and p, bul may depend on z. So takilig.dil"ferential ol
P(x.y)=c¢ and equating to Pelc + Ocdy + Rdz =0, we determine ¢. The integral of % gives
i as a function of z which when substituted in ¢ =¢ pives the reouired solution. g

Example .12 ; Solve 3.1-"&"1'+3J"Jt1'j*—{.v" +_v"rl:}:fz =)

Solution. Here X T—{EJL""J),L-"',—(Jc'1 + _} +e )} and curlX = {—3_\'1,3x',[}) so that X.

curlX = 0 and, therefore, the condition of integrability in satisfied.

Tuaking the variable z to be constanl, the given cquation reduces (o 344y +3J-’¢{1.-=n

whose selution is x? + 3? =¢, where ¢ is indepependent of x and p, but may depend on =,
The ditferential of Lhis solution leads to

I dy + 3):11@1—%:1':-: =0

Comparing this with the given equation, we get.

L R e = dy - 2
—— =X} J" T =0 g =>—{CE )=E"
efz i

Integraling ¢=¢e +e Wiv ny g

cet oot the Siven cauation is
3 2 Az
x4y =gl +e,

(f) Auxiliary equations. For integrability of the équatinn Pelv v+ Oy + Relz =0, the
condition X .CurlX = 0 is to be satisfied, where X = (F, (3, R). This condition can be written
as

P[@_ﬂ]w[ﬁ_ﬁ]w[ﬁ_a_@]zn
az gy ax  dz

ay  dr
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Comparing this with the given equation, we get

dx dy dz
@0 R OR 0P 9P a0

dz oy o Oz dy  dx

These are called auxiliary equations and may be solved by the methods discussed earlier.
Let f(x.yz)=a and g(x,yz)=b be two integrals, We find' A and B such that

Adf + Bdg =0 becomes indentical with the given equation, Then using f =a, g =h.the

values of A and B can be otained and the required solution is obtained by integration,
Example 1.13 ! Solve the equation (vz + xpz)de +(2x + xpz)dy + (xp + xpz)dz =0,
Solution. Here X=(yz +xyz,ax + xpz, xp + xpz), curlX ={xz — xy, xy — yz, yz - xz) The

anxiliary equations are

dx _ dy _ e
(-2 Mz-x) x-y)
dy dz
so that dv+dy+dz=0 and —+—4—=0 leading to the solutions f( ,y.z]—
- R

X+ +z=const, and g{x,_v,z}=xyz=cunst. If the given equation is identically egual 10
Adf v Bdg=0, ic. 1o Aldx +dy + a"z] + B{ Yz + zxdy + .L}sz} =0, ie, to (A+ Byz)dx +
(A +Bax)dy + (A + Bxy)dx =0, we have

A =xyz, B=1. Thus the equation Adf +Bdig=0 gives

xyz(dx+gﬁa+dz)+fﬁdr+zxdy+lydzj ﬂl@di:x+y+z] (x}i)_
Az

Integrating we get the required solution as x + y +z + log(xyz) =¢, where ¢ is constant.

Exercises
I. Show that the direcdtion cosines of the tangent at the point [x, y,z} to the conic

ax’ +by* +cz' =1, x +y +z=|are proportional to (by—cz,cz—ar,dx -—b_].z}.
2. Find the integral curves of the following equations.

c-".r_: oy - dz e _
) Wx+y)+az x(x+y)-az z(x+y) [Ans, x+y=qz x" -y -2xi=g]
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dx dy dz

() Jiaz zepxr x-uy [Ans. (Apx+pytviz)=e(Aetpyytv,z

(A tpytvz)=c (At pyp+ vS:}“'HJ'

Py, P3. Py being roots of the equation P+ (e+BHyp+(1+apy)=0 and T

are constant multipliers.]

dx _dy _ dz

{1ii) E—; = 2ty [Ans. z=¢ v+’ x=¢y log yiey+yt]

[ g S dye .

{iv) _r{}:—z}_}(z—x}_z{x—y} [Ans. x+y+z=¢, xyz=¢,]
dc dv 4z

(v) xz_},_yz,xj'I_zz [Ans. (x+¥)(z+1l)=¢;, (x—¥)z-1)=¢,]

3. Find the orthogonal trajectories on the come x* 4 y* =z% tan® o of its intersections,
with the family of planes paralle to z = 0. [Ans. x* 43" =z +lan’ a, z=¢y]
4, Find the orthogonal trajectories on the surface x* +y* 42 fiz+d =0 of its curves

of intersection with planes parallel to the plane x0y. [Ans. x4+ 42 = +d=0]
Jz+d=cx]
5. Find the equations of the system of curves on the cyliner 2y=x" orthogonal to

its intersections with the hyperboloids of the one-parameter system xy=z+¢

: |
[Ans. 2p=x"3z+2(x— j} =¢]

6. Verify thal the following equations are integrable and find their primitives.

() (F _ye)dx+(z" +ax)dy+ (3" —xp)dz =0 [Ans. p(x+z)=e(y+2)]
(i) (1 +y)de+x(z—x)dy— (14 xp)dz=0 - [Ans. (e+D(ey+1)=xp+1]
(iii) yeelx + xzdy + xydz =0 [Ans. xpz=¢]
(iv) pzde+(z'y—z)dy+(x*z—xp)dz=0 [Ans. 2yz—x/y*+2")=2ex]
(V) (6x+yz)dx+ (xz=2p)dy+ (xy+22)dz=0 [Ans. 3x*—p" +2% + xpz=c]
(vi) yex+xdy+2zdz=0 [Ans, zy+z'=c]
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(vii) yedy+2xzdy—3xpdz=0 [Ans. 2 =¢]

o

(viii) (72— 7 )lv + 307 dy + X d==0 ; lAns. x?z4 % = ox]
‘. 1I11_ P ot L F b Abis £+£+F1=(_'
(IX) a”y z dx+b™z"x"dy+cx"ydz=0 At FTogpiieg ]
{x) ,l;'{lp'z — " }.:1’_1'+_1J{:r1 —z° jc{p—:—:{y? —a" )dz=0 [Ans (x%-2° ‘_i{yl — y=¢]
(xi) ya{y+2)de+av(x+z2)dy+ op(x+ p)dz=0 [Ans. xyz=elx+p+2)]
(xil) z{z+y" ddlc+zlz+ 57 Yy — xp(x+ ) =0 [Ans, v(y" +2)=2(x+ p)(1—cp)| |
(xiii) 2u(a—x)dx+[z— " +(a—3) T ydz=0 [Ans. (a—2) +2=y{c—y)|

§ 1.7 Summary

The basic concepts fronm solid geometry are discussed in this unit as they are used most
frequently in the study of the differential equations. Some properties of ordinary differential
equations in more than two variahles have also been incorporated because they play important
roles in the theory ol partial diflferential eqquations, Methods of solutions of the simultaneous
differential equation “/p=dy/Q=d=/R and Plallian lorm Pdx+ Odz =0 have also
been discussed.
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UNIT 2 O PARTIAL DIFFERENTIAL EQUATIONS
OF THE FIRST ORDLRZ

§ 2.1 Partial Differential Equations

Most of the physical problems arising in science and technology involve two or more
independent. Consequently, the dependent variable in such a case is a function of more
than one variable and possesses partial derivatives with respect to scveral variables. As
for example. consider the thermal cffects in a solid body. Here the temperature 0 may
very from point to point in the solid as well as from time 1o time. Thus 0 is a function
of the space variables x, y z and time fie. 80 (x, ) 2 f). In such a phenomenon
relating to lemperature, we can obtain a rclation between the derivaties of B in the form

Flx, 52,08

J6 98 o0 o' a'e
P T Tt e T e Y R T R :U L’z 1’:]
dx dy dt dz dxot :

Such an equation relating partial derivaties is known as partial differential equation. A
few well-known cxamples are

I o0 (8’0 o6 270
[eat or diffusion equation @ 5 = ﬁ-‘-ig o)
Laplace’s equation : ?_—T+d_—?+i?:ﬂ (2.2)
ERET I

Monlinear Burger equation : T+ n—=H

ln the case of two independent variable x and y, if # be the dependent variable. then
usually we adopt the following notations :



Jorn e o A% Fe @

ST | . LR R 1) __.-_ﬁr_ £l
CEETW A o (2.3)

The higher order derivative occuring in a partial differential equation is called its order
For example, the order of the questions in (2.2) is 2.

Classification of first-order partial differentinl equations.

L. Linear equation. A first-order partial differential equation is said to be linear if
it is linear in p, ¢ and z je the equation is of the form

P(x.y)p+Qx, p) = R(x, p)z+S8(x, y)
For example, the equation py+gx=x"yz+ pis a linear equations.

2. Semi-linear equation, A first-Order partial differential equation is said lo be semi-
linear if it is linear in p and g and the coefficients of p and g are [unctions of x and
y only, i.e. the equation is of the form P(x,3)p+0(x,)g=R(x, y,2)

2. Quasi-linear equation. A first-order partial differential equation is said to be
quasilinear if it is linear in p and g ie. the cquation is to the form

Plx.2)p+ O(x, 3. 2)g= R(x,y.2)

For cxample, the equation x(z—23*)p+ y(z—y* ~2x)q=2(z~ y* —-2x") is equasi-linear
equation,

4. Nonlinear equation. The partial differential cq-ualinns which do not belong to the
above three types are called nonlinear equations. For example, the equation p’ +4' =3pgz

is nonlinear.
§ 2.2 Origin of first-Order Partial differential Equations.

Partial differential equations originate in many ways such as elimination of arbitrary
constants or functions and in studying a physical or social phenomenon. Let us demonstrate
how partial dilferential equations ocour,

Case [ Elimination of arbitrary constants.

Let flx, v, 2 a B) = 0 be a relation involving two independent variables x3 one
dependant variable z and two arbitrary constants @ and b. Differentiating this equation
with respect to x and y respectively, we get.
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of Lof & _ . of  df 0z _
dx az dx ane 3y 9z dy

Elimination of the constants a b between these two relations and the given relation
leads to the eliminant in the form 24

; Fix,  z p q) =0
which is a first-order partial differntial equation.
Example 2.1, : Eliminate the constants ¢ and & from the equation 2= (ax+ ¥+
Solution, Differentiating the given equation with respect lo x and p respectively, we

get p=alax+y), M+Q+HU=0 so that px+gy=(ax+y)’ =g°. Hence the required a

beliminant is px+q_}»*:q1 which is a nonlinear first-order differential equation,

Case U ; Elimination of fumctions.

Let w=w{x,p.2) and v=v(x,p,z) be two given functions of x, 3 z connected by

the relation &(w, v)=0. Differentiation this relationpartially with respect to x and y we
obtain respectively,
| dtb[du_l_ u, (v, du
dul dx pﬂz dil gy Faz

dpf du  du) dé{dv  du
2 p ¢ ] My
Eli.r[i]y pﬂ J a1a[ay+Paz]

0

o
Eliminating & and

di o -
o between these two equations, we get
v

dit
du dv _du dv du dv du dv )| du dv du dv
[r_ily dz oz 5 [EE ax E_]Q_E E_'ET;- ox
dlu,v)  dwy)  d(uwv)
ar + g
Cd(rz) dzx) dx,p)
o Pp+Qg=R (2.5)
where
_o(uyy o dGy) L dlwv)
_E-',z}‘ Az _H(xay]

The first-order linear equation (2.5) is called Largangs equation of the first-order.
If the given relation between x, y and z contains two arbitrary functions, then (excepting
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some cases) the partial differential equations of higher order will be lormed.
Example 2.2, : Form the parial differential equation by eliminating the arbitrary function

f from the relation fix+y+z. x* 43 —=")=0

Solution. The given equation can be written as v+ p+z=0(x" +3° —z%) Differentiating

both sides with respect to x and v we obtain respectively.
1+ p=2¢(x" +3° —z ) (x—zp), 1+p=20"(x"+y —z*)(x—2zq)

E+£_ Lty

e
s Hha Xtzp y-2q

leading to the partial dilferential equation (y+z)p—(x+z)g=x—-y

§ 2.3 : Existence of Solutions of Partial Differential Equations.

T'his existence of solution of a partial differential equation is not guaranteed. However,
its solution does exist provided the equation satisfies a set of conditions. Belore the
discussions of the éxistence of the solution, we first define a solution and its various types
associated with a partial differential equation.

We have been is § 2.2 that a relation of the type f(x.p,z,a.6)=0 leads to a partial
differential equation of [irst-order. Such a relation containing two arbitrary constants a

and b is a solution of the firsi-order prtial differential equation and is called a complete
solution or a complete integral of that equutiun. On the other hand, any relation of the

type f(w,y)=0 involving an arbitrary function fconnecting two known functions If{.‘[‘,- ¥
z) amd vix, ¥ z) and providing a solution of the first-order partial differential equation
is called a geweral solution or general integral of the equation. The general solution
can also be oblained as the locus of a parametric family of curve, called characteristics
of . The general solution of a first-order partial differential equation is a parametric family
of surfaces, called iergral surfaces.

The singular solution or the singular integral is oblained from the complete integral
by the elimination of arbitrary constants. Thus if, f(x,y.za,b)=0 is the complete integral

of the partial differential cquation. F(x,y.z p.g)=0, then the a b-eliminant from the

d d
equation =0 ;r—f—‘ﬂ_ a—’i:ﬂ is the singular solution. A singular solution can also be
da

obtained from the differential equation itself by eliminating p and ¢ from the equation
arF . aF

F=0-—=0, —=0
dp dg
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Example 23 : The equation z*(p® +4° +1)=¢* has a complete integral in the form

(x—a) +{y—bY +z = ¢ where ¢ and b are arbitrary constants. Find the singular integfﬂl
and a general integral assuming b=a.

Solution, Differentiating the relation (x-g)? +(y=b) +z* =¢* partially w.rl. @ and
b we get respectively —2(x—a)=0, =2(y-5)=0 ie.a=x,b=y. Elimination of ¢ and
b gives 2.2 i.e. z=tc which is the singular integral.

az = az =
When z=%¢, P;E:ﬂ' _ff _5_{’: and they satisty the given dilfernetial equation.

Again making b = a, we get (x—a)® +(y-a)* +2° =¢. Differentiating w.r.f.a we have

1
2x—a)=2y—a)=0 i.e, a=5(x+y}. Eliminating @ the general solution is

I ; ;
5{.‘:_}:}2 +32 :i:z i_ﬂ. [,t' —*}ljz +221 :2{:2

Existence theorem

For the existence of a solution of a [irst-order partial differential equation; the conditions
to be satisfied are given i Cauchy problem which we state as follws :

Cauchy problem

Suppose

(a) the functions x.(u), »(p) and z.(p)and their first derivatives are continuons in
the interval M : W, < p <, and

(b) the function F(x,y.z,p, q) in continuous in ¥, ¥ 2z p, ¢ in the region U of the
XyIpg-space.

Then the problem is to establsh the existence of a function §(x, ¥)having the following
properties |

(1) & (xopyand its partial derivatives wanl x and p are conlinuous functions of x and
y in a region R of the xy-space.

(i) the point {x,,0(x,).0,(x,2)0, (x, 3} e yand F{x,yd(x, 30, (x,3)0(x, 0}

=0Nx,yeR

(iii) the point {x.(p), pa(p)) e Hand dfxa (), )tz Ve M

(reometrically we can state Cauchy problem as follows : To prove the existence of
a surface z=(x,y) which passes through the curve [ with paramelric equations

r=xi(p), y=2(R), z=2.(}) (2.7)

and al cvery point of which the direetion (p,g,—1) of the normal is such that
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To prove the existance of a solution of the partial differential equation (2.8 passing
through a curve having equation (2.7), we hve to make some ather assumptions regarding
the function F and the curve [ The existence theorem depends on the nature of these
assumption, We now state the existence theorem without proof due to S. Kowalewski
and is known as Cauchy-Kowaleski theorem.

Cuanchy-Kowalewski  theorem

Suppose a function g (v) and @ i its derivatives are continuwous for |y—y.|<8 and
x. bhe a given number and z.=g'(y.), g.=g'(.). Also we suppose that the function
Jix vz q) and all its  partial de vatives are continuous in the region

<8, lg—q.l<d. Then there exists a unigue function O(x,y) such

Six—xfby, lp—mp
that

(1) (x.p) and all its partial erivatives are continuous in a region

Rix—x.<d, |y—y|<d,;

(i) z=d0(x,¥) i a soluwtion of the equation
oz iz

_=j{_1-,}‘-| 5}1 "qr' X, ¥ E_R+

dlx

and (i) @(x.)=g(¥), V¥ in he interval - |y—y.|< 8,

§ 2.4 : Linear Equations of the First Order

We have seen in § 2.2 that lincar partial differential equations of the first order in
two independent variables x, y and or dependent variable z are given by Lagrange’s equation.

Fp+Qq=R (2.3)
in which each of £ O and R is a function of x, ¥ and z and they do not involve p

: ol dz.  dz
ar 4 !_E]x?q_ﬂy
The equation (2.5) can be generalised to » independent variables given by'
Bp,+ Apit-Pp,=R (2-9)
in which each of £, P,---F,, and R is a function of the n independent variables ¥,
o
Xy, .. X, the dependent variable is z and P‘a—gff—]:za'",”}
= ]

The method of solving the linear equation (2.5) is given by the following thearem :
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Theorem 2.1: The linear partial differential equation.

Pp+Qg=R (2.5)
has the general solution

dluv)=0 (Z10)
where [ iy an arbitrary function u and v and u(x,y,z)=¢, wx, y.2)=c, are solutions

af the equations

dy _dy _dz

P _.Q__ R (2.11)
Proof Since  w(x,p,z)=¢, is a solution of the equation (2.11), the equations
dv _dy =
udvtudy+udz=0 and F_EZEME compatible to each other so that we have
Pug+Qu, + Ru, =0
Similarly we get Py, t0v, + Ry =0
Solving these equations for P, ) and R, we oblain
gl
d(wv)  d(uyv)  duv)
vz A(zx)  A(xy)

Now we have already seen in § 2.2, that the relation ®(2,1)=0 leads 1o the partial
differential equation

(2.12)

Jﬂ{;w}__l_ atmulz d(u,v)
d().z) ga{’z,x} a(x,y) (2.13)

Substituting from equations (2.12), we find (hat (2.10) is a solution of the equation
(2.5) when u and v are solutions of the equation (2,11),

The equations (2.11) are known as Lagrante auxilarly equations.
Gemetrical interpretation of the equation fp + 0 =R

The direction cosines of the normal of thesurface z= Sf(x,y)al a point are proportional
dz dz : ;
to é;gr S ole o pog,—1. We can write Lagrange’s equations (2.5) in (e form

Pp+Qg+(-1) R=0 (2.14)

Thus the normal at a point to a given surface is perpendicular to a straight line whose

direction cosines are in the ration P : @ ; R Also the equations d%:=n:%=d%{ tepresent

a family of curves, the tangent at any point of which has direction cosines in the ratio,
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P ;0 R Again the relation ¢(u,v)=0, where nfx .z} — const and vix,)z)= const,
are two particular integrals of the equations (2.11) represents o surfaces through such
curves, Naw a curve of the family through any point on the surface lies entirely on the
surface. Thus the normal to this surface at this point is at right angles to the tangent
at the point to the curve. In other words, il is perpendicular (o the straight line which
has direction cosines proportional of P : O : R

Since the equalions (2.11) and (2.14) define the same set of surfaces, they are equivalent
and, therefore, the relation ¢ (u, v) =0 is an integral of the equation (2.14) provided that
w —const. and v = const, are two independent solutions of (2.11) and ¢ is an arbitrary
function, :

Example 2.4 : Svlve pcos (x ) + gsin(x +y) =z

Solution. Lagrange’s auxiliary equations are

dr dy ez

Es[rﬂ;aj : sinu-i-y.}. 5 p {2.15)

The first two equations give

d{x+y) _ d(x—¥) :
cos(x+y)+sin(x+y) cos(x+y)—sin(x+y)

—sin{x+y)+cos(x+ y)
cos{x+ y)+sin(x+y)

d(x+y)=d(x=y)

ie

Integrating, we get log{cos(x+y)tsin(x +y)=(x -y} + log @ being constant, so that
. : |
feos(x+y) +sin(x+yle’ "=a

Again from (2.15) we have

| diz+y)  _dz
cos{x+y)+sin(x+y) =

T T
— cnsec[x +_}»‘+E] d [x + p+ S_]: 2 logz +logh, logh being constant, so that

1 ATl 3
tand —(x + )= =b
Em{2 [.1: ) 8 }z
Henee the solution of the given equation is
ﬁ}[ {eos(x+ y)+sin(x+ e, tnn{—;:{x + y}+%}z"ﬁ 1: 1]

The method of solving the general linear cquation (2.9) is given by the following thearem ;
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Thearem 2,2, Let w(x ,x,-+x,5)=0¢, (=L 2, -, n), be n independent solutions
ol the equations.
ey el de. e

P -8 B R

Then the relation O (i, 1,

M =0, where @ s arbivalry, is a general solution
of the linear partial differential  equation.

i} i
.l’l_ tz+J” —2—+--+f‘:;a—z=R 216
d, dx, dv, (2.
Prof, since
”I{xl!x11"'lInz}:ch“:I-z:”'!”j
are the solutions of the equations
d(F .G
d(p.q)
= o i,
the n equations ;ax dx; + d—dz—ﬂ =120 0.7m)
musl be compatible with (2.17), i.c. we must have
[ dii,
Ef‘] +R——G (F=1,2, v, m)
Solving these equations for Fi we pet
h = R k
W) ) 19
L€ SIRerts e 25 JISURETEs Ul NG | 6 S SRt A8
=l )
where the Jacobian
9(any, 4y, ""”n): diy duy  du,
a[-\.ﬁx}'\ "'rx,q) a'l| ax] aTﬂ
duy duy  duy
dy dr;  dx
qy Wy, O
aI] axl‘. . n




Mow differnctiating the relation @(u, 1,1, )=0 with respect to x,(i=1,2,---,n)

dd du,  du, 9z
we gel JZ[(]:H aY1+EE}_x‘]=ﬂ‘ (I=125 )

i> 9p 9D

Eliminating the n quantitics ﬂ E it E from the n equations, we have
S, 1y, t) Codz o O(uy, b Hy) -0
ZT{:&' L (2.20)
j-1 JaXaat e Wi s Kppga " 77Xy, J EXS Kppda, s-‘-"}
Substitution from (2.18) into (2.19) leads to
dz iz iz
P, t ) —teb P ——= R,
I i, d.\z " ox, (2.20)

Hence the function ®(u,,u;,u,) satisﬁcs the equation (2.20) if w4, ,u arc n
independent solutions of (2.17)

dt . of o
Example 2.5 : Solve ":"+J’+3]E+U+Z+-T}£+f-’+x+ﬂg—k+y+z

Solution : Here the auxiliary equations are
el " dy  dz dt

I+ y+z r+z+r:_ ttx+y xtyt=

A dlx—p) - rf(y—z}zd{z—.r} :d[x+y+z+.'}
—H{x—y) —(y—z) Hz=1) Ax+ytztl)

co
Integration of the first two terms leads to — __ =

Y=g @ CoER= tc; chile that of the second

; ; y-z y
and third terms gives —‘_:Cz and the last two terms give [x+y+z+r]}{{z—f}=c3_
i

J x—y y-z
Henee the solution of the given equation is ¢{y =y {x+y+z+;‘]’l'§(z ”}

§ 2.5 Integral Surfaces Passing Through a given Curve

Suppose the auxiliary equations.

dx _dy _dz
P O R

hhas the two solution w(x,v,z)=c¢, and v{x,y,z)=¢,. Then according 1o the list section, any

B2,53(2.11)
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solution of the corresponding linear equation.

Pp+Qg=R (2.5)
is of the torm

b(,v)=0 (2.10)
arising from a relation

Pley,ey)=0 (2.21)

between the constants ¢, and ¢,. Thus the problem is to consider the determination
of the function ¢ in special circumstances.

To find the integral surface through the curve G having parametric equations x = x(r),
y=y(t),z=2(1), t being a parameter, the particular solutions a(x,y,z)=¢, and v(x, y,z)=¢,
must be such that

ufx(0), y()}=¢,, vix(r), y(1), (1)t = ¢,

from which the single variable { may be eliminated to obtain a relation of the type
(2.21).

The desired solution is then given by (2.10),

Example 2.6 | Find the general integral of the equation (x-y)p+(y—z-x)g=2z and
the equation of the integral surface of the differential equation which passes through the
circle z=1,x*+p* =1

Solution. Here the auxiliary equations are

dlx dy _dz_detdytdz dy-—dy+dz

x—y_y—z—~x z 0 2Ax—v+z)
On integration, the fourth member gives x+ y+z= const = ¢, and the third and [ifth

members leas t0 x—y+z=¢,z°. Thus the general integral is
: X—4z '
¢[,t+y+z,#]=l}
2
Now the parametric cquations of the given curve are x= cost, y = sin, £, z=1 so (hat
. : 1 : |
cost+sint+ ] =cjandcostt—sint+1=¢c, = EDST:g(ﬁ""% =2), 5"”=E{Cl —¢; Yand
hence (e, +¢,-2)" +(¢;—¢,) =4, i€ ¢f +¢7 —2(c,+¢,)=0

2
=y -yt
=:.|:x+y+z]2+[x Y z] 2[x+y+z+—x J’; ZJ:U
Z

2

Fid

:az'l[x+y+z][x+y+z—2}+(x—y+z){x—y+z—222)='D
which is the required equation of the integral surface.
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Q 2.6 : Surfaces Orthogonal to a Given System of Surfaces

We now find a system of surfaces which cut orthogonally a one-parameter family of

surfaces given by the .equalion
Fxyz )=

¢ being a parameter,

(2.22)

First we note that the normal at any point (x)2) to the surface (2.22) and passing

through this point has direction ratios (P, (), R) = [

IF the surface z = ffx,p) cuts the system of surfaces
(2.22) orthogonally, then its normal at the point (x).2)

tz Oz
m the direction [EIWE}J ~_I] and is perpendicular

to the direction (PO R) of the normal to the surface
(2.22) at the point,

Thus we have

il E}z+ dF 9z _oF
dx Ox Ay dy Bz

ie, Pp+0Og=R (2.5

Conversely, any solulion of the linear partial
differential equation (2.5) is orthogonal to every surface
of the system given by (2.22), since (2.5) states that
the normal to any solution of (2.5) is perpendicular to
the normal to the system (2.22) passing through the
same point.

Hence the equalion (2.5) represents the general
partial differential equation which determines the
surfaces orthogonal to the system (2.22), i.e. the

oF oF o
dx " dy 9z

z=f(x,7y)

Fig. 2.1

orthogonal surfaces of the system (2.22) are the surfaces generated by the integral curves

ol the equations

& _dy_ds
o~ OF OF
de dy  ds

(2:23)

Example 2.7, : Find the surface which is orthogonal to the one-parameter system
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z=cxp(x® + y*) and which passes through the hyperbola =y =a",z=0

Solution, The given system of surfaces is

Bk
: ap(x”+ ) 1 :
Elx, .z :_y{ —"—]=—, c being a parameter.
"

The auxiliary equations arc

dx _dy_d
aF ~9F oF
dx dy dz
B N e dz
o YEEHY YY) pOAy)
Z z 1 z
dx = dy = dz _ xdvtydy
or yz{lxl -l-yz} zx{,rz _}_3?2} _Jlj-'[.l'z T yz} 4.!:;?:{1;1 _H,z} (Z.24)

The third and fourth terms give xdx+ ydy +dzdz=0=> x +3" +4z" =¢,
Also from (2.4) we pet

xcfx-l—ydy_zxdx+yd}i__>{i1 =) o

24yt =yt )t
Now the given hyperbola has parametric equations x =asee, t,y —atant, z=0 and

1

therctore, r:,:az{scczh—lanz rLCE:;:1F+Ian]; 50 thal c1¢'1:a".ThUS the required

orthogonal surface is

30 i
(" lry2+4_zz}£JF . Y j =do, =0
S
bE (3 +y* 442 )t =) = (F 1)

§ Compatible Systems of first-Order Equations.

Twa first-order partial differential equations

Flx, pz.pog)=0 and G(x, 3. 5 pg)=0 (2.25)

are said to b
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We assume that _;zﬂw?&gt Then we can solve equations (2.25) for p and q.
A p.q)

in the form
P=plxp,2),q=q(x0.z) (2.26)
The conditon for the equations (2.25) to be compatible is. that dz+dpx +gdy must
be integrable and this is possible provided (cf. Theorem § 1.3. 1.5, Unit I

a_q_ @.}.Eq_.a_q:ﬂ

paz dz  Ox dy
or, 4, tpq,+p, +ap. (2.27)
Differentiating the first equation of (2.25) with respect (o x and z we get respectively
F+Fp +Fq =0 (2:28a)
and F+F,p, + Fgq.=0 (2.28b)
Multiplying (2.28b) by p and adding the result to (2.28) we have
Fo+ pE+F (p+pp )+ F (g, + pg.)=0 (2.292)

Similarly, differentiating the second equation of (2.25) with respect to x and z and
procecding as above, we obtain

G+ pG.+G (p, + pp)+G, (g, + pg.)=0 (2.29h)
Elimination of p_+ pp. between (2.29a) and gives
AFG) -AF,G)_AF,G)
dx.p)  Azp)  Ap.g)
ol E}{F,G}+ JB(F,G}
JLa(x,p)  dzp)

Similarly, ditferentiation of (2.25) with respect to ¥ and z and proceeding as above
leads to

('?.T +Pq:}-' o

ie. q,+pq. (2.30a)

gyt pge

1| d(F,G)  B(F.G
=—F——}+ - }} (2.30 b)

q
J| d(x.q) d(z,q)
Substitutions of (2.30a) and (2.308) into (2.27) give
AF.G), WEG) AF.G) OFG)
=< - o ¢———s=)
Wnp) " Azp) A Azg)

which we write in short as
L Gl=0
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This is the required compatibility condition.

Example 2,8 ; Show that the equations xp - yg =x, x*p+g=xz are compatible and
find their solution.
Solution. The given equations are

Flx,y,2,pq) =2p—x=0, G(x, 0,2, p.q) = X prg-xz=0
Then we have

alFG aF,.G NG aF,G
E_}ZIZ_IE{F_'_IL__{ ]z_q! E }:xﬂ’ { ‘}_—'_'x_}"

a(x.p aly.q) a(z,p) a(z,q)
so that [F G] =xz=x'(p+1)+ pxt —g—qguy=(xz—g)—x" —gxy

=pxt —x" —gav=x{px-x—qv) =0
Hence the given equations are compalible.
: e dz

For the equation F{,r,y,z,p,q] =(), Lagrange’s auxiliary cquations are %=%=?

which lead to the solution z—x=g¢(xy)

7.8 : Nonlinear Partial Differential Equations of the First Order

We now proced to find the solutions of the partial differential equation of the form

: Flx,p,2.p.q)=0 ; (2.4)

in which the function £ is not necessarily linear, In 2.2, we have already seen that the
partial dilferential equation of the two-parameter system of surfaces

S(x.y,z,a,6) =0 (2.32)

was of this form, We shall show later (see 2.9) that the converse is also true, i.e. any

partial differential equation of the type (2.4) yields solutions of the type (2.32), Any envelope
of the system (2.32) tonches al cach of its points a member of the system. Thus it has the

same set of values (x,y,z,p,¢) as the particular surface and thercfore, it must also be a

solution of the differential equation. Hence we are led to the following three classes of
integrals of a partial differential eugation of the form (2.4) :

(o) Two-parameter system of surfaces .J"{x.y,z,a,b} =0
Such an integral is called a complete integral
(b) Let the parameter b is connected to a by a relation of the from b=d(a), where (a)

is an arbitrary function of @. Then the one-parameter subsystem [ ix,y.z.a,8(a)} =0 of the

system (2.32) forms its envelope and is called the general mfegral of (2.4).
(c) If the envelope of the two-parameter sysiem of surfaces (2.4) exists, then it is also
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a solution of (2.4) and is called the singular integral of the engation,
Example 2.9 : Verify that z=av+by+avb—ab isa completet integral of the partial
differential equation z=px+qv+p+g-— 1 where @ and b are arbitrary constants.
Show that the envelope of all planes corresponding fo complete integrals provides a

singular integral of the ditferential equation and determine a general integral by finding the
envelope of those planes that pass through the origin.
solution. We have f(x,y,z,q, b)=z-(ax+by+a+b —ah)=0 (2.33)
oz

oz e ! : : :
Then p S, q ~ Oy =b. Thus (2.38) is a complete integral of the given partial

differential equation

Z=px+ @+ p4g—pg (2.34)
The envelope of the two-parameter system (2.33) is obained by eliminating @ and & from
(2.34) and the equations,

g%= —{JL'+ 1 —f)}-_—ﬂ and gg — {_j.l + l—ﬂ'} =1, ie o =y |! h = 4]

as z={x+1)(y+1) which is the required singular integral.

Now putting b =d(a) we consider the one-paramater system

.f'{x._v,z,azjr{u}}:z—ax $la)y—a - ¢(a) +ag(a)=0 (2.35)
i)

50 that E,]J; =-x - o'(a)y—1-¢'(a) +b(a) + ad'(a)

Since the envelope of the planes passes through the origin, we have from (2.35)

—~a- 4(d) +adla) =0 ie. ¢.(a]:”‘_‘|~.¢r(a}:—[a_‘1f

ar
Thus the relation %= 0 gives by putting the values of ¢(a) and ¢'(a), the value of g

as a =1E+ . Substituting the values of a and ¢(a) in (2.35) we get

z=x+y+2. 0 = (x +y—zj3 =4y
which is the required pencral intepral.

2.9 : Cauchy’s Method of Characteristics

To Solve nonlinear partial differential equation of the form
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Flr, vz pgq)=0 . (2.4)

Cauchy introduced a method of solution based on geomelrical ideas.
The plane through the point P(x.y,z) with its normal parallel to the direction ;7 with
direction ratios (p..g..~1) is uniquely specificd by the set of numbers” A(x.,y.,2.,p..9. ).
Conversely, any set of five real numbers defines a plane in three-dimensional space. Such

a sel of five numbers (x. .z, p,q} is called a plane element of the space. A plane element
(%0 3002., 10,4, ) satisly the equation (2.4) is called an integral element oif the equation at the
point {I",Jlu,:u}. We rewrite equation (2.4) in the form

g =0(x,3,2,p) Elementary vone  (2.30)

Let us keep x, y z fixed and vary p.
Ihen we obtain a set of plane elements

X0 ¥05200 2y {:F{:-.;,_J.g,zo,p]} which depend
on the single parameter P The planer
elements, therefore, envolpe a cone, with P
as verlex, called the efementary cone of the
equation (2.4) al the point P fef Fig 2.2,

Now let § be a surface given by the
equation

z=g(x.y) (2.37)

in which the function g(x,y) and its first

Plune element

Fin. 22

partial derivatives with respect of a and y are assumed to be continuous in a region R of
the xy-plane. Then the tangent plane at each point of & determines a plane element of the

Lype {x,, o, 2%, 0. ) g X v ) g, (% }} which is called the tangent element of the

surface § at the point {xﬂ, V.8l yn]}. Thus we have the resull :

Theorem 2.3 1 A necessary and sufficient condition for a surface to be an integral
surface of a partial differential equation is that al each point its tangent element should
fouch the elementary cone of the egation.

Let us now consider a curve T~ with parmetric equations x = x(t},»= 1),z =z(1).
This curve [ lies on the surface (2.37) it

2(e)=glx(O)olt), Viel
where the interval 1 is given, If P, is a puint of T determined by the parameter £, then
the divection ratios of the tangent line PP, (cf. Fig. 2.3) are L y(n) ()}
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efy

where II[IHJ_(EJ;—: ete. This direction is

perpendicular to the direction { pu,qg,—I} if
(1) = px' = px'(e.) + 4.p'(t.)

Thus any set {x{r],y(r],z{.r],p{r},q{f}} (2.38)
of five real functions satistying the condition

(1) = p(e)x(6) +a(e)y(1) (2:39)

r

Fig. 2.3
defines a strip at the point (x,y,z) of the curve T

IT such a strip is an integral element of the equation (2.4), then it is called an integral strip
of the equation. Thus the set of functions (2.38) is an integral strip of (2.4) il they satisfy
the condition (2.39) and the further conditian

F{x() (e} ple).a(r)} =0 Ve er (2.40)

IF at each point the curve T touches a generator of the clementary cone, the corresponding

strip is called a characteristic sirip. The point (¥ +dv,y +dy,z +dz) lies on the tangent
plane to the elementary cone if

dz = pdx + gdy (2.41)
where p, g, satisty the equation (2.4), Now differentiating (2.4) with respect to p, we gel

0=dx + %g dy (2.42)
and the equation (2.4), on differentiation with respect of p gives '
Using (2.41) 1o (2.43) we have

ey dy oz .

e 4; =m;f; (2.44)

so that along a characteristis strip x'(¢),»'(r),z'(t) must be proportional to
F

s
respectively. We choose the parameter ¢ such that

x'(r} of FP' -P‘{F} :'F:]'" zl{f}:pr +Q"F:T-
Now along a characteristic strip; p is a function of ¢ so that
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P (=L (t) + 2(0)

dy
=a_'jljI .a_Fq.a;pa_F
dx dp oy dg
_9p oF  9q 9F Lop 8z _0g
“dx dp  dx dq ay avdx  dx

Also differentiating (2.4) with respect to x, we get
_aF gF oF  OF dq -0

% Pt 0 b
AR BE e

and, hence, on a characteristic strip
F.{r}:_(Fr +PF=}
Similarly, we have _
q'()=~{F, +aF.)
From the abave discussions, we have the following system of five ordinary differential
equations for the determination of the characteristic strip.

L =F,, y()=F, 'z'{f] = pF, +qF;
pl()=-F, - pF, 4'(t)=-F —aql% (2.45)
These equations are called Cauchy s characteristic equations of the partial differential

equation F(x,y.z,p.q)=0
The main theorem about characteristic strip is given as follows ;

Theorem 2.4 : Along every characteristic strip of the equation F (x,y.2,p.9)=0, the

fucntion F(x,¥.2, p.q) is constant.
proof : Since along a characteristic strip

‘)

1 {a(0) 00 P00}

= Fx'(f) + Fyp(t) + Fz()+ F,p'(1) + Fq'(t)

= E, + BTy +F=(P‘F';= +'5'F¢]"'FP{F1 +pF) - Fq(Fy ""’IFI) [By{2.45}]
=0

We have F(x,).z.p.q)= constant along the strip.

As a corollary, we have the following result :
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Theorem 2.5 : If a characterisiic sir i confaing ar least one integral element af

F(x,v.z,p, q} O, them it is an integral steip of this equation.

We are now in a position to solve Cauchys problem stated earlicr,

Let us find the solution of the equation Fl{x,y.2,p.q) =0 which passess through a curve
I"- Let the paramelric equations of this curve be given by

y=d(u), y=wlu) z=x() (2.46)

Then in the solution

r= x(.\:u,y,,,z,,_ut_q”l,“;}. &) (2.47)
of the characieristic equations (2.45), we may take the initial values of X ¥ zas

x=o(u), v, =w(u), z = x(u)
The corresponding initial values of p_.g. arc then obtained by the relations
x'(u) = p(u) o d. w'(u) and F{rir (o), 9 (12), x(u), pd,g,,} =

Substituting these values of x, v, z,, p., g, and the appurpriate value of ¢, in equalion
(2.47), we can express x, 3 z in terms of two parameters { and in the form

x=X(u ),y =F(u1).z= Zi(w.t)
Elimination of u and ¢ from these three equations leads to a relation of the form

0(x,,2) =0 (2.48)

Thisis the equation of the integral surface of the eugation F(x,y,z, p,q}‘—-ﬂ through a
curve J'-

Exmaple 2.10 ; Determine the characteristics of the equation z=p* —g? and findthe

integral surface which passes through the parabola 45 + 2 =0, »=0
Solution : The given cquation is

F(x, 0%, pig) =2 — p gt =0 (2.49)
Then the characteristics equations are

¥(0)= Ty =20, Y1) = £y =24, 21(0) = pF, + 08, =2’ ~ 1?)

()= —(F, +pﬁ}=—p,q (:‘ —(F +q.’")——
Now the given curve is 42+ x2 =0, =0, We choose the initial values as
xo=2m, 90 =0 = =y
Since z!=p.x; +q.y. we have p_=—u and so from (2.49) q.=+2u,

Now the equations x‘(r} =-2p and p*{e‘} ==p give dy =2dp=sx=2p+c,, where ]
I5 constanl. :

Also the equations p'(r) =2¢ and g'(t) =—g give dy=—2dg= y + 29 = ¢, where g, is
constant.
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Using the initial conditions, we obtain ¢, =4u, ¢, =2J27; Hence we have
x=2p+4u, J==2Jﬂ—2q
Again the equations p'(f)=—p and g'(f)=—q imply that p=cse’ and g =ge™ which
on using the initial conditions pive p=—ue"', q=\f'§ue" and hence
x ='2n(2—t’. I),, ¥V ZEJE(] —E"‘)
Putting ihe values of p and g in the characteristic equation z'(r) :Z(QE —pz), we get

= 5 3. . - it .
z’[f} =2ileH = z=-we” so=z=-U e ', since e = 0 by initial conditions,
Thus the characteristics of the given equation are

x= 2::(2 e ]; = zdzu(l - ),: =—ute (2.50)
The first two relations of (2.50) give ' = L?j' __2_-11,” = h which when substituted
N2X =Y 242

2
into the third relation of (2.50) leads to (J.' = \I'Iiy] rdz =1

This is the required cquation of the integral surface.

§ 2.10 : Charpit’s Method

A methad of solving partial differential equations of the [orm
F(x.p.z,p.q) =0 (2.4)
based on the considerations § 2.7 has been given by Charpit, In this method. we first
introduce another first-order differential equations
G(x. .z, pog,a) =0 ' (2:5)

where ¢ is an arbilraty constant, so that
(i) equations (2.4) and (2.51) can be solved for ¢ and g to give

p=p(x. y,,t,r:}, g =(x,p,2.a)
and (ii) the equation
dz= p(x, ¥ z.r:}dx - q(_r, yyzya jdy (2.52)
is integrable. :
if we can tind such a function G{x,p.2,a)dx +g(x, y,2,a)dy then the equation (2.52) has
the solution of the farm
 flepnab)=0 (2.53)
containing lwo arbitrary constants a, b and this solution will also be a solution of the equation
(2.4). It is obvious from the considerations of § 2.8 that the equation (2.35) is a complete
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integral of the equation (2.4)
Thus our problem is to find the second equation (2.51), compatible with the given equation

(2.4), the conditions for which are given in § 2.7 as

i F.G
Expansion of the last equation leads to the equivalent linear partial differential equation
i G aG b - 00 aG
o they, = +(pF, +:;F)d——( + P )55~ (E, +qF.) 2= =0

for the determination of G A solution of this equation can be obtained by fi inding an
integral of the subsidiary equation

dy _dy _  dz dp -

F, F ~ pF,+qF, {ﬂ*PF;}H—(F +q!"_) (2.54)

in accordance with Theorem 2.2. Th equations (2.54) are known as Charpit s equations
and they are equivalent to the chavacteristic equations (2.45).

If we can find G(x,y.z,p.¢,a), then the problem reduces to that of solving for p and ¢

and then to integrate the equation (2.52) by the methods gives in § 1.6. of Unit I. It may

be noted that not all of equations (2.54) are necessary, bul that p or ¢ must oceur in the
solution obtained.

Example 2.11 ; Find the complete integral of the equation 2zx — px® — 2gxy + pg=0 by
Charpit’s method.
Solution. Let F(x,y,z,p.q) =2zx~ pxt = 2gxy + pg =0 Then Charpit’s equations are
dz___dy _ A dp ___dq |
_rl + ¢ —E'.x_}" _pj_"? +Pg._2xyq —{22—2px—2q;1+2m] - "[—Eq.x +2qx}

2xz —2ax
so that dg =0= ¢ = const. = a say. Then the given equation gives, P = z—y
x°—a

Hence from the relation oz = pdx + gdy, we get

s - dlx®-u
dz‘—‘hz va"'dx+a@;;-d[z ‘U’}= ( )

<

X" —u 2—ay x* —a

Integrating weget =z —:;yzb(xz -a), ie, z=ay +a’:*(,1;1 ~ﬂ], where ‘b is constant,
Example 2.12 : Solve the equation px + gy =é{] ' pg]”z by Charpit’s method.
Solution, Let #(x,y.z, p,q) = px + qu—z(1 + pq}"’l * =(, Then Charpit’s equations are
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dx dy iz dp

HI—I

i =l ~
x—xax(l+pg) 2 y-5pAi+pa) T pregy-pez(irpa)? | p=p(l+pg)3

dg

= = 0
g—qll +pq}'z

dp _ dy ¥ :
The last two equations give lz?_:’:.” =daq, a being constant. The given eugation

P

z

then given 9= * Thus the relation dz = pdx + qely leads to

{(m + y}z = azz}

1 =]

5 |
cr;z = :.{crd'.r +dy} =+ MG(I’Z —zz)idz = 2+ el

2 s : [Putting ar =ax + p ]
{{ax +y) —az } ]

o

Integrating logz +%n2 l%u(uz—l]_ iiug{:n[ I] }_Cﬂ‘i’L-—hSﬂ}'

< it
: m [Putting ¢ =z ] —?Eiz =—{"+(”2 - ])

Fod | =

| _ax+y . .
Putting ¥= 7= s we have the required solution

| , |
axz;r y{fax +Jr’]+(a.r kY= Jﬂ'_z)z} +Iug{(‘” +y) +(ax o _@)2}=b

Snme special types of first-order partial differcntial equations.

flogz +

We now consider some special types of first-order partial d fferential equations which can
be solved casily be Charpit’s method.
() Equations invelving only p and g : Let the cquations are of the type

F(p.q)=0 (2.55)
Then Chﬁrpit’s equations (2.54) give
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de _ Ay dz a9

A 7 O R
an abvious solution ol which is p= const. = a, say. so that the value of ¢ can be obtained

from (2.55) in the form g = :J‘Jl[ﬂ} =¢onst. The solution of the equation dz = adx m:u]d_y is

then z=ay +dla)y +h, were b is anothr constant.

We have chosen the equation dp = () Lo provide our second equation. Sometimes it is more
convenient to use the equation og = 0 e, ¢ = g constant,
Example 2.13 : Solve the equation p+¢g=pyg

Solution : Lel F[:p,g}=p+q—;3q =1, Then Charpil’s equations are

de _ dy _ &y _dp _dq
l—g 1—p prg—pg o 0O

Thus dp =0= p=const = a, say. From the given equation g =ﬁ. Hence the equation

dz = pdy + gy, .. dz =odv+ .:.*ﬂ lafp leads to the required solution as z =ax +—* ek b,
= o
where b is constant.

(b) Equations nof invelving independent variables x and y : Let the partial differential
equalion is of the form

flz.p.g)=0 (2.56)
Then Charpit’s equations (2.54) are
o dp  dg

F, ", pE,+aF, —pF  —qF,

On integration, the last two retations give p = ay, « being constant. This equation along
with (2.36) gives the expressions for p and ¢ and the complete integral then follows by

integrating the equation dz = pdy 1+ gely, _
Example 2,14 : Tind the complete integral of zpg = p+4.

Solution. Let F(z,p.q)=zpg £ -4 =0. Then Charpit’s equations are

L o D ez _dp _ dg
2g-1 zp-1 2zpg—p-4 _p*q —pg°
: o e BB : ;
The last two relations give F—?ﬁﬁ‘—mfu where a is constant. Then the given

cio i atl a+l " : :
equation gives § ==~ 50 that p = e Henee irom the equation dz = prdx + gdy, e from
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i o

il o | Iy . g 2
P -Ta‘y, we get the required solution on integration as
7]

X

e =

az” =2(a +1)(ax + ) +b where b is another constant.

(c) Separable eguations A first-order partial differential equation is said to be separable
if it can be written in the form

B(x.p) =w(y.q) ' (2.57)
where F(x, p.z, p.g) =% (x, p)—w(r.q) =01n this case Charpit’s equations are
;3'_1' dy iz dp dy

o, ¥, PR,-w¥, -B. -V,

: dp @,
The first and the fourth equations produce an ordinary differential equation 7, '3 =9
; £

in x and p, i.c. an equation ¢ dp + P dx =0 whose solution can be obtanied in the form
&(x, p) =const =a, say. Thus we have ®(x.p)=a,w(y.q)=0 and then we proceed as in
the gencral theory, '

Example 2.15 ; Find the complete integral of the equation Py +xtyt = .tzq-”'[,rz + yl]

.

: : : Pl
Solution. We can wrile the given equation as — 7 —* =¥ —

S and the cquation is,

C
I\Jl (2% ]

2 2
; & il R ;
therefore, scparable. Let ‘I'l[-hP} =I—3- xwlng) =y _q_'z We then determine p and g

2 2

|
from the relations -fz —Xx =a, V' =7 =4 (a being arbitrary constanl) as p'= .WI'I 2 rq.

Jyz—u - Hence  from  the  equation dz = pdx + qdy, i.e.. from

dz=xy R

3, —
JJ’_E 2 4, we get. on integration z = %(':nr-2 + a’)’((é F \(}*Z ~a, where b.

constant,
(d) Clairaut s equations : A first-order partial differential equation is said to be of Clairaut
type if il can be written in the form

z=px+qy+ [(pa) . (2.58)
Then Charpit’s equalions arc
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e

Cdy__dy d2 ﬂ’p _dy
[, v+l pray+p,+dl, 0
so that p — a, g = b where g and b are constants. Putting these values of p and g in

the given eguation, the complete integral is obtained of z=ax +by+f{a,b},
Example 2.16 . Find the complete integral of the equation

4, 4
3=
Solution. The given equation can be wriltenas 2= px + gy + £ qu— which is in Clairaut’s

i
form. Hence the required complete integral is z = ax + by + 7 £

ab

, where a, b are arbitrary

conslants,

§ 2.11 : Solutions Satisfying Given Conditions :

In this section we proceed to determine the surfaces which satisfy the partial differential
equation

F(x,y.2,p,4) =0 (2.4)

and some other conditions such as passing through a given curve or circumseribing a give
surface. Also we consider now to derive one complete integral from the other.

First we determine the solution of the equation (2.4) which passes through a given curve

I' having paramelric equalions x = Ju,{ }, ¥ —y( ); = { }, f btlng parameter. For an |nt-:':gral
surface of the equation (2.4) through the curve T it is either

(a) a parlicular case ol the complete integral

obtained by giving @ or b arbitrary values ; or fl:x,y,z,a,b] =0 (2.32)

(b) 4 particular case of the general integral corresponding to (2.32), that is the envelope
of a one-parameter subsystem of (2.32) ;

(c) the envelope of a two parameter wqtem (2.32)

It is unlikely that the solution falls into categories: (@) or (¢). So we deal with the case
(h) only. Suppose that a surface § passes through a curve T and is of type (b). Then at
its every point, the envelope S is touched by a4 member of its subsystem. Let at a point P
of T, it is touched by a member &, say S, of the subsystem and since »_ touches § at P,
it also touches [ at . Hence § is the envolve of a one parameter subsystem of (2.32) each
ol whose members touches the curve, provided such a subsystem exists. To determine S, we
consider the subsystem to be made up of those members of the family (2.32) which touch
the curve T . The points of intersection of the surface (2.32) and the curve [° are obtained
by the equation

Fx(e)(r)z(t)ab} =0 (2.59)
in terms ol the parameter £, The curve T louches the "\'-I.IT'fﬂL!.. [2 32) if the equation (2.59)
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has two equal roots, i.e., the equation (2.59) and the equation

S {00 2(0)a,0)] =0 (2:60)

have a common root, the condition for which is given by the t-eliminant of (2.59) and
(2.60) as

w{n,b] ={
which is a relation between ¢ and b can be factorised to give

b=w(a),b=ya(a). @6)

each of which is a one-parameter subsystem. The envelope of these one-parameter
subsystems is a solution of the problem.

(2.61)

Example 2.17 : Find a complete integral of the equation sz Ly =2 and hence derive
the equation of an integral surface of which the line y=1, x+z=0 is a generator.
Solution : Let F(x,y,z,p,q) =z~ pPx—gy=0. Then Chﬂr;.}it‘s equations are
B dp_ o

= = B —ee i
2px -4 2p'x-qy p +p U

|
i : : o : . z—ay )2
I'he last equation gives ¢ = const. = a. The given equation then gives p=| ——

z-ay)2 . d(z-ay) _ dx
] +ady, i.e. [z—ay}m T 42 yields on

so that the equation dz = pdx +qdy_=[
i :
integration (7 — gy)2 =7 +52 ie, (x+ay-z +h]z = dhy ©(2.63)

which is the complete inlegral, b being constant.
Mow the parametric equations of the given line are
x=f,y=l,z=—

The intersection of {2.53} and (2.64) is determined by {2:‘+u+b}2 =4ht, 1.8, by
4% + dat +(a 4-1!))2 =0 which has equal roots if az{i.r +E:}2 ie if b=-2a0.

The appropriate one-parameter subsystem is

(x4 ay—z—2a) =-8ax, ie. a’ly —2)* + 2 x(y +q]—z{y—2}}_ +(J‘:—z.]2 =0

and has for its envelope {x{y+fi}-z{y-2]}3 ={y-—2_]3{x~—z}2, ie. xp=z(y—2)

The tunction z defined by this equation is the solution of the problem.
Next we consider the problem of finding one complete integral from another. Suppose
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flx.pz.a.b)=0 _ (2:32)
is # complete integral. We like to show that there exists another relation
glx.yz.ed) =0 (2.65)
involving two arbitrary constants ¢, d, which is also a complete integral. On the surface
(2.65) we choose a curve [ whose equations contain the constants as independent paramet=ars,
Then the envelope of the one-parameter subsystem of (2.32) touching the curve | is found
oul, Since this solution contains two arbilary constants, il is also a complete integral.

Example 2.15 . Show that the differential equation 2xz + qj = .T[:,‘Cp + }Jq} has a complete
integral = 4 o v + axy + by and deduce that x(y +ex)” = 4(z ~ dxz) 15 also a complete integral
Sofution : Let F(x,y,z,p.q)=2xz+q" — x(xp + yg) =0. Then Charpit's equations are

dx dy iz dp _ dg

—x? Zg—xp -px° beq —E S 2ztyy -ga

From the first and last relations, we gol on integration § =, whose @ is an arbitrary

2r+atx axy

= so that the equation

constant, Then [rom the given equation we have p=

tz = pelv + gely pives

xely — pelx

dx +axdy = — 5

2
ol
5 —!EIIFJ.' = de =
X x = X

-, s
GFZZE..-_HJJIL £y tz .2z

X X

Z .n‘.?l ¥ z az ) - ;
=¥ “T( 3 J-l-d{_?] = ﬂ'ﬂr[?]:i1+ i—:u;+b, on IIiT.{.'-gHﬂlDﬂ

e =i az_s,-zuxy + bx* which is a complete infegral, & being constanl.

To show that

{3k cn.']‘E = 4(3 - dxz] (2.66)

s 2
: ; - . X7ty
is also a complete integral, we consider the curve 1': p =0,z =5 4—d

on the surface (2.66). At the interscclions of z 4 g x=u.1y+bx2 and the curve T we

have ¢'x” +4(.:.|’ —h}.x: +du® =0

which has equal roots if b=¢ +ac, Taking h=¢ + ae the subsystem has the equation
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zHa X =axy+ (el +4:r-:;"_].r: e atx—xlex +y)a+z —dx") =0

which has the envelope x(ex +_|.J}: =4x{z —a'x?')f ie. xly +I’.'.1-':]: - 4(z—ra’.'c2)

"T'his is, therefore, a complete integral, 5
Lastly, we outline the procedure in determining an integral surface

which circumscribes a given surface. Two surlaces circumscribe

each other i (hey touch along a given curve, e.g., a conicoid and its

enveloping cylinder, and this curve ol contact may not be a plane

curve. Let the partial differential equativii (2.4) @ F (x,5204) = 0.

his a complete integral (2.32) . f (s yz.ahb) = 0. Our ohject is to find,

with the use of (2.32), an integral sw face of (2.4) which circumscribes

the surface > whose equation is

w(x,.z)=0 (2.67)
Let us consider the surface Fie. T4
Eaulx.p.2)=0 (2.68)

of the required kind, Then it is one of the (hrec kinds

(a), (B) or (¢} listed above. Owing to frequent oceurence, we consider the possibility (#),
Sinee £ is the envelope of a one-parameter subsystem § of a two-parameler system (2,32),
it is touched at each of its points, and in particular, at each point F of T by a member 5,

-of the subsystem S§. Since 5, louches £ al P > at P. Hence the equation (2.68) is the

‘equalion of the envelope of a set of surfaces (2.32) touching the surface (2.67). We now
find the surfaces (2.32) which touch £ and sce whether they provide a solution of (he

problem.
Now the surface (2.32) touches the surface (2.68) if the equations (2.32), (2.67) and
ooy S
Wi ]"I'r_v 8 (Zﬁq]

are consistent and the conditions for which is the elimination of 3.z from these four
equations yielding a relation of the type

Ma.b) =0 (2.70)
between « and B, This equationcan be factorised into a set of relations of the form
b=x.(a)b =) (2.71)

each ol which defines a subsystem ol (2:32) whose members touch (2.67). The points
of contact lie on the surfacé whose equation is obtained by the elimination of a and b

from (he equations (2.69) and (2.71). The intersection of this surface wilh E is the curve
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I . Bach of the relations (2.71) defines a subsysem whase envelope E touches z along T .

Example 2.19 : Show that the integral surface of the equation 2 y[l 1 pz) = pg which
is circumseribed aboul the cone »? +z%=3? has the equation = =y2(4y2 +4.x+|)

Solution, Let FIfJ:, y,z,p,q} = y[l + pz)— Pg =0 The Charpit’s equations are
ety L dz _dp__ dp

dyp-q9 -p 4yp1 ~2pg O —{2 +2p2)
The fourth relation gives p=const. = a, say, so that from the given equation we have
2 y(l + c-'z)

o

q= , Hence the equation dz= pdx +gdy leads to
o)

291 +a*
¥ ( ) -+b, on integration, b being a constant,

iz =g +

This is a complete integral.

dy=sz=gqx +

y2(1+a'2] ’ 5 LS
MNow let f{x,y,z,a,h}=z—c.'x————b=ﬂ' and _W(x,_}’,j.'}:l' +¥° =z" =0 Then
a
e rohtion Le=dr oS o  Dleat) 4
the relation Ve v, v, gives E—T—E 50 fhat
- ~2h
X¥=— g = L 2=E-[a }

2([+a2]'z_2(l+a2]- Hence from f=0, we get * g(m

Using the above values of x3z we find from the equation w =0 that the relation
h=af4 defines a subsystem whose envelope is a surface of the required kind, The envelope

of the suhsyslum {4.1‘ +4_],-'1 + l)az —d gz 4 4_]-'! =0 i35 uhvi{}usl}r 2 =}"2 (4_—; - 4,:,,.1-i EH |)r

§ 2.12 : Jacobi’s Method

Another method of solving partial differential equation of the form

Fx,nz,p,q)=0 _ (2.4)
is due to Jacobi. The method lies on the fact that if there is a re_latiun

ulx,y,z)=0 (2.72)
between ¥,z then .

Hy
iy

(2.73)

ol g=
.p:_' -
”I 5 3
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i ;. .
where =—a:{f = |.3.3) . Substituting (2.73) into (2.4) we obtain a partial differential

equation of the type

flxyzamanu)=0 (2.74)
in which the new dependent variable u does not appear.

The fundamental idea of Jacobi’s method is lo introduce another two first-order partial

differential equations involving two arbitrary constants @ and b of the type

) o di oo B g L i o _
glxipzun @) =0, 55 e gitdn gy g gy e (2.75)
such that

(a) cquations (2.74). and (2.75) are solvable for .5

and (b) the equation du = wdx +uizdy + tiadz (2.76)

is integerable.
Now the equation (2.74) and (2.75) must be mutually compatible so that

1f.]=0, [2]=0, [hf1=0
The equation [f,g]=0implies
o/ .g)  AS.8) | AT 8)

£ I, LAY =)
Axm) Hxuw) Axan)
. g ag . dg dg iy ag
i + s % _ps = f —==0
fes "f"!' ax "'{"2 v Jua az : i ¥ dia /5 i1

which has subsidiary equations
de _dy _ dz _duy _dia _ s
T R e S T 297
__||'r||| flr:u fr.l] _f.l.' _,I'rl;' _,I'r: . ( T ]
Any two solutions of (2.77) involving u; w; or iy serve the purpose of equations (2.75),
. proyided that the conditions of compatibility are satisfied. We solve (2,74) and (2.75)
for iy, iy, OF Uy and putting these values in (2.76) the required solution is obtained after
integration.

The advantage of Jacobi’s method is thal it can be generalised to any number of
variables. If we arc to solve the partial differential equation

£, Xz Xty Mty ) =0 (2.78)

where 1 __'a%.r. . (=13, 1), then the auxiliary equation is
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dvy _dvs _ _dv, _ duy

iy o = Gty
.J".Jlj ,,"I.a.-_- .fw,, _f.ﬂ ; _.fv,.r

involving (n—1) arbitrary constants, We then solve these cquations for Uysity.,.0t, and
determine 1 by intcgrating Plaffian equation . The solution is then obtained containing u
arbitrary constants. On the other hand. Charpit’s method cannot be zeneralised directly.

Exemple 2.20) : Solve the equation xrgiy=z by Jacobi’s method.
Soluiion © I'he given equation is _F{J:.J.J.-:.p,cj']=p2.t+:;r:_'|i -z=0

iy e - )
Putling === 4 =~—in this equation we get
% i Iy
Sz 00,0) = xuf + vl - 203 =)
(279
Hence Jacobi’s. equations (2.77) are

efx efy dz  d _du, iy

2ux by 2z —uf - i

v 2eluy

From the first and fourth equations, we have r_+ }
oo

=0=xui =n

: ff : . . ' dy  2du,
Le 1 = = Also, from the sccond and fifth equations we BRbS

=0= yu; =h
My

o +h

e, M2 =, Hence from (2.79) we pelt uy =

&

ST

Thus the cquation du =, dx + Mady +itzdz  gives

di = Fdx + J;-c{u I Jﬂ +hc1’:'
¥ ) z

Integration leads to

i=2ay + 2. by + 2\[{_& +hlz +e
Example 2.21 @ Solve the equation px+ gy = Pq by Jacobi's method.

Solution. The given equation is {1 I, p.r;}= gy —pg=0. Putting
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mn a ) .
p=——_ 4=—— in this equation we¢ get.

s 3

_}"{x._p,:, Iy, s ,ah} =gt X st vt =0 (2.80)

Henee Jacobi's .equations (2:77) are

el dy dz el diz dity

HaX +ita P+l Xy =iy =izt 0
The last equation gives gy =0—su,= const. = ¢ (say).
dits iy

S ==ty = by

From the fourth and fifth equations we derive . .
2 |

where b is constant. lence [rom (2.80) we gl

) i+ by
wpes + ey + b =0= 1, :_-{h—‘} (e #0) so that u; =—clx +by)

Thus the cquation dit = ey +usdy + ez Zives
dt = - ;—{ x + by (el + bely) v e dz
I
leading to the solution
c 2
u=—-2(x+by} vez+d

§ 213. Application of First-order Equation : Hamilton-Jacobi Equation :

One of the most important first order partial differential cquation which occurs in
mathematical physics is the Hamilton-Jacobi equation given by

- ﬂS ﬁr EFS
Jlr‘,['?I'f_-!'-_'--"‘alru-'— —, ]:{} {23”

aql ,ﬂqﬁ "'aq”

In this equations H{qy.42...4u. 21 L2 o) devotes the Hamiltonian of a dynamical
system of n generalised coordinates g .4, .4, and conjugate momenta p, ., Pa -

Here the dependent variable is absent and, therefore, it is of the type (2.78) of § 2012,

The characteristic equations are given by
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dt _ dgy  _ _ dqy _  dp ey
| 8H{op,  oH/dp, -0Hjdg, =~ -0H/dg, (2.82)

which are equivalent to the Hamiltonian equations of motion

)l N by o E

d apt =_&_r,n (i= 1.2....0) (2.83)
It we write the equation (2.81) as
S=-Wr+§,
then we have
ﬂ-ﬂ'. ﬂﬂ',
Ml quigeogpi——i— J:w
![ dqy  dg, (2.84)

As an example, let us consider a dynamical system with two degrees of freedom
with Hamiltonian
Ppi+0pi  E+n
hr: p f_}!"?l_ E

2AX+Y) " X+¥ (2.85)

Where P, X, £ arc functions of x alone and Oamm are functions of y alone, Then
the equation (2,84) gives

(Pp+0B,) (g +m)-W(X +¥)=0

Then one of the characteristic equations is

{
dx . g

fp,

1 0
EFm+f—wr-

i
which has the solution P, :{g{pﬂlf . - +a}}i

1
where « is an arbitrary constant. Similarly, we have Py ={2(w}*_13 +g,}}z

where b is an arbitrary constant, Noting that p, =p,(x) and p, =p.(y), we have

S= Wi AZ[(WX~E v aads +NE[ (WY 1 + )iy

Thus a solution of the Hamilton-Jacobi equation can always be obtained for a
Hamiltonion of the form (2.84).
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Exercises

|. Formulate the partial differential equations by ¢liminating arbitrary constants or

functions from the following :

(i) z=(x +a)(y+b) [Ans. pg =2]

(i) ax® +by? +z* =1 ; [Ans. z(px +qy) =27 = 1]

(iii) x2 +y7 +(z~¢) =a® [Ans. py —gx=0]

(iv) {,t—n]q“ +[y—b}2 22 =1 [Ans. 22(1 + p? +q3:] =1]

(v) z=xp+ f{xﬂ ,,}.z} [Ans. x> -y =gx - py ]

(vi) z=x+y+ f(x) : [Ans. px —gy=x-y]

(vii) z= f(xp/z) [Ans. xp(z— vg) =qy(z— px)]
(viii) z= f(x - ) [Ans. p+q=0]

2. Find the general intcgrals of the linear partial differential equations.

(i) ply+ax)—glx+yz)=x* =y  [Ans (¥t -2t ap +2)=0]
(if) z{px - gy)=p* —? [Ans, f(x* +y* +22,xy)=0]

(i) px(x +p)=qu(x +y) - (x—y)2x+2y+2) [Ans. S{(x+9)(x+y + 2} =01

(iv) a(x? +3y2)p-y(3x* + y)g =2e(p* - %) [Ans. f {%z{xz +.v1)}=n]

2,2
W pl(z-207)=(z-p)z-»* - 257 [Ans. f{ixi—” : +x‘} =0]
£ X A
(vi) ¥ip-xyg=x(z—2y) [Ans. [(x? +yz,5° +y2)=ﬂ}
3. Find the integral surface of the linear partial differential equation
s(y? +2)p-p(x* +2)a=(x" - »*)
with contains the straight line x +y=0,z=1 [Ans-.f{x? + yz, X2 +y2}=P]

4, Find the equation of the intetral surface of the differential cquation
2p(z-3)p+(2x-2)g = y(2x -3)
which passes through the circle z= 0,x + y* =2x |Ans, ¥yt —2x=z"-4z]
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5. Find the general integral of the partial differential equation
(2xp—1)p+ (z - Z:L"*'Jq =2{x—yz)
and also the particular integral which passes through the line x = I, y = g
[Ans.x* +y? “xz - yaz-1=0]
6. Find the integral surface of the equation
(x=3)pp+(y—x)xg= L ¥ a8 )z
through the curve. xz=g? p=0 [Ans.zl{xl +y3}! =u"'{,1;—yj3]
7. Find te surface which interest the surface of the system
z(x +y) =:.*['jz +1)
orthogonally and which passes through the circle x2 +32=],.=
[ﬁt‘lﬁ.,{'g +_'|,.IJ =Ty =4 2]
8. Find the equation of the system of surface which cut orthogonally the cones of
the system x2 ¢ y? +z* =exy. - [Ans. x® + y? +-2 = f(‘rj i b & L |
B Shewy that the equations xp = g, z(xp + Yg)=2xyare compatible and solve them.
[Ans. 2% =¢) + 231 ]

10. Show that the equalion z = px + gy is compatible with any equation Ty, ng)=0
that is homogeneous in xy and z.

Salve compleiely the simultaneous equations
z=px+qy2x(p" +g°) =2(py + gx) [Ans.z* =c(x" + ) or 22 =cxy |
WAy =aufax, w, =dufdy, u; =aufdz, show that the cquations

Sz ) =0, gl yzu b, )=0
Afg)  ofg) oS .g)

are compatible if E}{r H|J| i d(}f T } +:':I_I§’z us) =0

12, Verity that the equations

(1) z2=+2x4a +.ﬁyﬁ

(b) = ep =21+ N )(x+Np)

arc both: complete intergrals of the partial differential equation
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1 1
Z=—w—
I
Show, further, that the complete integral (b) is the envelope of the one-parameter

subsystem by taking
a

ho T+A

in the solution (a)
13. Find the characteristics of the equation pg = =z and determing the integral surface

which passes through the parabola x=0, y*=z.
L ' I i o B ) 2
[Ans. Characteristics : X = 2vle’ - 1),y = Ew{e r1)z=v2e? 162 =(x +4y) ]
s o :
14. Find the solution of the equation 2= 2 {P‘ + 9“}( r —x]{q - y} which passes through

% y{4x-3y)]

15. Solve the following equations by Charpit’s or Jacobi’s method :

the x-axis. [Ans. 25

) | n y
(i) pr+ay=pg [Ans.az=_(y+ax) +b]

v a 1 I

(i) (p* + 0 )y =gz f"’*~f|'5-(z2 —a’y? ) =an+h]

(i) z- px—qp=p* +q° [Ans. z—ax+yb+a® +h* |

5 :
(iv) p?+q* —2px—2g+1=0 [Ans.(a® +1)z =b+%u9 zu"{iu (12 ~a® - I}i|
_%(ae * l)i'ug{u *\E”I I |]} where uw=ax+y ]

(V) 2xz-p® -2q+pg=0  |Ans.z—ay=b(x* ~a)]
(vi) g +px=p* [Ans. Z=%[.r1 + {.tu'x-’- +4a + afng{x . ) +4a)} ray + hJ
(vil) 2=pq [Ans. EJE =g + )4 bl

I Je i 1 o
(Vi) px +qp =2(1 + pg)2 [Ans. :"ﬂgz+5u"+£tw'r.-2—] +£-’og(u Pt -1 =b

where u:[gx.py)frJHJ
: ‘ = 4 + )+
(ix) (p+q)(pxrqy)-1=0 [Ans.® Vi +ﬂ]ﬁ[‘“ ») h]
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(x) p= (qy+2)° [Ans, yz=ax+zjay +b]

(xi) pxy+pg=qy-yz=0 [Ans. (z-ax)(y+a) =:.hf!J']
(xii) {_p?' +r;1).1'=pz [Ans. z =.f:-x"y=|'}

(xiii) (p* + 4% )y=gqz [Ans. (x+B) +p? =422

j |
(xiv) z* = pgxy [Ans.z=by"ye ]

- ax b
o e =S5 =l
h 4
(xvi) pg= y 4 ]

1 i
(xvil) p222 4 g2 = [ﬁns.m{] +afz:]? a’ag{ﬂz+{1 Fata? } } 2a[av+y+b}]
1 ;
(xviii) p?y(1 422 ) =gx? [Ans. z =ay] + 27 +Ea1y£ +h]

1
i I—xp—yg)= by +——
(xix) (p +q]{ xp—yg)=1 [Ans. 2=ax+ J’+a+h |

(xx) p+g=pg [Ans. z=ﬂr+f_y1+h ]

(xxi) zpg=p+q [Ans, 2° =2(a+ I}[x+§)+.ﬁ ]

(xxii) pig” +x73? =x2¢*(x* + ) [Ans, z=%{:¢2 +y3}i +(y? —az}ll' +h]

16. Find a complete integeral of the partial differential equation (;}3 +q? Jx =gz and
deduce the solution which passes through the curve y=g, 22 =4y,

[Ans.Complete integral : z? =42 +{ay+.i5) Solution :{zy_zz)z =4(x* + 37)]

I7. Show that the equation xpg+yg? =lhas complete integrals
(a)(z +B)" =4(ax +p), (h)ks(z + h) = k2y + x?and deduce (B) from ().

18. Show that the Dn-iy integral surface of the equation 2¢(z— px - gy)=1+¢* which

is circumseribed about the paraboloid 2x = y? 4 22 is the enveloping cylinder which touches

it along its section by the plane yp+ =0
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19, Show that the integral surface of the equation z(i —q3)=2[ px +gy)which passes

through the line x=1, ¥=hz+khas equation I[y—kx:]?' =zl{{l +.l'12)x—l}
20. Find the complete inllegral of the differential equation

(v +:z7) =é2(l + p? +¢*)circumseribed about the surface 37 — 7 =2y

[Ans. (x _”}z + v 422 =2by = ﬂ,{_v"2 +dy+ 221]? =8¢

21, Show how to solve, by Jacahi’s method, a partial differential equation of the type

[ du du [ Bu
f[ o a?] "([ “ay a,.]
and illustrate the method by finding a complete integral of the equation

7 B 3
au Yy dn A du § | PO
Iz}{—] — =x?— +2.}‘[__) [Ans: r.-(ax-’ - E!}l +ayt + .F_ +¢ |
¥

dx ) dz dy ik

§ 2.14 Summary

This unit is dealt with partial differential equations of first order, their origin, formulation
and solutions by different methods like Lagrange, Charpit and Jacobi. Existence of the
solution has also been indicated, Compatibility systems of first order equations are also
considered and Cuachy’s method of characteristics for solving nonlinear partial dlffel'ennai
equations has been discussed. '
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UNIT 3 0 SECOND ORDER PARTIAL
DIFFERENTIAL EQUATIONS

§ 31 INTRODUCTION

Tt this unit we confine ourselves to a preliminary discussion of second order partial
differential equations, and then in the [ollowing three chapters we shall consider in more
detail the three main types of second order linear partial dilferential equations. Though
we are mainly concerned with second order equations, we shall however, deal with some
partial differential cquations of order higher than the second, viz, higher order linear partial
differential equations with constant coefficients,

§ 3.2 The Origin of Second-order Equations
Let & function z be defined by an expression of the form
z= f(u)+ g(v) +w . : (3.1)

in which f and g arc arbitrary functions of @ and v respectively and w« w w are
known functions of x and p. Let us write

_dz - . iz r_ﬂzz_ -
P_a:\" q ay’ F-*ax—l. dxdy & . (3.2}

DifTerentiating both sides of (3.1) with respect to x and y respectively. we get
p=f () g (vve +wy
g = (they + g (v)v, +wy

so that

r=J (wut + g (v)vi 1ttt +g'|[1=]11_ﬁ. b

s = (e + g (v)vevy + F (g v 2/ (v)ve + i,

(=1 (w)ud + g (VIvE + () v g (W + gy
The above five equations contain four arbitrary quantities . Eliminating these four

guantities [rom the five cquations we obtain the relation
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p—wi tx ¥ 00

g—wy vy 0D

r— Wl e i 2 =0

8 — Wy B Vg Ml Vil (3:3)
. 3

I — Wig My Vg Uy Wy

Equation (3.3) invalves only derivatives p.g.rns.f and know functions of ¥ and y and
is. therefore, a second-order partial dilfercntial equation. Expanding the determinant on
the left hand side of (3.3) in terms of elements in the first column: we obtain an equation

of the form.
Rr v Ss+T1+ Pp=0g=W (3.4)
where each of R S 1, K @ and W is a function of x and y. lence the relation
(3.1) is a solution of the second-order partial equation (3.4). It may be noted thatl the

cquation (3.4) is a particular type in which the dependent variable does not occur,

Example 3.1 : Show that if fand g arc arbitrary functions of thier respective arguments,

then w= (v v +icy)+glx -t —ioy) is a solution of

e
where o =1— -,

c_ P
Sofufion, We have w= .,r"{x —y+ :'cty} + gl{x — it = :'i:ﬂy} (3.5)

Differenting (3.5) twice partially with respect to x, 3 and [ we gel respectively

3
:::: -i{ :f"{.‘f -1 +f(_1.'_],.l} 4 g" {.T — = “x}.-}

2
% = -at’ [f [:.1' —vl viay) + g (x—wt —f-:xy}]
dp
f]?,- T =y [;{1 v o)+ g (x— vt fdy}]
a2
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It follows that
e P
dxt Al
d'u a1 Fu
0 S e i
d  ayt et ar?
3.3. Linear partial Differential Equations with Constant Coefficients
(Two Indepent Varviables.)

(=0 e i) g (3 vi )]

An equation of the Torm F(D.H)z=j{x._w} (3.6)
where F(D,0') denotes a differential operator of the tupe

HQUPZZ&HH“ 37

I

¢}, being constsnts and £ 5%,, D E%y, is called a linear partial differential
equation with constant coefficients in two independent variable x and »

The most general solution, Le. the solution containing the exact number of arbitrary
functions of the corresponding linear homogeneous equation

F(D.D)z=0 (3.8)

is called te eomplementary function of the equation (3.6) and any solution of (3.0)
is called a particular infegral of (3.6).

Theorem 3.01: Let w be the complementary function and z; be a particular a of

the linear particl differential equation F (D.D'}z =f (x. y}. Then w+z is a general
solution of this. equation,

Proof  Firsl we note that the solulion w4z contains the ¢orrect number of arbitrary
functions for a general solution of the equation F (D. D']z = f(x.y). Also, F{ DD }u =0
and F{D.D'Jm = f(x¥). So we have

F(D,D u+z)= F(D,D )+ F(D.D )z = f(x.9).

Hence g4z, is a general solution of the piven equation.

Theorem 3.2 : Leét 1, us ... w, be n solutions of e lincar homogeneous partigl

L
i i s ¥ o =1 ¥
differential equation I {I}.D }:: =0. Then z(*'”r. where (& are arbitrarie constants,

|

is also a solution of the cquation.
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Proof : We have ¥ (D, b ){C,-m.} =0 F [:}_J, D }m

and F(D.0)Y 1 =S F(D,D Yu
=

r=

for any set of functions u,, Therefore,

f-'{j'_}. Dr}iﬂ,. i, =icr F{D. D']u, =

= =

This prove the theorem.

The linear differential operators can be classified into fwe main types :

(a) F(D. D'J is reducible il it can be written as the product of linear factors of the

form oD +80 +y where @, § and ¥ are constants and

(1) F{L‘t D'] is frreducible if it cannol be so wrillen.
For example, F(D,D')=D*+ DD -2D?-D-2D' can ¢ written as the product

{D+2D'}(D—D'—I}3nd, therefore, it is reducible. But F(ﬂ.ﬂ‘)=ﬂz —20 cannot be
documposed into two linear factors and hence it is irreducible.

Rules for finding complementary functions.
(u) Redueible equaiions.

Theorem 3.3 : If the operator F I[U,-D’) is reducible, the order of the linear factors

iy umimportant,
Progf : We have (a.D+8.D £y ) D+ B +1r.)
= a0’ +{'I.'r#f Lov 3, }-DD’ v 38,07 + (C\!;ﬂ.‘, + Tra.-.-}ﬂ

' {Tlﬁr + ':l‘"rﬁ.\'J DI Y

{&\D +3.0 +t}f.}(arﬂ+ﬁrﬂ +':rr)

lor any reducible operator and, therefore, we can write
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F(D,D)=11{a, D+ 6,10 +y,)

=i
Theorem 3.4 : Let a,D+8.D +v, be a factor of F [D.D'} and ¢.(E) is an
arbitrary function of the single variable £, Then if o, %0

e = ex;{— j:: ]ﬂ,‘r,- (Brx— Ctr;u]

is a solution of the equation I [D, D'}z={}

i e ol are "}-"J.__f .
Proof : Differentiating ¥ =€3p| —— ¢r{ﬁ“‘r @ y) with respect to x and ¥ we pet

P

respectively.

= —HM‘ + 3, r?xp[ - tquﬁ'r(ﬁ"r = EJ.JJ}

r 2

' - X
and Dy =-0, exp[— 1L

Oy

};r(ﬁ,-x—a,-y)

so that {mﬂhﬂrﬂ +'}‘r}m =0. Now by Theorem 3.3

E o

F(D.D'}m ={I:III{£1.{D b0 +‘:r‘.-:]}[u£.-ﬂ +8.D +1r‘r}ur ={)

Similarly we can prove the following theorem.

Theorem 3.5 : Let 8.0 vy, (B, #[II}. be a factor of F(D,D‘} and ¢.(£) is an

—ﬂ}*r(ﬁm‘} is a solution

arbitrary fimction of the single variable £. Then W :‘?-"'P[

of the equation I ( D, D')z =0,

Example 3.2 ¢ Solve the equation (D?—DD' -2D" + 21}-1—2!]')3 =0
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Solution : The given equation is (JJ+D'){D—ED’ [ 2}: =(), Hence by Thearcm 3.4,
the solution is z=¢(x~¥)+e6a(2x~ y)

Case of repeated factors :

it F ( I, D'] 11:1:_1 repeated factors of the form (nJ-D + 8,0 +T.-]IJ, the solutian of the
equation 77(D, D)z =0 corresponding fo a factor of this type can be obtained by applying

Theorems 3.4 and 3.5. For example, if p=2, then for the solution of the equation

r

{0&,1] + G0 + 'yr)r z=1 _ (3.9)
we put Z :(n:,j_l +E-0 +~,ﬂ,}23 50 thal {u.—D 3,0 4 T,-]Z=ﬂ and by Theorem 3.4,

it has the solution
L)

Z =exp[ <

o ]‘p;-{ﬁrx—ﬂrj’}, provided o, =0,

o find z, we solve the first-order linear partial differential cquation

Using the method of § 2.4 of Unit 2, we find that Lagrange’s auxiliary equations are

dv _dy _ &
oy _T‘,.z+exp(-lf:x]¢r{ﬁrx—c:,.y}.

From the first two equations, we get f,x — e,y = const.= ¢ (say), and, therefore,

X ‘dz

o L E,'l'p[- l'..f )“ﬁr {f—'l}

a4

This is a first-order linear ordinary differential equation having the solution.
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" i {d,,{.;-,}_r+ﬂ:}“-‘ff’["m' ]

o,

Henee the solution of the equation (3.10) and, therefore, of (3.9) is given by

2={x00(Brx—ary) vy (B - ary)} ml”[ y 21)

where the functions ¢, and y, arbitarary,

By the method of induction, this result can readily be generalised o give
Theorem 3.6 @ Lei {fr,.f_} +3: L 5+, }”. {u,. ?f[i] be a factor of F (Ll. D'}am} ihe

FURCHINS @1, Brs oo Bon COFE arbitrary. Then a solution af F{D, D’):«::{] is exp

Similarly, we have the generalisation of Theorem 3.5 as

Thearem 3.7 : Let (ﬁ,.ﬂ' + T,.)"r, (B, #0) be a factor of F (D, L‘!'} and the functions

Boli Br2iooiiiii B are arvitrary, Then a solution aof F(D,D’Jzﬂ} is exp
) WS

e
Far |

We are now in a position to state the complementary function of the equation (3.6)

if the operator ﬁ'{D.D'JI is reducible. Theorems 3.4 and 3.6 show that if F(D.D’) is
reducible and is of the type '

E(D,D)= 1D+ 8,1 +y,)"" REETY

and none of the «,’s is zero, then the corresponding complementary tunction is

iy M kv i =
“= im;p[_ 2 r)zx b (Bra — ) (3.12)
=1 ro =l

[
where functions ¢.(s=12,.... M =12,.,..n)are arbitrary. IT some of the 4, 's are ZEro,
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the necessary modifications in (3.12) can be made by means of Theorems 3.5 and 3.7.
From (3.11), it follows that the order of the euqation. (3.8) is my +m, 4. +m,, . Since the

solution (3.12) contains the same number of arbilrary functions, this is the complete
complementary function.

Example 3.3 ; Solve (DH — 4Dt D +4DD’3)3 =0

Sofution, We have D(D—ED‘}EZ ={}. Thus the solation is

z =gl y:]+2u‘ i (=2x— )

x=l

e z=fi(1)+ (2% v ) £ xf5(2x 4 ).
{h) frreducible equations.

For irreducible operator it may not always be possible to find a solution containing full
number of arbitrary functions. However, it is possible to find solutions containing as many
arbitrary constants as we desire. The method of finding such solutions [ollows trom the
following theorem,

Theoremn 3.8, : F(D,D’ } LB {a,b}e‘“”’*"
Proff : Since the operator F(D,D’) is made up of teyms of the type ¢, D' D" and

DJ'(L’-.H'HH.') = arEm-H'r_l- g ﬂ..'.(e:rx'by }Ih.'r{fwx'.fn'
r + by ik
we have (f‘ DD ")( a2 ”) o o« A

The theorem follows by recombining the terms of the operator F { DD,

Note : Although the theorem is true for both reducible and irreducible operators, we make
use of it only for irreducible case.

To find the complementary function of the equations (3.8), we first split the operator
F(D,D')into factors: The reducible fuctors are treated by the method (a). We treat the

irreducible factors as follows. By Theorem 3.8, we see thal 4% 15 a solulion of the

cquation #(D,D')z=0 provided F(a.h)=0. Hence

z=3c, expla, ¢ 4 h,y) (3.13)



where ¢, b, ¢, are constants, is alsn a solution of I"{ D,D‘}z=[],pmvided the consiants

a,.b are connected by the relation
Fa.b.)=0

The series (3.13) may not be finite. [Tt is infinite, then 1t should be uniformly convergent

(3.14)

for a solution of the equation.
Exanple 3.4 @ Solve (D-2D"+ 5}(03 + I+ 3]: =1

Solution © Here the second factor on the left hand side of the given equation is
irreducible. Ilence the solution is :

z=e Py +2x) + et
:

where nf LA e 3 =0

Rules for finding particular integrals,

The particular integral (P.L) of the equation

F(D,0')z= f(x,») (3.6)

is given by
1

5 jn'[u,ﬂ')f (%)

P.1

L Lat f {:c,y} t'lne-a polynomial in xand p fe, [ {:c, y} =%a x"y", where 7 ¥ are positive

integers ar zero and g, are constants so that

3 — ] =]
P.l.= —D"__f'{ﬂ' 7 D} f{.\,; ]

Here { /(D' / D}}_] is expanded by binomial theorem and if the highest power af y in

f(x,v) be e the we retain terms upto (D'} D)".

s 0 +&13 ey
P 3 L aft 5 R i i !
Example 3,5 @ Solve the equation T axdy oy

Solution ; The given equation is (D+D') z=x" + xp+ p'.
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1
The complementary function is == Z‘f—lf-‘n (r=p)=ax- )+ xipyx - »)

a=l

‘ ; l 2 i 1 B & z 2
The particular integral P. 1 = }T(T tayp+y :I = | T (Jt' +Jt‘y+y')

(D+D -

430 5 2 3 4
R | _U_+_£T! ....... b +,ty+y)

] 4 3 2.9
ol T B NG T
4(1 2y + 24"y )
lence the complete solution of the given equation is
I L
=gy(x )+ ey —p) el —2x'y +26°5%)

1L Let f(x,y) —™'™ By Theorem 3.8, we have

F(D, D)™ = F(a,b)e™™

so that, F D_']em.-m- = (ﬂ*h)‘f.“”‘r‘ provided & [:H,b] 20,

Example 3.6. : Solve (UE —phy-2D" +2D.+1D']z = MY

Solution. The given equation can be written as (D+D")(D-2D $2)z =™

The complementary function is = = ¢,(x — ) e (26 +y).

] Fr+i ] Fxtd
g —_ &) F
Al - ¢ |

2 _34-24" +23124 21

The P1. =
3y . § s * =2 \ ]
Henge the general solution of the given equation 1s = =¢?{x ~y)te " @, (2% +¥) _EE
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L Let f{x,y)=sin(ax +by) . Il F(D,D") = ﬂ(U!,DD',D'E),then
we have ;-5{ DE,DD'.D‘Z}sfn{ax +by} :gj(—a?,—ab.—hz}sin{m' +JJJ:}, s0 that the

Pl I sinfev +b ) I sin{cox + b )
A= - : oy ol g _— X J"
H(D,D) " (0,07

= I -sinfax + by}, .provided ﬁ(—ﬂ:,-ab,—bz) =0

dl( a’—ab. -bz)

Similar result holds for f(x, y) = cos{ax +hy).

&z Pz
: o i s =SInxcosZy
Example 3.7. Solve the equation &  aiy 3

Solution. The given equation js (D DYz = [an{x +2y) - sin(x —Zy}]

B3| —

The complementary function is z=¢,(y) +oy(x+y)
The P, =-] T]—sin{x + Eyj - —jL—sin{_r —2_].1}
2| =10 (=12} =1*={=1-2)

=%sin[,r +2y)+ Eii-sin[x ~2y)

lHence the general solution is z=g,(y) +¢,(x +y) -I-EISiFI(.E +2y) +%sin{x -2y)

W If Flab)=0, the above methods fail. In such cases (bD~aD') is a factor of
F(D.D'). So we can write £(D,D") =(bD - aD')G(D, D), where G(D.D) =0,

Consider now (5D —aD")z= f(ax +by), The subsidiary equations are then

d_r_afp: iz

b —a  flax+by) :

dy e
The first two relations give ax + by = const.= L'[:.!.'ay} - Also the relation IS ‘F{_m i by] i

: ﬂr_x: f-’.'.' : X o X E‘
i.e. the relation b _,f'l[c} gives Z-Ef{ﬂ)“b-f(m“f J’}.

254



Hence the Pl is now given by

I T Sy e S
Fo. 0y ) .y

fr g
b))

Slax +by) =
where d{ax +by) is obtained after integration of f (ax +.’Jy} and it is heing supposed that
Gla.b)=0.

Next consider the relation F(D,D')=(bD-aD")G(D.D’)
Differentiating with respect to D, we pet

F(D,D") =bG(D, D)+ (bD - aD")G'(D, D)

so that ﬁ"’{a,h):!:r(}(a,,b}. Thus the Pl can be written as

o +by).

F {J::,b}

Generally if F(a,h}=ﬂ,we write F{D,D‘:}:(Dﬁg] G(D, D) where G(D,D') 20,

Then

o O ! _
18 =mj[m: vhy) = Glad) v Sflax +by)
P

Example 3.8 Solve the equation [DI =3 +4D'1): = sin{fi_x + y)
Solution. The complementary function is z=¢, I[x + y}'+ ¢, (4x + y}

Since F(D,D')=2D-5D", we have F'(4,])=-3, Hence, the

Pl =x cos(4x + yjl:—%ms[ﬂix + )

t
F'(4,1)

Thus the geners! solution is z =¢1(,1: + y} + ¢n2(4x + y] L %cns{d X J,-]

Example 3.9 : Solve r—2las+ a’t =e™ ¥

Solution. The piven equation is {DE —2abDD +a2D'I}z = g™

The complementary function is 2=, (m: + y} +xi, [:af + _].r} and since F[:Jl L‘.II'] = {D =, aj."! ;
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-
we liave the PI.= e 222

2

Hence the general solution is 2z = {:G:'r + _].’} + A‘fi-r{d.‘l: + _j’} + X g
i 2

V. Let fix,y)= e""'”“'_ ¥(x,»). Here it is easy to see that

' i Eye ar thy I
= = Vv =e® iy
!f'{U,D'}{E ()} = F{Dur,ﬂ'ﬁj}r('hﬂ'

Evample 3.8 - Solve .D{D— ED’}[D T D']; :;;"‘*3”(_1-2 i 4}--’)

solution. ‘The complementary function is 2=, () + ¢, (2x + p) + @5 (x - ).

The PI.=
i D(D-2D(D D'}E

it (.r-" +4y° )

Lo Jx*!'r I

(D )(D+1-2D" =4\ D+ 1+ D’ +z}(xz 20

el s 1 Babth g,
37 1+ D)3- D+2DT}[H_3_] e ed)

e 1 DD DY EIDDt . D :
3 []+D}|{3—D+ED'}[ Vi 9 _"'J(‘HMFE)

b e p-2D'Y" 2% 8y 10
e I__ 2 J__'____}I ik
9° (I_+D][ 3 ] [x MY 9]

3 g

= Loy L [\ D-3D" D'-4pDsap? X, o, 2% &y 10
9 (1+ D) A

= I KLy 1 2 24
) _—ae v (l—ﬂi'ﬂ )[‘- +4J’1_8.}"-+?]

I agy ' 58 ;
=—ge' ”‘[xz+4y2 —8y 'l'?—?.xi'lJ
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Thus the general solution of the given equation is
z=0,(y) + ¢, (25 + ) + ¢ (x - y) - ;—lﬁ-*'?f(gxz +36y7 ~18x -T2y +76)

Example 3.11 : Solve (DI + D‘)(D— Iy - D'I)z =gttty cus{x + Ey}

Solution : Since each of D* + D' and D—D'— D™ is irreducible, so the the complementary
function is

= @
+h +4
Z= E G E e
=1 5=]

where uf th =0 and 4 — B, - Bf. =0

The P1. = ' e eos(x +2y)

(p* + D) D~ D'~ D%)

= @ BARIF 1

X . cos(x +2y
[(D+2)" + D43 P a2~ (D' 43)- (D +3)] i
1
= 2u*dy cos(x +2
[ (D* +4D+D'+7)(D-7D'~ D" -10) (x+27)
1
=g E cos{x+2y) -
(~1* +4D+ D' vT)(D- 7D + 2% ~10) k2
|
=y 2at3y &
‘ 492—2?1:-1)'—?1)*2—181}—431)'—35“”5{“ 2
: :
= 25+ cos{x +2 :
© a(1))-27(-12)-7(2*)- 18D - 48D’ - 36 i
=_leﬂx.+3'_}" ;BDS(I +2}|}
6 3D+8D'—7 :
oot 3D+ +7 3
& S nhr e Y
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2643y 3D +8D"+7

J
6

=— +2
‘ 9(-17) +48(~12) + 64(-2?) —49GDS(I )
=ﬁ32”33'[—35in[x +2y)—16sin(x + 2y) + Tcos(x + Zy}]

| e ;
=m»&2 3“[?u05{x+2y]—]95m(x +2y}1

Hence the general solution of the give equation is

@ o ! Ry 1 -
g=>ce™ by +zﬂ,f_’"‘ ha +mr&rhﬂ"{?ms{x +2y)-19sin(x +2y]]

=1 I

Example 3.12 : Solve (D' + DD’ = 6D%)z = x* sin(x + y),

Solution. The given equation is (D-2D')(D +3D']:1 =x"sin(x+y). The complementary
function is z =g, (2x + ¥) + @, (3x - »).

To find the P.I. we note that sin(x +y}=1me’[”J'J'

1 2 ifxy)
Pl =1
m|[ﬂ-:ﬂ’][ﬂ+3ﬂ'jx d

Ef{.r*-_\'] 1 2
(D+i-2D'=2i)(D+i+3D" +3i)

=Im

e
=TIm Llei{x'}'] 1 - (].-T- 'D+3D ) x2
4 D=2P'~3, = &

=Im| —e¢ 1
4 D-20"'—j§ 4 16

I j'tt+y: I ( D"‘ED‘ .D1 +ﬁDDJ + DJZ ] 2}
= == +,.. |x

i
= fim| L0549} _ el st =
Ai D-2D'—i\" 4 16

= 1m[$e"‘”” {1+i(p-20)}" [x" + % - éﬂ
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—’;e‘[“f}[| ~i(D-2D")~(D* ~4DD' + 4D’ }+.,.}[,,-2 e %ﬂ

=Im
4 2

e : _
=Im le'{' ”{xl +—f'x~l—f(2x+l]—2H
| 4 2 ] 2 L

= i]m[cus{x + ) +isin(x +y}][xz - —15— —i ; x}

i il 13] . 3
= || x" =— [sin[x + ¥) = —xcos(x +
4[[ g sin(x +7) = Zxeos( y}]
Hence the peneral solution of the given equation is
1 133, 5
z=¢,(2x +y]+¢3(3x—y]+a ¥ 3|n{x+y}—§xc.os{x +y)
V1. General method of finding particular integral.

The methed is applicable to all cases where f(x, y)is not of the form given earlier or when the

above methods fail,

The P =mf{x,y].

To evaluate this, we consider the equation (D-mD’)z= f(x,y). This can be wtitien as
p—mg=f [x._, y} so that Lagrange’s subsidiary equations are
dx _ dy dz

L —m f(xy)
From the first two relations we gel ¥ +mx =c¢ a constant. Also the equatiﬁns

dz dx

fley) 1

give z= I.f(x,y}dx = Jf{x,c—mx}dx :

Thus z =ﬁf(x.}*) =Jf(x,c:—rm:}dx,

in which the constant € is to be replaced by ¥+ mx after integration.
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Mow; if the given equation is of the form F [D,D'}z = j{_t, y]l , where I { il D*} _—.{ D —m U'}

(D~ ng'],__{D = mND'} , then the

1
~(D-m D) D-mD")..(D-mD)

PL flxy)

This can be evaluated by the repeated application of the above method.

Example 3.13 : Bolve r—i = tan” xtan y — tan x tan” ¥

Solution. The given equation is

(ﬂl - D'z}z = tan” ¥ lany - lanx tan’ y
Le (D+ D']{D -D')z= tan’ x tany — tanx tan” y
The complementary function is 2= IP[[.‘IF + _'Jr'} +¢.(x—y)

The P1 =;- e I—l‘anxtany(tanz X-tan’ y)
i

- D—:D"- Jtanxtany (secz X —sec’ y)cit

2 2 ol "
= ﬂ‘f[lunxsw xtan{c—a]—ténxtan[c. xJSEGZ(C_I}]fﬁ

,

[ corresponding to (D — D)z =0,y + x = c:]'

e +I = [%tanz xtan{e—x) + Eljtan?' xsec’(e—x)

+%tan.x tan’ (e - x) - %jtanz[c—x]seuz (¢ —x]dx}

=m[tﬁn* xtan{e~x) +tanatan’ (e - x) + [{sec” v —sec*(c - I)_}ﬂfr]
:-ﬁ[tﬂn1 xtany + i x ian’ pvtany + tany]
[replacing ¢ by ¥ + 3]
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1 2
= [lunyseu‘ ¥+ lan xsec” y]

2D+ D)
:%j[tan{c‘ + x)sec” x + tanxsec’ (¢’ + x)]ziw:
[+ corresponding to (D + D)z =0, y-y=¢']

b a
=—tan v tan(c’ + x)
2
1
=—tanxtany,
2

| ;
Hence the general solution of the given equation is 2= ¢ (x+p)+ tjﬁz(,t - y} : 5 tanxfany

) 3.4. Hﬂmﬂgeueluus Equations with Variable Coefficients : Cau.chy-
Euler Equations.

A partial differential equation with variable coelficients can sometimes be reduced to an
equation with constant coefticients by suitable substitutions. One such form'is a homeogensous

equation of the form F(xD, yﬂ"} =f {_\:, y) . To find the solution of such an equation we put
x=¢" y=e', e u=logx,v=logy.

a d i a
Lei De—, D'=—, d=—_, 3 =—
v ay i ay

ﬂ2z=&=i[l33]= 18z 1 a[az]

T x ox\u

1 8z 1 &%z 4
=— ?—4-—2{?—, LE: (ID) Iljl{t?—n

x°du x° du
and, in general, (xD)" =9(9—1)(F-2).....(F—m+1)
Similarly, (p0')" = (8’ - 1)(¥" —.2}.. v =nal)
These substitutions reduce the given equation into an equation with constant coefTicients
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and the equation can be solved by the methods discussed in Section 3.3.

Example. 3.14. Solve the equation {JL'ZD2 -4y*p? —4}JD'—-F}z:x1y3 logy .

v g :
Solution. Let x=e¢",y=¢",¢ “a—u,‘t? =—-—. Then the given equation reduces to

dv
[l?l:ﬁ - 1) -4 (' — 1) -4 —1]z = ety

O (l‘?‘l = 413'2 — - |}z p 1?:;:2”'3”

ol

e e 48,
The complementary function is z = Zcre" " where af —4b? —a, —1=0
r*i
The: PI. = : i
R T
= EZH =3u I ¥

(0 +2)" ~4(" +3)" —(#+2) -1

2u~Iv I

- v
9 —49% 439 -249' - 35

=g

r =1
=_ielﬂf3v 1_ _]_(3??_241?:1_.&2_41?*2) v
35 | |35 .
i
=_i€2u*31' 1= &#-}"
357 | 35
= _LHENTJP r‘v_ %
5. | 13
S 2'(35v—24)
1225

Returning to the orginal variables x and p, the general solution of the given equation is

= a, b 1 23
FoE— T r Ko _24
gicrx ¥ lilix ¥ {Eﬂlugy ]

& 3.5. Classification of Second-order Partial Differential Equations
Let us consider second-order linear partial differential equations of the type

Rr+ 8¢+ Tt + f(x.3.2.p,q) =0 (3,15)
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or, Lz + [(x,0,2,p,9) =0 (3.16)
a? & 8 :
where L= R_z +.5 + T—2 and K &8 T are continuous functions of x and ¥
ax axdy ay
possessing continuous partial derivatives of all orders with respect ot x, y. A second order
partial differential equation which is linear with respect to the second order derivatives, i.¢.
r 5 and ¢ is said to be a guasi-linear partial differential equation of second order.

The equation (3.15) is said to be Myperbolic, parabolic or elliptic according as
S _4RT >0+ S* —4Rt=0 O §* —4Re < atapoint (xy, ). If this is true for alll points
in a domain §2, then (3.15) is said to be hyperbolic, parabolic or elliptic in that domain.

It the number of independent variables is two or three, then we can always find a
transformation which reduces the given partial dilferential equation to a caronical {or normal)
form and the transformed equation takes a simple form which is easily solvable, However,
if the number of independent variables is more than three, the it is not always possible to find
such a transformation.

Canonical (or nermal) form

In order to reduce the equation (3.15) to a cononical form, we apply the transformation

E=E(xy)n=n(xy) (3.17)
where the functions £ and 1 are assumed 1o be continuously differentiable and the Jacobian
J=— =% M=k g - #0
“By) 1 | o @18)

in the domain where the equation (3.15) holds.
Now, we have

dz Bz dF Bz an : .
b= E = &_EE-PEE =zf, +2,7, and similarly ¢ =z;_EJ, +2,1,

Also
ﬂzz ) :
e =TEI_;": = a(ztfr +zunx) =zpkl + EZI*EITM + zwni' +_z.-,;£fJI tz,0.
sz 9z
Similarly, ¢ = T =zuk E, +zh(’.§_rn}, - !j},qj} tz, N, +nk, +20,,

EIZ 2 7
b= a2 =k, + ZZWE!T".P +tEggily +ZE'EJ'.P i 1
44 :

Substituting the above values of p, g, # & and ¢ in (3.15), the equation reduces lo the form
A8 8, B +2B(8.0 650, By + A(naom, iy = FlEMEEF,) (3.19)
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where A(u,v) = Ru* + Suv+ Tv'
B(u JVya2iy V5 ) = Rty +%S[H1v1 r nzvt} + Ty,
F(E,TI,Z,E‘;,E}}

= —[EE [RE_U +8E,, + TE»,) +ER(R1]_“ +81 . +Tn}_m) + f(&,n,z,ftj;)] (3.20)
We can easily verify that, in general
B(€,.&,mm,) = A€, ) An,om,) = (87 ~4RT)S:

" where J is given by (3.18).
Here the following three cases arise :

Case I: §2 _4RT >0

Tn this case the equation RN + Sh+ T =0 has two real and distinct roots A and X, (say).
We choose £ and % such that

E; = hlf_yvﬂx =}~‘In_}'

Now the equation £, —ME&, =0 pgives Zeo B 00
WV Ey
0N e e dy -
so that dg =0, i.e. ¥(x,p) =constant and 7 + 7 (x, ) =0, (3.22)
g dy
Similarly, we have 7(x,y)=constant and & +A, (l’,.}’] =0 (3.23)

Let the solutions of the equations (3.22) and (3.23) be given by
E:fl{x,y} and n =fz{xs,!’} i - (3.24)
Now, A(£,.&;) = RE> +S¢,&, +T€, =1 (RN + S\, +1) =0 and similarly A(n,.1,)=0.

Hence the equation (3.21) gives

B? =(S*—4RT)J* >0 (3.25)
Thus the equation (3.19) reduces o an equation of the form
Ty = (61,257, ) (3.26)

which is the required connonical form for the hyperbolic partial differential equation.
Case IT'! g2 _4RT=0
Here the equation R)2 4+ §h+ T =0 has equal roots A (say).
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We choose £= fl{x,y] where .,r",{.w:, y) =constant is a solution of the eqquation

B Nx,)=0.

ks

Since A(EJ,E J.} =0 §* —4RT =0 and, therefore, from (3.21) we have B - 0. However,

A(TL M _}) # 0, otherwise 1 will depend on £. Then the equation (3.19) reduces to the form

Zop = W(E0T,55,) (327)
This Is the required cononical form of parabolic partial differential equation,
Case I ; §* —4RT <0

The roots A, A, in this case of the equation 32 + §x + T' = 0 are complex and thercfore, £and

Lo &
1) are comple conjugate we put £ =e +ip and 9 = —78 so that Oli=§|[3'; ¥ 1]] and I?=E'[Tj —§£).

Then

3 2\8a 88)dmy 200 OB "atan 4| dot  AF°
New A(EI,_EP) = Ei(ff?\% + 8k + T) =0, Similarly, z‘i(ﬂ'“ﬂj.) =1,

Hence the equation (3.21) gives p? < and the equation (3.19) reduces Lo

% 0T ol

_aﬂ:z + alﬁvl = K(ﬂ,ﬁ,ﬂ }Za ’zlﬂ) {‘3_-23}

Equation (3.28) is the required concnical form af elliptic partial differential equation,
Example 3,15 © Reduce the equation

M 2 = e
z, — 28inxz,, — CO§” Xz, —COSXZ, 1]
into its cononical form and hence solve this.

Solution. Here R=1, §=-2sinx, T= —cost x sofhat 2 4RT=430
Hence the given equation is of hyperbolic type.

Let E=£(x,y), #=n(x,y). Transforming the given equation in the new variables, we have

M, i 2By, iy + Al 7, By = P(E .55
where 4. 8 and F are obtained from (3.20) as

; 2
A{u.v} = ut —2sinx.uv —cos xv’
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B{E, £, m0m, ) =E0, ~sinx(E,n, +£,n,) - cos? xt,n,

F(E,u,f, 7 E‘u) = —[E}, (‘é_u. —2sinx.£,, —cos’ xEJ,-},] +3 (ﬂﬂ ~2sinxm, - cos? mxj.)]

Now consider the equation R)? 4 SA+T=0ie 3 _2ginwn —cos’ ¥ =0 whose roots are

A=sinx +1, Let X =sinx+1, Aisinx—1. We determine £ and 7 as the solutions of the

i) 4 d) )
equations —y"fﬂl"-‘-'*]:ﬂ and —P“‘S'"x“]:n given by £=yp—_cosx+y and
de dx f
N=y—cosx—Xx. Then

E =sinx+], £,=1, E, =cosx, £, =0, £,=0

W, =sinx-1, 9, =1, 5, =cosx, Mo =0, 7, =0
) = : i
1t follows that A[E;,fy)—f, +2sinx.£.£, —cos x.£;

{smx 1) = 2sinx(sinx +1) - cos? x.1

2

A(n.r,nj) =7, —2sinxy, 1, —cos’ x.n’
=(sinx - }—Zsinx[sinx—l]—mﬁzx.l
={
BE, &, m,0m,) = E,1, ~sina(tm, + £, )~cos’ £ n,
= (sinx +1)(sinx — 1) = sin x(sinx + 1 4 sinx - 1) - cos® x.1

=sgin?x =1 —2sin? % —cos® x
==2=0

and F(E, M.2,2;,2, ) = _[Ei (l.r:.::-sx -2sinx.0—cos® x.0- cosx.l)

+Z, ( l.cosx — 28inx.0 — cos® x.0— aos:c.])J

=)

Thus the cononical form of the given equation is
= I W
2y, =——F(E,n,z,z;,z )=ﬂ

Intergating this equation with respect to £, we obtain 5 } where f'is arbitrary.

Integrating again with respect to 11, we have

266




2= | fmdn+ €)= £+ £1(6)

Le. z= fi{y—cosx)+ f;(y—cosx—x)
which is the required solution. _
Example 3.16 : Reduce the eq uation

, 02 3 d%z 3.2 zdi yzaz_l_x oz
cbﬂy Byz xdx ydy

to ils canonical form and hence slove il

Solution. Here. R=y*,§=—2xy,T=x" so that §2-4RT=0. Hence the given
equation is parabolie type.

We now consider the eguation RM-Sh+7=0 i.e. the equation

£ X
PR -2yt =0= 5"~=;:'y'= Therefore, we have the equation d—y+i=ﬂﬁ x* = y* const,
x )

We choose E,(L.J"]=Iz— yz_The function can be chosen aribtrarily provided that the

Jacobian of the transformation is not zero. Thus we take. E=x*4)* n=x"—* Then
Eomdn £ =2y & =2, b 20,8, =2 :
M, =2x, N, =2), N, =2, 1, =0, 71, =2
Now, A(ﬁx,f,y}=R§§+.'i‘§1f;_1,+Iti=4y2x1—_2xy.‘2.x.2-y+x14y1 =0

A(n,,my )= Rl +Snn, + 7] =4y*x" —2xp(-4xy) + x4yt =16x%)°

BE,,byMom,)= RN, +2S(Em, +E.0,)+TE,,

:y1.4x2 —xp(—dxy+ 4xy]+x2(—4y1)
=10

F(EME T 2q) =25 (R + g+ 78 )4 20 (R 45N, 411,
+:f(£! 71»3_'- EI;!E“}]

=-[5.(2y" - 20y0+x* 2)+7,(2)* -zxy.ﬂﬂ*-.z}]
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- g}
—1—1' (zé 2x+z,2 x} = f}—) {zf: 2y-z, .E_V}]

=27, (% +x7)+22,(y? —2%) - 2y (2 +20) 2% (5 =2
=0 -
Lhus the required canonical form of the given equation is ', = 0.

-

Integrating this twice with respect to 1}, we get z =N/ (E)+ f3(E), where f (E)and fL(E)
are arbitrary functions of x. Thus the solution of the given equation is

2=( = )A07 40N 4 o= )

Example 3,17, : Reduce the following equation to the canonical form -
.(I +_1.'1)::_u +(1+ ."’I)ZJ-_.-‘f-‘*' z,+yz,=0
Solution. for the given equation, =143t S=0 Tr'"=1-|-y1 s0  that
S —4RT=-d(1+x*)(1+1)<0. Hence the given equation is elliptic type.

Now consider the equation (1+x? W +(14 3*)=0. The roats of this equation are

Ly s :
: J'L=:"‘/ © — - The characteristic equations are

P4 "
d ,||1+ s dy |1+ y*
Firhs 1+x de- \l+x

whose solutions are in (x-Fw"I'I +p* )—“I'I(_P+ 1+y7]=q and
In (;r+ 1+x2]+:'ln(y+ I+JF)=.-;1.. We chonse
E(x,2)=In (.‘H— J1E)—Hn(y+‘fﬁ)

A =in ("'+ “EJ?)+ i fll(-]"+ J|_ +?J
- _ | 1 i !
Introducing the second transformation ©= i{é 1), ﬁ:E (n-8).

we get &zln(_r+\!rl+7), ﬂ=—|n(y+\’l_+y_2)

Proceeding exactly along the same lines as in the Enumple.?:.lﬁ and 3.16, we obtain
(8118, )= A, ) =0, BE,, &, ) =2 and  F(oP.Z,7,,5)=0,

Hence the required canonical form of the given equation is Zone + 3y =0
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§ 3.6 Riemann’s Method of Solution of Linear Hyperbolic
Equations.
1et us consider the linear partial differential equation of the hyperbolic type
7 a dz
92 0Lt f(xy)
axdy dx dy
ie. L(z)=f(x)) (3.29)
: . P i £.|.aa_+h H_.l.c
Where L dénotes the linear differential operator B e and a, b, ¢ arc
{unctions of x, y having continuous first order partial derivatives with respect to x and .
let w be another function of x and y having continouous first order partial derivatives.
Then we have

0'z 3w 0 ( dz ] o dw
el TRt WARTE B T el iy
axdy  oxdy dyl dx) oOx dy )

w”g—i + zi-{ﬂw} = %{rmz]

'4|--'9Eral—z+:r:_E
dy oy

It is cvident from these relations that
ol7l o
w2y =zl ¥ (W)= ——+—
wl(z) (w) 5% (3.30)
where the operator 1L* is defined in such a way that
a*w
dxdy

(bw)= %{ hwz)

o
prn=22 2 -2 wyten @3

ow C gz
At U-=UWZ—Z$.V5-?JWZ+ wa (3.32)

The operator 1.* defined by (3.31) is called the adjoint operator of L and the ¢quation (3.30)
is known is Lagranve identity. If L¥=L, then the

operatar L is called selfadjoinf operator Y

Now consider an arc' AR of a curve T and  P(Em) be P (&)

any point on the xy-plane. Let PA and P8 be parallel to A 1

{he x and y axes respectively and Y be the area enclosed : Ze

by the contour ABPA. Then by Green's theorem ; r
e

”[wL(z]n—zf*{w]jrl‘rdy B

b 4] g >,

X
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- (1[5 5r )

=J{” dy=Vdx), where ¢ is the closed contour APBA

C

Fij

J{Uaﬁa Vr:h}+JUdV IVa&

Now !Vaﬁ, [wa+w—}i Iz[ﬁ - ’,Jﬂx+!;;{zw]dx
}[ [IJW“%}!I'F[Z‘IIJA =[aw],

f A
so that [zwjﬂ=[zw]A J.[.EJW-—}JE( Jde

A

=[zw], = J[bw-—]d& jUaﬁu j(wy Vdx)
P

+ H[ WL (z)— 2L * (w) edy
T

(3.33)

(by using (3.333)

T dw ' dw T
=[aw], = }[z{fnv— E;—]dx - }!,-I( aw — E_}T]dy 2 Iwz{ady—abz]
] A

dwr 0z
J[ % H} +11J—dr]+_” wEl:zJ zl *(w}}drdy (3.340)

(By using (3.32)
Since the function w has heen assumed to be arbitrary, we can choose this functmn in such
way that

i) L*(w) = 0 throughout the xy-plane

ox

diy
i) Eﬁﬂix,y} when x=¢

awi
i) =—=b(x3) when y=n

and v)  w=1when x=¢, y=1
such a function w is called Green § function or Riemann-Green’s function for the problem.
Noting that L(z)= f(x,»), we have from (3.34)
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i i e iz
(2], =[zw], — _I.“‘Z(H@‘MJ-'JT:[[ZEJ}"" W dx}

A

+JLJ wf (x,¥) dx dy (3.35)
e ; oz .
‘This gives the value of z at any point P when the values of z and ™ are given on the curve
AB. On the other hand, if the values of z and ? are prescribed on the curve, then using
y :
the result. .
t[o a
[zw], —[zw], = J{— (zw)ilx +_—{zw}:;fur}
A o dy
we tewrite, the question (3.35) in the form
f i 8 dz
[z],=[zw]x —‘I.wz{ady“hd&}+‘|-[z—wdx+w—-—dy
e o\ ox  dy
+J;E|.H:f (x, ) dxdy (3.36)
Additing (3.35) and (3.36) we obtain .
[], b - [owl, +awly )= sz[cmbf bdz)+— I»{ ——-—dx]
ow w ;
__J ——dx ——dy ”wf{x,y}dxdy (337)
Thus the solution of the equatmn (3 .29} at thc point Y is obtained in terms of the prescribed

0z
values of 2, i or ﬂy along a curve by meant of either of the formulas (3.35), (3.36) or

(3.37). This method is of immense imporlance to find the solution of one-dimensional
wve eguation by Rieman’s method.
Example 3.18. Prove that for the equation

3’z 2.(dz o

4— —+—|=0
dxdy x+yldx dy
the Riemann-Green's function is given by

(x+ p{23+(x— y)+ 2En}
(E+n)’

Hence find the solution of the differential equation which satisfies the conditions z=0

wix, &M=
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E=3I2 OnEEX

. ; . " d%z 2 0z 2 gz
Solution. The given equation is L(z)=———+ FE =

e ety ; ik
dxdy x+ydx xtydy and its adjoint

equation is (c.f equation (3.31)

2 I3 ES f Kl
L*{w}=a“ _i El__i 2u a
dedy dyix+p) dyl x+y

Such that :
i) L*(w)=0 throughout the xy-plane
i E= 2 won y=mn
i) dr  x+y =
%——z—w on xy=§
) dy x+ty
and v)  w=1al(€n
o x40 Ray+(E-n) (x - y)+28n)
Now il (§+T1]]'
Lo S T T 2
th(!l] E_{E_I-f-'n)-l[ 1'_].-?+ b + 1{&_11]1""' é'}]
atw _Hx+y)

Adx (E+n)’

It is easy to verfy that all the four conditions (i) to (iv) are satisficd with these values.
Henee the function w is the Riemann-Green function for the given equation.

Now wL(z}—zL*{w):a—U+a—V
dx  dy
where [y 22" z&_w i 2zw +ZE. lence we have

x+y Ay x+y

H wh(z)—zL ¥ (w)dxdy= J[Ua:y = Felx)
2 C

I
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A H
~ [y~ vals) + [ Udy~Vele) + [ Uy V)
A i

B

which on using the conditions (i) to (iv) and the fact that y=1) on AP and x =& on BP,
gives

A a"'
(2], =12w], —Jwa—;c.’x

N

5 y 5 2x(2x% +2En)
=[zw], 3!1 .—§+ﬂ} dx[ ax—?rx an AH]
n
el

e,  z(Em)=(E-m)(28* -En+217)

Hence z(x,y)= {x—}'](ﬂxl & .ry+2_1*1} i5 the required solution of the given equation.

Exercises

1. If w=f(x+iy)+(x—iy), where f and g are aarbitrary tunction.s show that
a*u  d'u

—t = ]
ax’  dy’

_ : . %z 3’z 2=
2. If Verfy that the partial differential equation =77~ éyi:_ is satisfied by

| |
Z—;‘PU’—I}"‘WU’—XL where ¢ is an arbitrary function.

3. af z=f{.tz""}f)+gl:x2+}f], where f and g are arbitrary functlions. prove that

azz 132' 4133

&H.T xﬂx ay
4. Solve the following equations .
Fz 9z
i) 3 ayz_x Y [Ans z=0(x+¥)+0;(x—y)+ x{x Wi
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:-i.z';l (DT =1 Di‘}z: 2}"_ xl [J!'LFI.S. F= Ecrcﬂl't"hrr + xly WJ]EI‘E a]r _ bI=L'|_'|

r

A

i) pyg_gp=g'tr [Ans, z=¢}l{x+y}+¢z{x—2y}+ixe 1
Ty
i) »_ et b=ty [Ans. Z=¢;{y+2x]+x¢2{y+2x}+§xze“2]

5
v 2r—5s+2i=35sin(2x+y) [Ans. Z=¢l1{2y+x}+d}z(y+2x}—§xms[y+2;r}]

9z @z 'z
wi) Ea e o Gy yenx

g’ dedy Oyt
[Ans. 2=¢ (¥y=3x)+,(p+ 2x}+sinx—xénsx+ -l;sin(y-i- 2x)]

e S 9%z e o3
Vi) Gt gy T XY [Ans 7= (x=2) 0y (y-20)+ =52

viti) (D' =7DD* —6D")z=sin(x+2y)+e**

 Ans, 3:q"(y_x}*q’z[-“*3-*}+¢3.(y—1x}‘%c05{x+2y]*%e1‘ﬂ']

dz oz

) &x—j gxa—-ﬂlmmszl’ [Ans. zz¢1(J’}+¢2{}*"'x}‘l‘%f*iﬂ{x"'l}‘]—%éiiﬂ[x*zy)]
iz, 8% Pz,
t_z_3 Z S i S £ w2y [HHS e ¢'[|:JF+}'}+¢1(I .2}_'}_1_ xﬂxl-_-p]

JC') Elx3 &r“ﬂy ajxj
xi) {D2+5BD’+5D’3}2:cns(x- W4xt+ay+y?

[Ans, z= ¢{y x)+ 0, (- 2x)+¢>3[r+3x}+ —xcos(x— y}+%x

;—Dx {l+21y}+i41 4 x il

w.x I
xiti) (D*+ D+ DY)z= xly [Ans. £= ZL‘,E Wi +ﬁ{xﬁ -6x" +15x* +lE[]xzyj

where 4 +a, +5,=0]
xiv) (D-2D'+5)(D* + D' +3)z=sin(2x+3y)
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- § —
[Ans. 2= ey +2x) +E;l;::,..g'”f"‘+‘E"JP + m[?sm{z:r +3))—19cos(2x+39)]  where

al +b,+3=0]

) D(D-2D)(D+D)z=e"(x* +2y%)
; : A
[Ans. 2=, () +&; (7 +22) +05(y %)~ e D(9x* +36y" ~18x~72y+76)]

xvi) (D*D'+ D" ~2)z=e" cos3x+ e’ siny

(A f 1 ! 1 N i
[Ans. :=Zc:,e' i —EEE-‘ umﬂx—ﬁc.— (cos2y+3sm2y), where a’h, +bf—2={'.i]

xviii) (D+ D' =1)(D+ D' =3) (D+ D)z=e""* cos(2x—y) [Ans. [z=e",(y~-5)]

:-63"‘4=z(y-x}+riraiy*x}—%ﬂ""“{Si=1f2x-y]+1w5(2x—y}}]
5, Solve the following equalions ;
) ('Y DD?—x*y'DPD™)z=0 [Ans. z=6,(¥)+ 02 () + x4 () + b, (2)+ s (o]
i) DD~y D =3xD+2yD")z=0 [Ans. z=0;(xp)+ ¢, (x)]
i) (x*D* 4 xyDD =2y D —xD—6yD]z=0 [Ans. z=0,(y/x*)+0,(0)]

i) {(x*DF=2xyDD'+y* D" —:I1(1D+ yDY4nz=xt 4 xp4x’

2

5 2 1 3
[Ans, z=x0,(x/p)+ 3", (/%)= “'””" w=e

-2 “2n=-3

W (x*D? =2xyDD’ =3y D + xD-3yD)z=—x" psin(logx®)
[Ans z=q}l{x"y}+ﬁ,ﬁz{ya’x]—lxzy{ilc:}s(iugxz]+'}'3in(1ngxz }}]
' 56

vi) (x*D?=xyDD'—2y" D" +xD-2yD")z=log(y/ x) -%

1 1
[Ans. 2=0,(x*p)+0,(0/ x)+5{ingx}z logy + logxlogy]

:Jc3+_'y:II

S T e KoE e R 15 PN 4 i
—xy DD —x D 4y DT Jz=
viii) (x yD* D' —xy x ¥ )z =
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: P
LAns. 2= 50,00 3,0+ 51—

1

. 2 . 2 l :
S (D —4xyDD 4y D7 )z=x"y" [Ans. [z=¢(x y}+x¢1{:~:"‘yi+-3a.r3y"]

| o 1 - 1 7 1 | l
i) _r_“L} —FD—?D: —?Df (Hints : Put IF=EI‘.!’=EJ—’2}

[Ans. z=¢,(x" + p7 )+, (x° —¥7)]

6. Solve the lollowing equations by reducing into canonical form :

i) ye. k(x+y)z, +2Z, =0 [Ans, 2= (y=3%)+ 1, (J" %j'

it} 3z, +10z,, +3z, =0 [Ans: z=_f'1{y—3x}+fz[_}'—§]]

2 2 4
iifi) a—f+2.a—.z+a =0 [ Ans. z=(x+3)f(x=3)+ 3 (x - )]
dx dxdy  dy a YUAX=X)T Tl E— ¥

7. Reduce the following equations to canonical form :

_ 1 1
i) z,+x2,,=0 [Ans. zg,=———|2:—2, ), hyperbolic if x <0, =, + 24 +—z, =0
» En ﬁ(ﬁ—ﬂ}( E n) ¥p [4 3p f
elliptic if x > 0.
ii) sinzx.zn+Sin2x.z_w+cnszx.zﬂ.:x [Ans. {l—ezm_':‘]}zwzsin"e”'ﬁ—_zt, parabalic]

2N 1 N
i) Eit TZA = a_lz" [Ans. Zeqt m(zf_, i zg} =0 hyperbolic]

' |
i) 2, +22, +4z,+22, 432, =0 [Ans: 2+ =_§(Z“ +24/3z, ) elliptic]
W oy, - ,tzz_w =0 x>0, y=>0 [Ans, 2(E* -1 )Ze, = N2 + 82, =0, hyperbolic]

1
vi) E.l.z.u. +F"L’_.r_1- =z [Ans. Zun + 2 —Z—EEE —Ea“, 51||pt|;:|

vii) 4z, 452tz 42,42, =2 [Ans, Z, = __I;:Zn —g hyperbolic|

8. Construct the adjoints of the folowing ditferential operators

i) Llz)=z,,+z, [Ans. L*(w)=w, +w,.. L is self-adjoint]

i) Lz)=2z,—z |Ans. L¥(w)=w,+w ]

iii) L*z)=c%z,, -z, [Ans. L*(w)=c*w_-w L is self-adjoint]
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. i) L(z)=cz,,—z, [ADs. LE(w)=c¢*w, —w, L is sclf-adjoint]
iv) L(z)= Az, +bz, +ez, t Dz + Ez +F2, where 4, B, C. D, E and F are [unctions

aﬁ al a:‘.
of x and y only [Ans. L*{‘l’ll:az (Aw)+ aﬂy(bﬁl’}"‘ay; (Cw)

d | J
——(Dw)——(Ew)+ E(w
El':l.'{ W) ﬂy{ I+ ()]

9%z :
9. Prove that for the equatlion —axay"'gx“ﬂ, the Green’s function is givent by

wiw, .G, T'|}=Ju{~.|'{-1' &) (¥— ﬁ}}' where Jy(z) in the Bessel function of the first kind of

arder zero,

3

d°z
1), Obtain the Riemanna solulion for the equation E: Fix,y)

iy z=F(c)or T

o . i) v

i) E:g{ﬂ on [, where ' is the curve V=%, n representing the normal derivative.
L

1 I dw iz
[Aﬂsl |z]|,,= E{{zw - +[zur]ﬁ}—£;[[zizﬁr+ w__(ij

x dx

Ll dw dz
+— || z—dy+w—dy |~ || wFdrd
Zi[zcbr' il dy y]--[:r[“ |

§ 3.7 Summary

The unit has been dealt with partial differential cquation of order one. Special attentiaon
has been given to second order lincar partial differential equations (solutions of these
equations with constanl coetficients are demonstrated in some detailé}, and their classifications,
canonical forms and various methods of solutions, including Rieman’s method of solution of
hyperbolic equation. .
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UNIT 4 0 ELLIPTIC DIFFERENTIAL EQUATIONS

§ 4.1. Introduction

In Unit—3, we have seen that sccond order linear partial differential equations can be
classified into three types, e.g., elliptic, parabolic and hyperbolic. In this unit, we shall
consider Lapace and Poisson equations which are elliptic differential equations oceurring
mast frequently in physical problems.

§ 4.2. The Occurrence ﬂf'Laplace’s and Poisson’s Equations

To discuss Laplace and Poisson equations, it is useful to illustrate the theory with reference
to some physical problems and we state some branches of physics where the field equations
can be reduced to either Laplace’s or Poissen's equation,

(a) Gravitation. The force of attraction F at any point inside or outside the atracting
matter can be expressed in terms of a gravitational potential w by the equation F = Ay

. s a'l a] a!
and in empty space ¥ satisfies Laplace’s equation & W *ﬂ[ﬁ Em_z“'ai"‘a_z;‘] But at
any point at which the density of gravitating matter is p, the potential function w satisfies
Poisson’s equation Viy=4np
(b) Irrotational motion of a perfect fluid. The velocity q of a perfect fluid for irrotational
motion can be expressed in terms of a velocity potential y by the equation g==Viy. In

the absence of sources, sinks etc., the function w satisfies Laplace’s equation vz;pr:[],

(¢) Magnetostatics. The magnetic vector H can be expressed in terms of a magnetostatic
potential w by the equation H=-Awy. If n is the permeability, w satisfies the equation A,

(uAy)=0 which reduces to Laplace’s equation Viy=0 if jt is constant,

(¢) Steady currents, Here the conduction current vector j is derived from a potential
[unction w by the formula j=-aVy =0 where 0 is the conductivity. The function v satisfies

the equation V=.(aVy)=0 which reduces to Laplace’s equation if a is constant,

([} Surface waves in a fluid. The velovity potential w of two-dimensional wave motions

of small amplitude in perfect Nuid under gravity satisfies the equation Vig=0.

(g) Steady flow of heat.  For steady flow in the theoty of conduction of heat, the
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temperature w is independent of time and satisfies the equation V.(x Vyr)=0, where
K is the thermal conductivity. For constant K, this equation reduces to Laplace’s equation
Viy=0

(h) Torsion problem in solid mechanics. For the problems of torsion of cylindrical bars

in solid mechanics, the stress funclion y {Called Prandtl’s stress function) satisfies the

Poisson’s equation V2 ==2

§ 4. 3. Boundary Value Problems (BVPs)

The function w whose analytical form is to be determined for different problems, in
addition to satisfying Laplace’s or Poisson’s equation in a bounded region V' also satisfics
certain conditions on the boundary 5 of ¥ Any problem in which we require such a function
w is called a boundary value problem (BVP) for Laplace’s or Poisson’s equation.

There are two main types of BVPs associated with the names of Dirichlet and Neumann,
(i) Dirichlet Problem,

By the interior Dirichler problem we mean ; If [ is a continuous function preseribed
on the bourdary § of a bounded region ¥ then to determine a function w (x. 3 z) which

satisfies the equation V*y =0 at any point within ¥ and the condition W=/ en §

The exterior Dirichlet problem states : If fis a continuous function prescribed on the
boundary § of a finite simply-connected region ¥, then to determine a function y (x, y 2)
which satisfies the equation V*y=0 outside ¥ and the condition W= f on 5.

For instance, to find the steady state lemperature distribution within a body where no
heat sources or sinks are present and the surface of the body is kept at a prescribed
temperature, is an interior Dirichlet problem. On the other hand, determination of potential

outside the body, the surface potential of which is preseribed, is an exterior Dirichlet
problem.

- Dirichlet problem is also known as first boundary value problem.
(i) Neumann problem.
By the interior Newmann problem we mean : If F is a continnous function defined

uniquely at each point of the boundary S of a finite region ¥/ then to find out a function
: |

w (x, » z) such that W*y=0 within ¥ and its normal derivative 'é“‘:; =/ at every point

of §.

Similarly, the exterior Neumann problem states : If [ is a continuous function defined
uniquely at each point of the boundary 5 of finite region ¥ then to determine a function
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w (x, 1 7) such that W y=0 outside ¥ and its norms! derivative ?—w:f on 3.

i
Meumann problem is also known as  second boundary value problem.

Churchill (1954) has analyzed a boundary value problem which is different from those
of the above two. This is called Churchill or third or mixed boundary value problem,
By the interior Churchill problem we mean : If f is a continuous function prescribed on
the boundary § of a [inile region F then to determine a function Wy, y z} such that

d
\;fzw:[_} within ~ Fand a—?;r+{fi +1)w=1I (k being constant) at every poinl of 5. An
exterior churchill problem can be defined in a similar manner,

The boundary value problems for Poisson’s equation can be formulated in a similar
way.

§ 4.4. Some Important Mathematical Results

let " denote a closed regular region enclosed by a closed surface § and ¢ and w are
two functions of x, y z defined in 77 and continuous in ¥ + § together with their partial
derivatives of the first order. In addition, we suppose that \|/ has second order derivatives

i F+8 Then putting F=§0Vy in Gauss’s divergence theorem,

ﬂjv.%*m-:[ﬁjﬁ-ﬁds

3

where dv is an element of volume, ds i5 an clement of surface and  « is the outward
drawn unit normal vector, we get

J'_!' ¢?\pdv=+-[_[ Vo. Vv =J}’¢§—‘E¢ @)

This is khown as Green s first identify.

Again, we suppose that ¢ and w are both _L:nnlimmusly differentialde in 77 and possess
continuous second order derivatives in F'+8. The interchanging ¢ and w in (4.1) we get

m wVodv=+|[[Vy.vadv=[fo g—ﬂ“"s (42

Subtracting this from (4.1) we get
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d d
j!jtw‘w—wzm: jl[wa—‘j:—wa—i}m | £
This is known as  Greens second identify.

Harmonie function
A function w (x, y, 2) is said to be harmonic af a point (x, ¥, z) ilils second derivatives
exist and are continuous and satisfy Laplace’s equation Viy=0 throughout some

neighbourhood ol that point. V|/ is said to be harmonic in d domain or open continunm
if it is harmonic al all points of that domain. It is said to be harmonic in a closed region,
(it is continuous and harmonic at all interior points of the region.

A function w (v, » 7) is said to be regular at infinity ,rt E]_u.rj 2 ‘_‘E’ ,.Ia_‘” are
dx dy dz
bounded [or sufficiently large r where r*'= x2 4y 42 If a function is harmonic in an
unbounded region, then it must be regular al infinity.
Some properties of harmonic functions

Harmonic function possesses a number of interesting properties and they are presented
in the following theorems.

Theorem 4.1 : If @ harmonic function vamishes everywhere on the boundary, then
it is identically zero everrwhere, ;

Proof. Let y be the harmonic function so that Vi =0 in K Also by the given condition
w =0 on 8 Now putting ¢ = w in Green’s first identity (4.1) we get

. I” WV ydv=+4 .I‘:H (V) v =” 1|:%ds

and using the above facts we have
I”qu}zdv=ﬂ

which is satisfied only if Vy=0 ie. y=constantin ¥ Since y is continuous in I+ 8
and y in zero on 5, we have y =0in ¥

d
. Theorem 4.2 ; If a function W is harmonic in ¥ and E}EZH on S, then y is constant
n

in ¥
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Proof. Using Green’s first identity and data of the Theorem 4.1, we conclude that
J' J' (V) dv=0
.
implying Vy =0 ie. y is constant in ¥ Since the value of is not known on the boundary’
L e .
S while E=ﬂ, it is obvious that is constant on S and hence on V + §

Theorem 4.3 : [f the dirichlet problem for a bounded region has a solution, then it
iy uniguie.

Proof ; If possible, let w, and y, be two solutions for the interior Dirichlet proble.
Then

Viy,=0 in ¥and y,=f on §
and  Viy, =0 in Vand y,=1 on §.

Let =y, -y, so that V3y=V?y, —Vy, =0 in ¥ and m:qfl;wz:r_f:u on S.

Hence using theorem 4.1 we have y=0 on V +8, ie. W, =w, on V+8. The dirichlet
interior problem has thus a unique solution,

Theorem 4.4. : If the Neumann problem for a bounded region has a solution, then
it is either unique or differs from one another by a constant,

Froof : Let w, and w, be two distinct solutions of the Neumann problem, Then

dyr,
Vi, =0 ¥ and n =/ ond§
2 Hie
and  Viy,=0 ¥and o =f onS§

Let so that in =1y, -y, sothat V=0 in ¥ and g—w=ﬂ on & . Hence by Theorem 4.2
n

we have W = constant on V+S, If the constant is zero, then =W, on V+5 and so the

Neumann problem has a quniqu solution. On the other hand, if this constant is nonzero, then
solutions of Neumann problem differ from one another by a constant,

The spherical mean

Let 7be a bounded region enclosed by a closed surface § and P(x, 3, z) be any point

282



in . Also let >, be a sphere with centre at P and

cadius 7 such that 3 lies entirely within ¥ Let ¥ be

a continuous function defined in ¥ Then the spherical
mean of W, denoted by v, is defined by. Py
| 1
u()=—= dZ
w(r)=7— Qw[{?] D
where Q(E,7,£) is any variable point on the

surface of the spherex and 4% is the surface element of integration. Since for fixed
value of r, W(r) is the average value of w over the sphere I, it is called the spherical

mean.
Taking the origin at £, we have

F=x+rsintcosg, n=) +rsindsing, £ =2 +rcosd

in spherical polar coordinodes, Hence the spherical mean can be written as

i X
w(r) =—-1—2 | Jw(x +rsinBcosg, y +rsinfsing, z +7rcosd)dodp
dar g=0d=0 -

Since @ is continuous on X, ¥ is also a continuous function of » on some interval

f<r< R, because.

ylr)= #H w(Q)sin8dddy = % T Isinﬂdﬂdt? =w(Q)

a=0a=0

and as r—0, Q— P, we have ¥(r)—w(P). Hence ¥ is continnous in 0<r<R
Mean value theorem for harmonic functions

Theorem 4.5 : Let W be harmonic in a region V and P{x, y,z) be a given point in
v Let s be a sphere with centre at P and radius v such that ¥ lies entively in the
domain of harmonicity of V. Them

L_(jw(Q)d=

w{P}=¢’{f1=1“—2F
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Frogf : Since ¥ is harmonic in ¥, its spherical mean w(r) is continuous in it and is given

by
1 l in n
| = - o= ? r
wl(r) T _g‘F{Q}‘ 411_.4J=‘W£:f[§ 7¢)sin Bdedp
_ﬁ# 1 2n = y
50 that ih.':ﬁﬁ_iwi(l'i‘rf,. ! W1,F.P,.)5|t1{:i'rfﬂd¢

1 28w ! . ’
7= J' _[(wtmnﬂcusé by sinfsing +#Jtﬂl15f}}5il1l9fmd¢

a=08=0

Nothing that the normal ;5 on 5 has dirgclion costines sisin@cosn, sinBsing, cosd. we
] ke
may wrile

dy | = E
—— == || V¥ -iir sinfidddip o i ¢ "
ar  4n? Jij _ ' vw-:w*ijw‘r 1"’“""#]

2
"

H Vs

-

ilar

e [ w-wpav [

) By divergence theoem and v is the volume of the sphere ¥ |

| 3 1
o J._‘”"T-" e =)

[ ¥ is harmonic]
which gives w = constant, The continnity of w at p=1{) proves the relalion

V) =v(P)=7 [ w(o)e

(4.5)
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Maximun-minimum principle and consequences

Theorem 4.6 : Let V be a region bounded by a closed surface 5. Let ¥ be a
function continnous in ¥V + S and harmonic in V. Further. i ¥ is not constant
evrwhere on 1+ S, then the maximum and minimum values of ¥ must occur only on
the houndary S

Proof : Let the harmonic function ¥ Is not constant everywhere in V + S. If possible,
let ¥ attain its maximum value M at some interior point P in I Since ¥ has a maximum
M at P we can conslruct a sphere T about P of radius ¢ such that some of the values ol
¢ on 3 must be less than M. Bul by the mean value property, the value of ¥ al P is the
average of the values of ¥ on ¥ 5o that it is less than M. This 15 a contradiction of our
assumption that w = M at P. Hence W must be constanl over the entire sphere 5

Again, let Q be only other point in ¥. We connect Q to P by means of an arc lying entirely
within 7. By covering this are with spheres and using Heine-Borel theorem for choosing a
finite number of covering spheres and considering. the above argument, we concluede that
w has the same constant value at Q as at P. Thus ¥ cannot altain a maximum value at

any point inside of V. Hence ¥ attains its maxium value on the boundary § of V.
A similar argument leads us to conclude that ¥ atlains its minimum value on §.

We now consider some consequences of the maximum-minimum principle by the following
theorems.

Theorem 4.7 : (Stability Theorem) : The solutions of the Dirichlet problem depend
continnously on the boundary values.

Proof : Let w, and y, be two solutions of the Dirichlet problem and f;,f, be the values
of them on the boundary § of ¥ Then E

Vi, =0, Vip, =0 in Vand w, =/, y;=/, on &,
Lel w =, —w, so that Vig =0 in Vand y=f,~f; on S

Hence the Divichlet problem has the solvtion ¥ which takes the value f) - f, on S Now

by the maximum-minimur principle. ¥ attains ils maximum and minimum values on the
boundary S, Thus at any point within /, we have for a given >0

C e P gy S Y <& 18 Wy ~Wa| <€
Henee if |_,|"'l —fﬂl'-:E on &, then |1;:| —W1l<E in .
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Thus any change in the initial values makes an arbitrary small change in the solution.

Theorem 4.8 : If a sequence of functions {f,}. each of which is continnous on V+8

and harmonic in V. converges wniformly on S, then it converges uniformly on V +35.

Proaf : Let the sequence {_fn }, converges uniformly on S. Then for given e< 0, we can

always find an integer N such that,
Jo—tnlednms N,
“ Hence, by stability theorem, we have

_,ﬁ] = .fmé Ei_nV| Vn-.f” = N

Thus {/,}, converges uniformly on ¥ + S,

§ 4.5. Laplace’s Equation in Polar Coordinates

In many practical problems, it becomes necessary to write the Lapiﬂce‘s equation in
various system of coordinates, For example, if the region be a circle, we use plane polar
coordinates ; il it is a eylinder, then cylindrical coordinates are used and if it is in spherical

form, the use of spherical polar coordinates are useful,

(a) Laplace’s equation in plane polar coordinates (r,&]

Laplace’s equation in two-dimensional Cartesian coordinates (r,8) is

r 2
3. Y. dy
Tl A it s S i,

and the relations between Cartesian and plane polar coordinates are
x=reosh, y=rsing, lLer® =x* 497, Etan"%.

sing o =003-ﬁ'
sV »

Now r, =cosf, r, =sinf, 8, =-
sind

so that w, =w r, +yw, 0, =w,m'sﬁ—wﬂ-";~

Similarly v, =y, +y,0, =y, cosd +y, STE
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[lﬁ’. cost— ¥ sniﬂ') [__m::-ﬂ]
a

sind cosd sinf cosd sinfd cosé sin® ¢
=, 008" 0 — Yy — LG Tt R AN
i v
sin” # sinéd cosd

e TR e i S ——
rz rl

i in? Fid .
:'I’w‘:ﬂszﬂ—zhr smﬁ:usﬁ‘r i smzﬂ +¢',S”:_ & +2Waw
& r

Similarly,

. 3 sind cosf cos® ¢ cos’®  cos B sind cosd
Wy =W, 800 ﬁ+2¢ﬁr-r—+w“ . +|,te,-——r W, e —2y, 5

Substituting these values of w . and ¥, in (4.6), Laplace’s equation in plane polar

coordinates (r,8) is given by

L I o w1 0w ) @y
W, +FW,.+P—2WM =0, L5 F ?TH'_J'T.;T .[4,'?]
(b) Laplace's equation in cylindrical coordinates (r.0,z).
Laplace’s equation in Cartesian coordinates (x,,z) is
3 31|,p ﬂzl,f-" a° i
Vigs—— ettt — =¥t +y, =0 4 3Y,
ST ay’  az’ Yo (4.8)

and the relations between Cartesian and cylindrical coordinates {.'-,E,z] are

- ; T
x=rcosd, p=rsing, z=z ie p?=x’+)} 0=tan” =, 2=z
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sin@
Now, we have v, =w,r, +yw 0, +y z =y, cos@ =y, =

similarly, w, =w_sind +y, %‘Sﬂ'ﬂlld W_o=w,.
Also, v, =(y.),7 +w.), 8, +(¥,).z,

=[wr cosf — g, SI:f_ﬂJ cosd +[¢rr cosl — ﬂ:j’;) (__SE)
' 0

’ r

. a7 £ i
) ] siné cosd sin™ @ cos & sinfd cosg
l.E‘.,' w_tt :w”{':Ub 5'—11,&'”;,—' " +w¢|ﬁ‘ Jg +!-'Irl!'_ __zwﬂ _".r
: I 2
Mo 3 ]
ol Al sinfd cosd “B0sT 8 cos” sind cosf
Similarly, ¥, =¥, sm 8 +2y 5 TV _rz il -0 =2, - —
e

and w_=y_.

Hence using these values af Woer Wi and w__ in (4.8), we obtain Laplace’s equation
in cylindrical coordinates (r,8,z) as
3 2 ]
iﬂi 4 la_',l-" + l a .F a IF

1. .o Tt '
W 4 Fw.l i ;? Wan W =0, I.e., arz = e rz ﬁ"'az—z—ﬂ {49}

(¢) Laplaces equation in spherical polar coordinatey (r.8.0)
In Cartesian coordinates (x, y,z}, Laplace’s equation is given by (4.8). The relations
between Cartesian and spherical polar coordinates [:r,ﬁ.qb] are

x =rsinfeosg,.z =rcosd

2 2

L, rr=yty yl +z2. cosld = 5o lang =

b B
= [

[t is easy to verify that
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cosf cosg 6 _ cos@sing _siné

ﬂx = ¥ ¥ " E: = F
::.mlp} Cosgd
= —- =— =0,
#x rsing’ Py rsing Py =
! : Ccosf cosg sing
Now, ¥, =W+l +¥,6, =¥ sinfcosg+y, R e
cosf sing cosg
Similarly, W, =¥, sing sing + ¥, S s
sinf
Ve =W, c080 -y, =
Also Wi ={wx),-r.: "'("F;L 91I+(w;)¢.¢;
=h : cos@cosg sindg S
-[lp,. sinfcosg + w ~ W rsinﬂ]r sinfcosg
: cosdcosg sing \ cosfcosg
+(1ﬁ-‘, ANSERERS o= rs'mﬂ], r
dc . costl cosg sing __sin¢
HiM R ORg A * psing ! rsing
L sin” ¢ 2sin@cosfeos”
Le, W —'P'n sin’ Bcos” ¢ + T e s o Reictp | X4 =
2singcose 2 cnsf cosgsing e cos® 0 cos” ¢ 3 sin”® ¢
U F Sl r sing 4 r (2

sindcosg

2 2

r

{cosﬂsinztp Emsﬂsinﬂws1¢1+w (sinq‘ncnszlp cnszu?cos ﬂcnsqﬁsmtp
i ¢

r*sing ¥
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r: sin® @
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cos” #sin? o Cos
Similarly, W ,,, =W, 8in “Osin® ¢ + Wa™ 9 — *¥Wg HT%*# W s 25in8cosfsin’ ¢
r res

W
i [LF] .
r r?sind

2sindcosa 2cos#cosdising o [cnsz ﬂ_si_qz_qb +%2 ;t.]

r e

e 5
i singd 112 o 2 2

cosfcos” ¢ 2cos@sinfsin® ¢ sindcosd cnszﬂsinﬁlcmsd} singicosg
'rl"g = _1||l"'¢ = — +‘_‘T-
r rosint rosin® g

sin” ¢ 25iné cosd sin’ @ cosf s5iné
and Yz =Yy COS°0 4y gy oy, SHERT gy SO, COS0S
=
1 | 2 cosd
G ?zy.l=w oW b, e
Hence B rrsinte” e r2sing "’
: | 8 2dy Y 3 ag | 8y
ie, viy =——[r'—]+ [ n&——) ¥
prarl or ) p?ging 99 80/ r?sin’e ag?

so that Laplace’s equation in spherical polar coordinates (r.6,0) is

a( o0 1 af. . oy 1 8y
ar[’ Br)+sillﬂ M[sm& ﬂﬂ']+3inzg aﬁz_ﬂ (4.10)

§ 4.6. Solution of .Lapla{ie’s Equation in Two-
Dimensions : Separation of Variables Method.

The method of separation of variables can be applied to a large numbe of classical linear

homogeneous equations. The choice of the coordinate system depends on the shape of the
boundary.

1. Solution of Laplace’s equation in Cartesian coordinates {x ¥)
To solve two-dimensidnal Laplace’s equation in Cartesian coordinates (x, y) given by

&y i,cr ;
vig = —+—_U'
W= ax? oy’ (4.11)

2890



we assume a solution of (4.11) in the form
y(x.3)= X(x)¥(y) : (4.12)
Substituting this into (4.11) we obtain

1d*X _1d%Y _
X dxz Ydyz

k(say) ' @,13)

where k is a separation constant. We shall have the following three cases :
Case (a) @ Let k = p, > 0. p being real. Then we have from (4,13)

v

whose solutions are
X(x)=Ce™ + G, Y(y)=Cycospy + Cysin py
where C,,C,,C, and C, are constanis. Hence the solution of (4.11) is given by

w(x,y) = (Cﬁ:‘“ + L'ze"”.] (Cycos py + C, sin py) (4.14)
Case (b) : Let k = 0. Then (4.13) gives

yielding the solutions
X(x)=Csx + Coand ¥(y) =Cyp + G

so that the solutions of (4.11) is

p(x2)=(Cox + G ) (Cry + Gy) (4.15)

Case (e) : Let k = —pZ < 0, Then as in case (a), we obtain the solution of (4.11) in the
form.

w(x, ) =(Cy cos px + Cyy 5in p.x}((?, e 4 Cpe™? ) (4.16)

boundary conditions.

We illustrate the above results by some specific problems.
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(a) Dirichlet problem for a rectangle. _
The Dirichlet probliemy for a reclangle is defined as follows :

Ta solve Laplace’s equation V¥ =0 at any point interior to the rectangle 0< y< g,

0 < x <p subject to.the boundary conditions,

w(x,b) = (@)= (o= 3) =0. w(x.0) = /(x).

where the function f{(x) is supposed to be expansible in Fourier sine series,

This is an interior Dirichlet problem. The Solutions of the
equilion "-_f'|1lF =0 are given by (4,14) to (4.16) of which we are

to choose the one consistent with the nature of the problem.

First we consider the solution (4.14). The boundary conditions:

w(0y)=0 and wla,y)=0 give

€ +C, =0, Cle™ + Coe™ =0 (. Cycospy + C, sin py # 0)

y=h
W= iy
w=0
W= 1)
y=0
Fig. 4.1

yielding €, =C, =0 sothat w(x, y) =0 isthe only non-trivial solution. Thus the possibility

of the solution (4.14) is ruled out.

Next we consider the solution (4.15) which also yields the non-trivial solution r,u(x, y)=0

and, therefore, this is also ruled out.

Hence the only possible solution is given by (4.16). The boundary condition w(0, y} =0

gives Cy =0 nd the boundary condition w(a,y)=0 gives

C,ysin pa| C;e™ +L'|13'”") =0

For non-trival solution Cj, =0 and so sin pa=0, ie, p =%{n— [ e } ;

Therefore, the possible non-trivial solution is given, after using superposition prineiple, by

059} = S0, 13, o]

n=]

Now the boundary condition :p{x,h] =0 gives

s
a"Euth.-"u - I;Jne—mrh.l"ﬂ =) = b" o —%[r . |,2,3” o ]
2

2592

(4.17)




50 that

()= sm_fgt[ex; {MJ} ex,,{_iﬂ_.{{; MH

o)

0 y(xy) =3 4,sin"sinh {Mh_ﬁ]}

n=1 L

f =2 nh : ;
where 4, =2a,exp o Finally, the non-homogeneous boundary condition

w(x.0)= f(x) gives

h
Zz{ sin 1 sml[ %]=ffx}

h=|

which is a half-range Fourier series so (hat

n—d

i
Ansinh[ mr.ﬁ]_ ,[ . nx

b
Hence the required solution of the given Dirichlet problem is

oS ) '

=1
where

iy X
A, =- _[f *;m—dx
E‘.“ilt]h—ﬂ
a

(b) Newmann Problem for a rectangle.
The Neumann problem for a rectangle is defined as follows : To solve Laplace’s eauation
V,*w =0 at any point interior to the rectangle 0< x < a, 0< y <bsubject to the boundary

conditions.
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¥, (0,) = vila.y) = v, (x,0) = 0.y, (x.b) = / (x).
The general solutions of the equation V, 2y =0 are given by (4.14) to (4.16) of which we
are to choose the one consistent with the nature of the problem and the given boundary

conditions as in Dirichlet problem. Here the only suitable solution is given by (4.16), i.e.,

w(x,y) = (C, cos px + C; sin px) (C]ef’*’ +C¢E_"")

The boundary condition w(0,y) =0 gives C; =0 and the condition w (a,») =0 implies

sinpa=0, ie, p=nufa (n=0,1,2, ... ). Hence, we have the solution in the form
_ Hrx watfa ~n=tfa
w{x,y]—cas 5 (Ae + Be )

where A=0C,C; and B=(\Cy. The boundary condition ¥ o(%.0) =0 shows that B = A
so that '

w(x,y)=24 ms% cosh 22

Defining 24 = A, and using the superposition priniciple, we obtain

w(x,y)= id,, cqs%msh __n:?t}"‘

=l
Finally, the boundary condition ¥ ,{x,b} = f(x) gi\res-
flx)=2.4, %cl}siﬂx—smh%b
n=1

which is the half-range Fourier series. Thefore, we have

- mrb 2 j GIIX

Hx

Thus the solution of the Neumann interior problem of a rectangle is given by
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i It
wix,y)=4, + EA" uus%mshT“y (4.20)

where A, is arbitrary and

. Tf[.r]cusﬂdx

A=t
nmsinh % 0 @ (4.21)

"
Examle 4.1 : By separating the variables, show that the equation ¥,2y =0 has solutions

of the form Acxp{iuz-_r-i'ﬁy]. where A and » are constants, Deduce that functions of the
~ form
X

w(x.y) =ZA,£_T sin ?,x 20,y 20
".

where A’s are constants, are plane harmoric functions satisfying the conditions

w(x.p)=0. w(xa)=0, w(x,y)—0 as x—se,

azw Hzr,:-r

solution, Let w(x,y)= X(x)¥(y) be the solution of the equation T T 0 so that

It I 5 e :
Tad = Lagp =M (say), which yield the solutions X = 4,¢*™ and ¥ = 4,e*"; Hence

W= Ae™" where A = AA,.

' Again V() =2 (4™ + Be™ ) (C, cosny + D, sinny)

where A, B, C_ and D_ are constants. Since w(x, y}—)i] as x—=, we must put

A =0. Also wl[x,l}l} =0=C, =0 Thus
w(x2)= 2L S0 (where £, = B,D,)
Again l,vl'(x*u.] == sinna =0= na =rris.n =% =012 . ). Hence the sodution

of the given equation is.
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Fax

- :_ i 1 ﬂ
w(x,y)—;zi,n sjm -

where A, is a new arbitrary constant,

Example 4.2 ; A thin rectangular homogeneous thermally conducted plate occupies the
region 0<x<a, 0< y<h. The edge y = 0 is held at temperature Tx (x — a), where Tis

a constant and the other edges are maintained at 0°, The other faces are insulated and there
is no heat source of sink inside the plate. Find the steady state temperature inside the plate.

Solution : The steady state temperature ¥ satisfies Laplace’s equation ¥ 2y =0,

According to the given condilions, we have

w(0.y) =0, w(a,y) =0, y(x,0)= Ix(x—a),y(x,b) =0

By separation of variable technique, we find that the solution of the equation in consistent
with the given conditions is

w(xp) = (C,e“” + ng‘”) (€ cos px + C, sin px).

The condition w{[},}?]=ﬂ=:aC3 =( and the condition w(q,y)=ﬂ:~sinpa=[}, i.e.

p=nula (n=0,1, 2,....). Thus

= may

w[:x,y} & Zsini}?{ane f +he @
=i [

Again, we find that

nixsfa
w(x,b) =0=b, =—a,——r so that
e

w(x,}‘} = gfin Sin%{sinh—m{idh}

2a,

e i

where Ay =
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Again, the nonhomogeneous condition w(x,0)=Ix(x —a) leads o

=S A sin™™ o[ - 7=b
Tx(x —a)=> 4,sin = amh( a J

n=|

which is a half-range Fourier serics so that

A,,sinh[-— 'mb] =4 x(x - ﬂ}sin—”m dx
\ a i a
4flﬁ‘2 " -
= {{—]} —1]' [Integrating by parts]
{[} if miseven
m 2
= S
——— il nisodd.
Hj’ﬂj
Hence the required temperature distribution is given by
o h[ErHl)’mﬁ
al Seusech————— (Ip+1)mx n+1)(p-b)r
vxp) =23 g O e, Gr+ 00 h)

a3 (2n+1)
Example 4.3 ; Solve the Laplace’s equation ¥ 2y =0,0<sx<a, 0<y<b satislying the
boundary conditions

w(0,y)=0, w(x,h) =0, v (a,y) = T'sin’ %

Solution : The separalion of variable method shows that only acceptable solution of the
equation V,2y =0 is '

wix,y) = [C’]e’”‘ + Cze"‘“) (Cy cos py + Cy sin py)

The boundary conditions w(x,0) =0 and w(x,b) =0 give respectively Cy = 0 and sinpb

=lie, p=nm/b (n=0,1,2,3...) Also the condition w(0,)=0 implies C,=-C . Thus
we have
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v Y ney
u-{x,y} =20, smh(--b—]sm[T]
f— Ty
Again the boundary condition Wyla,y) =1 Smj("uij vields

i) 2 20, 7 o 77 i MY
Tsin [FJ-EQ 3 Qﬂb[ 5 Jsm( ; ]
which gives C; and, the refore,
BT oo b P i B ) g3
w[x,y]—nﬂscch( 5 ]smh{ b ]Sln ( bj

The priniciple of superposition gives the desired solution as
' BT S pf a1 of Y
w[:x,y]—mrgsech( = )smh( 3 ]sm (a]

Example 4.4 : Find the solution of Laplace’s equation V,2y =0 inthe semiinfinite region

bounded by x 20,0< y <1 subject to the boundary conditions

wy

[ELU =0 [%qu =0 and w(x,1)= /()

where ffx) is assumed to be known,

Solution, Let l.p{x, y} =X (x]Y ( ¥). Then the Laplace’sY ’]

equation V,2y =0 gives

Lddx gy,
= + _.—I]
X de? ¥ gy?
d? d*Y _ 2 )
whenee — =-n*X, g ¥ (4.22) 0 Fig. 4.2

where n? is a separation constant and its sign is so chosen that the solution for X(x)
subjected to the given boundary conditions is bounded. The solutions of the equations (4.22)
are ;

X (.x} = 4, cosnx + By sinnx, ¥(y) =C, coshny + D, sinhny,

whence
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w(x,y) =(4, cosnx + B, sinnx)(C, coshny + D; sinh ny) (4.23)

dy .
The boundary condition [_Eix_] =0 gives B, =0 while the boundary condition
! =il

dy
=0 |eads to D, =0, Accordingly, we may take the solution w(x,y) in the form
ay o ! Y ¥
o

w(x,y) = Acosnx coshny

Since all real positive values of # permissible, the general solution of ‘G’f.,u =0 subject to

the first two given boundary conditions is
w{x,y)éjA[n]msnxuushnydu (424)
u

where A(n)is an arbitrary function of n.
Now putting y =1in (4.24) we get

I l:x] = J-A(n}{:nsm; cosha dy

(]

Using the Fourier cosine integral formaula, we have
2 o
A(n)coshn = —j [(E)cosnt dk
T
i

o

4 jf('l-:}ms*i“f 4 and hence

meoshn -

o "t cosnx coshny T
v(x.) —;!Wuf(f)m”fﬂ'f}d” (4.25)

[In particular, if we take

R

g0 that A{"} =
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" : . |
then _[ ! (E] cosntds = J l.cosnEdE +Jﬂ.cusn‘§d§ s SRR
0 1

1
iF 2

and, therefore, by (4.23)

2 _[ cosnxcoshnysinn

w(x"p} i ncoshn

et |

o
Example 4.5 : In the theory of elasticity, the stress function w(x,y),in the problem of

torsion, satisfies (he Poisson’s equation ‘F?w =2,0£x<4,0<y<5, with the boundary

comditions w =0 on x=0,4 and y=0,5, Find the stress function l,p{x,_v}.

Salution : We assume a solution of the ¥ =u+v of the given equation Viy =2, where

u is the solution of the Laplace’s equation
Viu=0 (4.26)
and v is a particular solutim of the Poisson’s eauation
Vive2 (4.27)
It is customary to assume v in the form
v=A+ Bx +Cy+ Dx* + Exy + By’

Substituting this in (4.27) we get D+ F=]. We take D=1, F=0. The other coefficients
can be chosen arbitrarily. We, therefore, choose '

v, p) =—dx+ ¥’

so that y=0 on the sides x=0 and x=4.

Now we: find n [rom
Viu=0,0<x<4,0<y<5, (4.28)
satislying
u(0,y) =-v(0,5) =0, u(4,y)=-v(4,y) =0
u(x,y) =-v(x.0) = 4x —x*, 1x.5) = —v(x.5) =4x - x*

The use of method of seporation of variables and the superposition principle gives the general
solution of (4.28) in the form
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tx,y) = E:‘.in ?[AHE"“” + H”e"""”"'q] (4.29)

The non-homogeneous boundary dondition u(x,0) =4x —x" gives

g e TR
dx—x =zﬂume, where a, =A, +B,

=l
Also by using the boundary condition ulx,5) = 4x —x*, we get
e A Snm b i Snmw
dx—x" = LsmT a, cushT +h, sth (4:30)
‘ n=i Itz Sl

where b =i, —B

It follows that

64 n )
=_—[1 -(-1) ] {integrating by parts)

0 if miseven

—= R
——— il nisodd
e : '

Also from (4.30) we have

3 5
a, coso" 4+, sin = Ej(fu —xz)sinﬁ'ﬂafr =a,
4 4 4 4

]

s0 that E’.u -
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Substituting these values of a, and b in (4.29), we zet

a, sin T
i 3 5— s
u{I,J"] E 4 {Sil‘]ll( j}nr-&sinh%

n=l Rl“h

5{2”— |}7r
4

e 0]

I1. Solution of Laplace's equation in plane polar corrdinates (r, 6)

[Zn—]} sinh

To solve Lapace's equalion

Fw 1w 1y
2 - —_— i —— =t
Y e =t

in plane polar co-ordinates (r, #) by separation of variables technique, we put

w(r.0) = R(r)o(8) (4.32)

Substituting this in (4.31) we obtain

1{ Ld'R dR} 1 &*0
rie——t =

2" @ T |T e K G (433)
where k is separation constant, We have the following three cases :

Case (a) : Let =P3 >, The from (4.33) we have

d’R d’e
r— g +r Z—R—pﬂ 0 and E*'pz@ 0
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leading to the solutions R=Cyr" +Cyr ™" and © = C; cos pé + C, sinpd respectively. Hence the

solution of the equation (4.27) is
w(r.0)= (Clr“ + i.’:'a_._e'”)[:1':'3 cos pil + C, sin pé) 4.34)
Case(h) ; Let p=0. Then [rom (4.33) we get

which have solutions R=C,Iny +C, and © = .0 + C; respeotively so that the solution of
(4.31) in this case is i

W(r.0)=(C; o7 +C,) G0 +G,) @)

Case {c) : Let k=- pz <0. In this case, the solution of (4.31) is obtained as in case (a)
in the form

w(r.0)= [(_,‘.J cos(pInr) +Cysinpln ;'}I{C“EPE + Cue"’g) ' (4.36)

In all the above cases, the constants t'_'.',-[:'=],2, ...... y li}are to be detormined by using

suitable boundary conditions.

We illustrate the above results by some problems.

() Interior Dirichlet problem for a circle,

The Interior Dirichlet problem for a cirgle is defined as follows ; To find the value of
in terms of its values on the boundary 7 = a such that W is single-valued and continuous within

and on the circular region and satisfies the equation Viy =0 for 0<r<q, 0<6 <2n
subject to the boundary condition u(a,8) = f(8),0<8 <2, f(8) being a continuous function
of 8,

Since the function § is single-valued, it must satisfy the periodicity condition
wir.0 +2m)=w(r.0),0<0<2n (4.37)

The general solutions of the equation Viw =0 are given by (4.34) to (4.35) Noting that

p=0 is a point of the domoin of definition of the problem and In r is undefined at » =0,
the solution (4,34) and (4.35) are ruled out. So the solution must be given by (4,36). Now
the periodicity condition (4.37) gives from (4.30)

C, cos pf + C, sin pf = C; cos p(2m + 6) + C, sin p(2m + )

:Cj[mspﬂ —cos p(2m +-'I})] +C,,,[sinpﬁ ~sin p(21r + ﬂ]] =0
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—ssin pa| €, sin( pd +m) - C, cos(p + w]] =0
= sinpr =10
=p=n (n=0,1,2,....)

Hence by the use of superposition principle we can write the solution (4.36) as

w(r,8)= Z(Cﬂr” +Dp™ )I[A” cosnl + B, sinnd)
=
Since the solution is to be finite at the origin, must put D, =0, Thus we have
w(r.e) :ia +i{a cosnd +b, sinnd)
: 5 2\ n . (4.38)

where a, = ZIAﬁ,a =4,C,.b, = B,C,. The solution (4.38) is a full range Fourier serics.

Now the bonudary condition w(a,0)= f{0)gives

f)= %ﬂ'u +Za"{a” cosnd +b, sinng)

apm In = n
= a, =% J‘f{qb}d{ila a, =#Jf[d:]uosﬂ¢d¢ﬁ b = .# j_j'{lir]sin g efeh
o 0 )

Thus we obtain the solution (4.38) in the form

1 28 1 = ] [
w(r.@)= = }[[dﬁ){g +;‘,[§] casn(p - ﬂ]}cﬁiﬂ (4.39)
Let us put

g 2[;] cosn(¢—6) and v—i[’—_‘]usinnw—r?)

n=l n=l
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s0 that

<]

9] [F]Eft¢_i]
T Jig=0) | : r
c+is= =, A5 |-
E{( ] } 1_(1};11&41{ a
el \

,1€’{°‘§}l < 1}

Equating real parts on both sides, we get

(J{a Jeos(d ~6) - ( ? a"az)
;[“] cosn(p ~0) = _—(Zrm}wb{ﬁ d) + (,.z I.raz)

Thus we have the required solution (4.39) as

1 In {az—rg)f{'j'}
0)=— i
el e

(4.40)

T his is known as Poisson s integral formula for a circle and this gives a unigque solution
for the Dirichlet interior problem. :

(b) Exterior [hirichlet problem for a circle.

The exterior Dirichlet problem for a circle is defined as follows : To find the value of w
at any point in the exterior of the circle =g salisfying V; w=0,r2a,0<8<2w and
w(a,8)= f(8), 020 <2w where f(6)is a continuous function of & and ¥ in bounded as
R

Here the solution is given by (4.34). Noting that ¥ is bounded as r —5 e, we take the
solution in the form

—ﬂ'n +zr a, cosnd +b, s‘muﬂ} (4.41)

n=l
which is a full-range Fourier serics in f(#), where

n i

J(¢)cosngdd, b, ——Jf o)sinngdo (4.42)

fl

3= | 1(9)b., =
]

.;.L..___':
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Thus the solution (4.41) becomes
w(r,ﬂ) =le{¢] L +i[£]n cosn(¢ —0)
n 0 2 =l i
Proceeding as in the case of interior Dirichlet problem we have

i)

dg,r>a .
—2HJ‘CGS(¢—§'}+¢]'2 far e (4.43)

|
W{"ae} = ;

which is the required solution of the exterior Dirichlet problem for a circle,
(¢) Mmierior Neumann problem for a circle.

The interior Neumann problem for a circle is defined by : To find the value of w at any

point in the interior of the circle r=gq satisfying Viw=0,0<r<a,a<0<2r and

In this case also, the solution of the equation ?llqlp =( is given by (4.34), Moreover, since

W is bounded at » =0,we take the solution in the form

y(r.8) = Zr"{fi" cosnb + B, sinng)
n=

of, in the form

W !:r,ﬁ‘}.z %a + Zr" (a, cosnt +b, sinnd) (4.44)

n=1

1
where, without loss of generality, we choose 4, =, = 4,.b, =B, (n>0), Noting

a e
that a—s:=3{9} on r=a, we have

g(f) = Zna"_1 (a, cosné +b, sinnd)

el

which is a full-range Fourier series in g(@). Hence
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=]

n

a, ——”]— J-g cuamﬂm’-il h =
et

(tﬂﬂmqbdtp

CI'-—.

Thus, we have [rom (4.44)
] I J o r n a
0)=1a+ j g(lﬁ}[é[;) ,Ecnsn{lﬁ—ﬁ}ﬂiﬁ} (4.46)

MNow we pul

i

- iw[_‘]ﬂwsmp §) and a—iﬁ(i]ﬂsinﬂ(ﬁb—ﬁ'}

a=1 u=l

so that

cHis= Ezl[i Ert'ﬂi} = —E]n[l - ie'“'”}
4= n| a T u

Equating real parts on both sides, we pet
c= -% tn{(.s: —2arcos(¢ - 0) +r2).|' ug}

Hence the required solution of the interior Neumann problem is obtained from (4.46) as

2

Im
w(r,ﬂ} =éa - % jln{l —22005[-# —E] +r—1}g[¢}d¢
[

a

Example 4.6. : w is function of r and @ satisfying the Laplace’s equation ‘E’fw = () within
the region of the place bounded by r=a,r=5,0=0 and ¢ = /2. lis value along the

boundary y=ais E[g —HJ and along the other boundoris, it is zero. Show that

22 (r/8)" 7 =(b/r)"" sin(4n-2)8

Wlr0)= ;z (af b]h-z ~(nf a}""_z . (en— 1]3

n=l

Solution By using the method of separation of variables, it follows that the only
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2 Py 1oy 1 8y
acceptable solution of the equation Vi =—+——+——7-=0 |
e ' I : ot rdr a9 g

w(rf) = ((_‘lr'" + ('.'gr'f’){(_'.'] cos pb + C, sin pit)

The boundary condition wl[r,ﬂ] =0 gives (; =0 and the boundary condition W{P,Wf2}=u
implies sinpw/2=0,ie, p=2n,(n=12...). Also the boundary condition y(b,8) =0gives

, =—C;b". Hence the possible solution w(r,0) is given by

An

w(r,0) = ZCJI[;'E” - i]" ] sin2né
n=l

-
To satisfy the boundary condition w(a.0)= 5’[ 5 _H] we have

=

8 a—mr: T in2
4 —Z} (e UL né

which is a4 Fourier sine series. Thus we have

: b.;,, n2
Cn[cr‘" —?]J— i a[E-a]sinznm .
a T3 2

e " - !
= =(-1 ] (integrating by parts)
g0 that
a!n
————ilnisodd
C, = 2”5(1‘:‘4“ —f}“)
0  ifniseven
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lHence the required solution is

4 00 1 i 4n-1 |I‘H.n- ! bﬂrl | . ]
w(r.6)= ;; G- I}i [}) u":'_ﬁ—E = sin(4n —2)8

P {,_ / E_Cr}-lwz = Ebfr}-ln-l SiH{dﬁ' o 2}3
= [r;.".l’J:}J'"_'1 —'{h-"ﬂ}d"_z(zn—lf

Le., 1;-'{:‘,3} = %

Example 4,7 : A long circular cylinder is made of lwo halves, the upper halEsurface in
at temperature T while the lower half is at temperature 'T,. Find the steady-state distribution
of temperalure |m,|dc the cylinder.

Solution, Lel the z-axis be taken as the axis of the cylinder. Since the cylinder is long
enough, the symmetry about the z-axis shows that it has no effect on the lemperature
distribution y. Also, for steady state, w satisfies La;lace’s equation.

T
I
H;‘F.“Z'ih‘a?_‘f"._ﬂ O=f<in
&t rar 08
The only acceptable solution of this equation is
w(r.g) =(C,FP +{Tg.l*_“’]((?3 cos pil + Cy sin po) T, rgo<2n

Noting that 0 must be finite al p =0, we have C, =0and, therefore,

w(r.0) =ir"‘{dp cospfl + B, sin pﬁ)

=0

MNow let w=f {3} at r-'=ﬂ,a being the radius of the cylinder. Then
f(8)=4, + Za'”(f!p cospld + B, sinpﬂ')
I|'.|“rl

Integrating both sides w. r. t # between the limits g =0 to §=2m, we get
A -—J 18
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Again multiplying both sides of (4.48) by cosp@ and integrating between g =010 §=2m,

we oblain

|
A, =— [ £(8)cos pods
ma’ ¢
in
Similarly, we have B, -—jf (8)sin pbds

MNow we are givun.that
F(@)=T, for 0<@ <x (upper half)

=1, for v < <2x (lower half)

'[ in n Ir
1 1
Hence o = _[I (6)d6 + Jf {ﬂ}dﬁ] = L[J- T,de + ji"!dﬂ:|
2 0 n 2 % y
— ] r
—5“1 +T)
[ ar
A, :F ITl cos pldf +_sz C(:-Spti‘dﬂ']:
i Lo 1
E: In .
n—-T)-
Bi= lp .[Ti sin pddp +J.T_.,_ sinpﬂd&]={ i~h)! ﬂcuspﬂ}
ma’ || : pra
g MEED R o
Le., P 'W if pis odd and B, =0 if p is even.

Thus the reqiured temperature distribution is

r*" 7 sin(2n—1)0

w(r,0) =%{T} +1,) + 2{?;1; L) i:, {2’;_1]52114
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HI. Solution of Laplace’s equation in spherical polor coordinates (r, @)

In the case of axial symmetry about the polar axis 8 =0, w(r,8,¢) is independent of ¢

and Laplace’s equation in spherical polar coordinates (r,8) in given by

—| P — |+ ——=| sinf—— |=0
:'i‘r[r or ) i sind d@ i ag (4.49)
To solve this equation, we put

w(r.8)=R(r)©(0) (4.50)

where R and © are functions of » and § respectively. The function © (@) is called zonal
surface harmonic. Substituting (4.50) into (4.49) we get

1 d ,dR L i adB i
——| " — | = =———| sinf— |=k (4.51)
Rdr\ dr G sind 0 de : :
where k is separation constant. We put & =n(n + 1) where n is constant.
tﬁcﬁ we have from (4.51)
2d’R

r —-—2+2r£—n(n +1}R =1}
dr dr

whose solution is

o E .
Rir)=4r" + =5 (4.52)
Also from (4.51) we have

Li sinﬂ@ +n(n+1)@=0
sin@ g ol

which by the substitution g =cos@ reduces o
d 34 d8
—|l=p | — |+ nn+1)2=0
v [( o }dﬂ} (n+1)@ (454)
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This is well-known Legendre eguation® and has the solution
O(0)=Ch, () + DO, (1) (4:54)

The function £ () and O,(n) are called Legendre functions of the first kind and second
kind respectively,

Using (4.52) and (4.54), the solution of Laplace’s equation (4.49) is given by the principle
of superpaosition as

o

;p{:;-,f}} =2[A‘"r” ;'i' ]{C P (Lusﬁ'] + 0 L,,{cnsﬂ]} (4.55)

=i
Example 4.8 : A thermally conducting solid bounded by two coneentric spheres of radio

aand b, (a < J’J}, is such that the internal boundary is kept at temperature f,{ﬂj and the outer
boundary at f,(8). Find the steady state temperature in the solid,

Solution : For steady state, the temperature  satisfies Laplace’s equation (4.49) whose

solution 15 given by (4,55). The boundary conditions wl[ﬂ,ﬂ] = _{,(ﬂ] and lp{bfﬁ'} =f {E} give

o 5
#i(8)= Z(M + 1) w(cose), fo(6) = Z[Anh"*r%]ﬂ{wsﬁ} (4.56), (4.57)

=il =l
on the assumptions of f, and f, to be expansible in series of Legendre polynomials.
In order to find 4, and B we use the following orthogonality relation for Legerdre

polynomial

0 fm=n
P, (cos@)P,(cost)sinfdf =1 2 i (4.58)

2n+1

= ey

Thus multiplying both sides of (4.56) by F,(cos®)sin@ and integrating, we obtain

JE 11(6) 2, (cosf)sinOdf = i[ 8

b =tk

]J. F (cos@) P, (cos@)sinde

* See Study Material PG(MT) 03 : Group A, Unit-7 Page 141 ‘and 150,
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: :
' n Hﬂ 2
e, Iﬁ{ﬂ}fig(msﬂ]mnﬁffﬂ:[ﬁna *;m]‘—— (4.59)

In+1
i

h . (1 ) Br.' 2
Similary, ‘{[. £2(0) R!{msﬂ] sinfdf = (;‘fnfil + T ] 7 (4.59h)

We lel

] f
j £,(8) £, (cost)sin@dd =C, ,zr—‘; EJ- f4(8) P, (cosB)sinodb

L] (1]

2l

2

5o that from (4.59) we get

Aa" +i_'l =,  Ab+ .B::_!_: D,
g" b”
Solving we have
/ o C"a.lH] o D“br;fl. x le‘lhlrr]({:”hu 1 Dl,rﬂ”)
S 7L L ——W__HET— (4.60)

Henee the required solution is

w(r.8)= i[ Ayt +

n=h L

f’:! }_Fj,{cc-sﬂ]

where A, and 8, are given by (4.60).
FExample 4.9 : Determine the potential y of a grounded conducting sphere in a uniform
field F,defined by Vip=0,0<r<a,0<8<m subject to the conditions w(a,8)=0 and

w(r,8)—» —Eyrcos as p— e
Solution : For axial symmetry, the solution of the equation Vi =0 is given by (4.55).

Using the boundary condition w(r,0)— —Eyrcosf as r—s e, we find that

w(r.8)= 2 A" B, (cosB) = —E,rcosf
=0
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which is true for z =) only. Hence A,=0 for y>2 and A =-E,. Therefore

w(r.6) = =E,rcoss +z - P, (cost)

n=|

Applying the boundary condition w(a,8) =0, we have

—E acosé +Z B, i P, (cose)

Multiplying both sides by P, (cos@)siné and Integrating between the limits 1 to 0 we et

A

0 =—Euuj P, (cos8)sind cosHdg p. 2
. ; a 2m+l

I L
e B, = 2’” Eya"** [ B,(cost)sinBcosodd

1]

where we have used the orthogonality relation (4.58) for Legendre polynomial £, (cosé).

Noting that F(cosf)=cos8, we have, B =0 for n>1 and B =Eua’ (by orthogonal -
pru;rarty} Hence the required potential is F

S

wir8)=-Ercoss + Eqa
2

cosg

§ 4.7. Solution of Laplace’s Equation in Three-Dimensions :
Separation of Variables Method,

I Solution of Laplace’s equation in Cartesian coordinates (x, ¥, z).

Laplace’s equation in three-dimensions in Cartesian coordinates (x,p,z)is given by

Vi = =t = (4.61)

To solve this equation by separation of variables technique, we put
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w(x,p,2) = X(x)¥(y)2(z) (4.62)
Substituting this in (4.61) we gel

1d’y , 1d°Z _ _1d*X

Ya? Zdr Xad VW (4.63)

where )\! is a separation constant. Thus we have

2
QMQ,X =0
whose solution is X{x)=C,cosh;x +C; sinkx.
Again, from (4.63), it follows that

I A 1d*Y s '
Z 4 —Ni == Ydyz =X3, (say)

d2y alz

so that 2 =5 +NY=0 and ~NZ =0 (4.64)

where N =N + A} and )] is a separation constant. Solutions of the equations (4.64)
are
¥(p) =Cycosh,y +Cy sink,y, Z(z) = Cs cosh Ayz + Cgsinh gz,
Hence the general solution of the eugation (4.61) in Cartesian coordinates is
w(x,y,2) =(C coshx + C; sin A x) (Cycosh,p + Cy sin A2 ¥)(Cs coshhgz + C; sinh Ay ).
: _ (4.65)
Example 4.10 : Find the potential w(x,y,z) in a rectangular box defined by 0<x<a,
0<y<h, 0<z<e, if the potential is zero on all sides and the bottom, while y = f(x,5)

onthe top z = ¢ of the box.
Solution * The potential distribution in the rectangular box satisfies the Laplace’s equation

‘E.’zw =(). The boundary conditions are :
w(0.,2) = w(a,y.2) =0
w(x,0,z)=w(xb.z)=0
(,2:0) =0, w(x.p.¢) = f(x,2).
where f(x,») is assumed to be expansible in double Fourier series. The general solution
of Laplace’s equation is given by (4.61).
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(m=1,2,...). Also the boundary conditions w(x,0,z)=0

and  w(x,b,z)=0 give respectively ;=0 and

Az

: (_ﬁ

The boundary conditions w(o,y,z) =0

wla; v,2) =0 give respectively C, =0 and Ay —-%

X Fig 4.4. REC{H—"EUIEI‘ Eﬁx

:T{ n=1,2,...). The condition w(x3.0)=0 gives

=0. Further we note that

2 a o il mt  w 1
?x?i = h i ?xq =7 [”_ b—:)z}\lm{say}.

i HE RS
o 510 = (5N 5 sinhh, .z (4.66)

Noting the boundary condition wixne)=f (x.), we have

( } Ezc’m!r““ﬂ Sl“Hsmhh (12

=1 i b o
which is a double Fourler sine series. Hence we have
a
nx
,r,,,qlih?.m,,c- b”j x, 1) sin SN ::P el ey (4.67)

Theretore, the required polertial is glven by [4.6), when € 15 obtained from (4.67).

II Solution of Laplace’s equation in cylindrical Co-ordirates {r. q, z).
The Laplace’s equation is cylirdrical coordinates (r.8.2) is given hy (4.9) as

2 2y

Vig= 31# Iﬂw l r?w+3
? Tror 27 ' a2

We assume its solution in the form
w(r.0.2) = R(»)0(8)Z(z). (4.69)
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Substituting this in (4.68) we pet

1@% gﬂ} | d’6 1d°Z _

;2 =0 (4.70)

]
W e F LI Vi +r—
R\ dr? g rodr e det £ dz

| d5Z =2 s
Lel ?F:m whose solution 15y = *™

- are 4 = ey
Also pulting g -2 ==n" we get 5 +1"8 =0 whose sloution is @ = =™
(r

&

Now the equation (4.70) gives /_j
-

d*R | dR o e
A R o =i
dr® - i +{m .-'1]

which is Bessel’s equation and its solution is

R(r) =, (mr) v T, (or).

-

Fig. 4.5 clreular Cylindor

w(r,0,2) ={CJ,(mr) + G, Y, (mr)}(C cosn@ + C; sinmif) (4.71)

lence the most general solution of (470) 15

(e +Coe™)

Example 4.11, Find the potential ¥ inside the eylinder 0<r€u, 0<O<2m, 0z, ir

the potential on the top z = /i and on the lateral surface # — a in held at zero, while on the

3
1
hase = = 0, the potential is given by w(r,0.0) = 'r*’n(' “d_z} where y,, is a constant; r.6,z
are cylindrical polar coordinates,

solution : Vere the potential w must be single-valued and salisfy the Lapace’s equation :

V2 =0. The boundary conditions are w =0 on z=h w=0 on » = a and

) =wu[l—%]unz={].
&l

Tn eylindrical coordinates, the general solution of Laplace’s wquation is given by (4.71)
as
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w(r,0,2) =[CJ, (mr) + Gy, (mr)][C; cosng +Cy cosnd +C, sinnd ][Cje"’: + Cﬁg—“]

(4.72)

Since ¥ (mr)—s e asr—0, we must put C; = 0. Also the face z = 0 has the potential

PZ
%[l—u—j] which is a function of + only and is independent of ¢ and, therefore, the

potential inside the cylinder will be independent of . This is possible provided n =0, Thus
the general solution for the potential can be written as

l.f"(r',z] = Ju{mr]{,ig"‘f =1, Bﬁ'_m")

L
The boundary condition w=0 onz=# gives g™t 4 patih =0, ie, B=~ ‘:_‘m

Hence w(r,z) = 4,Jy(mr)sinwm(z - h)
where 4 = 4/ e The boundary condition w =0 on the lateral surface r = g implies I

that Jy{ma) =0 which has infinitely many positive roots o say, sothat £, =ma is m = £, la.

w(r.z) =_§A,,JU[E" %Js}mm {ﬁn(i_-h} }

,It'-.gain the boundary condition ¥ = ‘#u[l _:'_EJ onz=0 gives

re o~ ; £k r
Wu[l "E] = g]‘_z!" smh(—-—&h] JH[E" E)

. _— ! » :
which is a Fourier-Bessel series. Multiplying both sides by "Ju(«f B E} and integrating we
get

2] -2 £ T = ; E”h o b
wﬂi(! -;—EJIL;H[EPEJGF}' = g;{n Slﬂll[-'—a—Jg rJﬂ[EPE]Jﬂ‘[Eﬂi)dr

Using the orthogonal property of Bessel functions, viz,

T 0ifi=7
fentosiafepter={ed 1!

%“"ﬁn.{“ﬂ] if = J
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where o0 are the zeros of J,(x)=0, we get

i . . . ; MR
qfnj'[l -—;—i]:-.fg[f";—;)d :%ZAH smh[—%"—j]Jf{E”}

L]

, = 2y, T - b
giving A = o Y I{l—a—z}rJn(zé"E)dj
a* sinh| -=r= /i (En) "

Noting the relations [xJy(x)dx =x/;(x) and [x* 4 (x)dx = x* T (x), we obtain after
integrating by parts,
41#6‘;2(1;.:1]
& sinh[—f,, ﬁ]JF (£,)

An =

En

Again the recurrence relation .J,_ (x)+d (x) == (x) gives for m=1 and x=¢,,

-*ru(fn}+J2(En]=§""rl{fn]- i.e JE{‘EJJ:EE_JI{‘EH}! since Jﬂ{E"]=ﬂ
Therefore,

By

! g, 2)e)

"

Thus the required potential inside the cylinder is given by

ool

W) =ovo3: )

pat 53.;,(.5,,}sinh[—
1. Solution of Laplace’s equation in spherical polar coordinates (r, 8, ¢).

The Laplace’s equation in spherical polar coordinates (r, 8, 9) is given by (4.10) as
2 vy, 1 af. ap) 1 ¥y _
il i ar (r ar ]+ sind ad [Smﬁ ag ]+sinzﬂ 51!1,1 =0 (4.73)
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“Let the solution be given by

w(r.b.0)= R(r)F(0.9) . (4.74)
Substituting this in (4.73) we get

Fi(r"h f"*’i) Gt i(sinﬂﬁ ek _&z
e dr sind gg df sin @ quz

1€ [r'zfﬁ]= el 08 si|13£}+—--l i =-A(say) - '
' R dr dlr Fsind | of a8 | sin® e’ Y (4.75)

where ) is a scparalion parameter. Therefore,

B dRY e s o dBR R
E{T[ Ejlh_ﬂ g, F-I—Efﬁ'l'm—ﬂ {4?6)

Le p=;m be a solution of this equation. Then, when A=-n(n+1), we have
mlm=1)+2m—n(n +1)=0=sm=n-(n +1). Thus, the solution of the equation (4.76) is
R(r) =Cyr" + C, {pt!

Again, for A=-n(n+1), we get from (4.75)

| o), 1 &'F TR
sinf {E}H [h ke a0 ) s'mﬂ? } +afn +1)F =0 (4.78)
Let the solution of this equation be

F(0.6) =©(0)&(9)

s0 that from (4.78), we obtlain

—é%l: 5:;& {jﬁ [ inf— "j;] 1 n(n + 1] sinzﬂe} =m1|[say] (4.79)

where 5,2 is another separation constant. Then
‘P
2

+rd =0
]

which has solution @ = C'; cosmg + C sinmg, provided m =0, IF m=0, the solution is
independent of ¢, and we have the axisymmetrie (case vide § 4.6 TI0).
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Again, from (4.79) we have

ﬂ%ﬁ {{‘;;][:,miﬂg%] +n{n +1)sin” ﬂ.ﬁ}} =’

which, on substituting cos@ =g, reduces to

_ 20 @8 |y
[l ﬂ]d,m #'d,u {n{rwl] 2 }E‘J =0

This is the well-known assceiated Legendre equation and has the general solution
O(p) = C P (1) + Co0y (u),-1su <!
ie 8(8) = Csh, "(cos0) +Ce0)f (cos0)0 <6 s

where pi' and () are associated Legendre functions of the first and second kind
respectively, Now the finction O)'(cos@) has a singularity al ¢ =0. So we choose Cy=0.

Therelore, the general solution of the Laplace’s equation (4.73) is given by the principle
of superposition as

Cf
w(r.0,9)= E sk —]{(33 cosmg + Cy sinmg) P (cos@) (4.79)
m=ln={
In particular, for the axisymmetric case, the general solution is
( L) = ZZ[ 5 +—] P (cos0)
==
Interior D:‘rr‘::hfer problem for a sphere.

The interior Dirichlet problem for a sphere is defined by : To find the value of ¥ al any
point in the interior of the sphere r =g such that

Vip=0,0<r<a, 0<8<m 0<@sin

and y(a,0.9) =[(8,4) on r=a.

Since p=( is a point within the sphere, we must put C, = 0 in the general solution (4.79)
of the Laplace’s equation, Thus, we have
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w(r,0.¢)= g{h%r”[ Ay cOSMD + B, sinmg] P (cos) (4.80)

€r<a

where A, . B, are new constants after adjustment. Tus use of the boundary condition

w(r.0,6) = F(8.9) on r = a gives

{G I!I'}"— 'Zz il JH }[AMHCOSH'I{IJ +Bumﬂinfn‘d|:| {4 EI)

m=Cn=1

where g =cosf and it is sssumed that j'{:ﬁ',l?] is expansible in series ;:1[ associated
Legendre function, Multiplying both sides of (4.81) by B"(it)cosme and performing dnluble
infegration with respect to u(-1<x<1) and ¢(0<¢<2m) we get
Fin

I J- f {'5' 8) P, "'( ) cosmpdpd

-0

ix I "
=" 4,,, [costms| [{ P ()} d g = ZX Amn(m + )t
" Ay [ o5 m':b[_I‘{ 40} #}“‘d’ (@) (=)

This implies that

C(2r+Mn-m [2'
=(—)(,___ If{:ﬁl' 1;& " (1) cosmdlcde (4.82a)

i
2wa"(n +m)

Similarly, multiplying both sides of (4.81) by £"(u)sinmg and integrating we get

(EIHI{H m

un
2ma" (1 + m)!

If a l:l Prjr(ﬂ]51n¢ﬁdﬂd¢ {#szhj
Using (4.82b) we get

wirg,e)= %iiw[fjnx

A n=0nr=0 {” + m)!
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| 2m

[ [ S () B (1) P (') [cosmx cosmn + sin mxsinmn Jdndx

o il ‘iiiz_”j_’_}_'if;”ﬂ!(t]"x

I2x
x[ [ f{nx)B) {fl;{}S x) B (cosn)cosm(x — n)dndx

—|

which is the required solution.

§ 4.8. Helmholtz Equation

An equation of the form [T.?! - Icz]w =0 where k is constant (real of complex) is known
as Helmholtz equation.

I. Solution of Helmholtz equation in eylindrical coordinates.

For a long cylinder with axial symmetry, the Helmholtz equation can be witten as (since

¥ is independent of g and z)

2
d_l,b' +ld_w_k
dr® rodr

fy=0 C (484)
This is modified Bessel's equation of order zero and has the solution

w(r) = Aly(ker) + BKy(kr) : {4.35}

where I K, are modified Bessel functions of oreder zero and of the first and second kine
respectively.

I. Solution of Sclmhotlz equation in spherical coordinates

In the case of spherical symmetry so that w =w(r), the Helmholtz equation is given

by
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d'y  2dy

drt b dr e (4.86)
i :
Putting ¥ —EF (), the above equation becomes
d*F 1dE (2 | )
Mol o R R
r T dr [ 42
which is modified Bessel functions of order El The solution of this equation is
F{P‘) = /I.III,I:(kJ":} o BK.J.IE i:.k?"]
L
z

; : 1 < :
where “1 and K% are modificd Bessel functions of order 5 of first and seeond kind

fa

respectively, is the solution of Helmoltz equation (4.86)

Exercises
I, Show that in cylindrical coordinates (r.6,z), Laplace’s equation has solution of the

form R(r)e*™***, where R(r) is a solution of the Bessel’s equation
2R VdR [ 2 s
3 Fe +[m — R—l'jl
If the solution tends to zero as z—» == and is finite when » = 0, show that in the usual
notiations of Bessal function, the appropriate solutions are made up of terms of the form
.f"{rm'je ik
2. A conducting cylinder » = a is placed in a unitform electroslatic field whose intensity

i3 A

E is in the direction of negative x-axis, The portion — > <H< 5 . =a of the cylinder is al

; i T I i _ -
a constanl potential Fand the porlion E<E<T,r=ﬂ' is earth connected (i.e:, at Zero

potential). Determine the eelectrostatic potential-at the end point P(r,0) external to the
cylinder,
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T " 3

2 - 3
{hns.!’Dtentialat{r,if}=%V +}:.'cusﬁ(r—r:—_] rg[”m‘“&" _.”_c.;,ﬂ.g] :|

3. A solid right cireular eylinder is bounded by the surfaces r =a.z= +h, the system of

coordinates being {:‘,H;;}. Find the steady temperature w(r,z) al an internal point {r,ﬂ,z:]

if w=0on r=a, y=1 on z=f and =T, on z=—p
Nl Wit : .
A o A e e n et 4 [1.' z Le n) "nZ Jp{h”a}
Anvplr.z) == =
_ iy ?\ a) (Ezr. h_ oI ;.)

A being ther oots of the equation Ju(}m] :ﬂ]

4. A homogencous thermally conducting cylinder occupies the region

02r<al<8<2m0<2z<h where (r,6,z) are cylindrical coordinates. The top - = and

the lateral surface » = @ are held at 0°C while the basc z = 0 is held at 100°C, Assuming

that there are no sources of heat generation within the cylinder, [ind the steady lemerature
distribution within the cylinder.

' = J,,[:Enr.-'a]sinh{.f,,{z—h}fa}
CTIDEL: =200 - . ine ;
[Ans. Temperature E. £,J,(E, )sinh(—£, i/ a) £y being the roots of the

equation Jy(Aa) =0.]

5. Solve the partical difterential equation

Py lﬂw IEJ?_

=
al o 2 gp?
; o i a
subject to the conditions 4. =0 atr=aand —FF—: L cusﬂ,la—wq ~U'sing a5 p_se
dr ar ioar :

a2

[Ans. w[;-,&} = Ur[l + —2]0{150 + k&, k being constant. |
r

6. Find the steady state temperature distribution in a semi-circular plate of radius a
insulated on both the faces with its curved boundary kept at a constnat femperature Uy and
its bounding diameter kepl at zero temperature.
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[Ans, Temperature =—— o E

3 Tir+] )
j sin{?.r.! + 1)19.
i u En +I

7. In a soild sphere of radius a, the surface is maintained at the temperature given
by

S0 Tco<n

keosf 08 <2
e
i

Prove that the steady state lemperature within the solid is

w(}.,a}=k[4lpu{ma)+%[5)pquusa} fﬁ[ Ja[msaj 332[ ] P (cost)+. }

8. Find the electrostatic potential W for the spherical shell bounded by the concentric

sphere r#=a,r =b(0<a<b), if the inner and outer surfaces are kept at potentials V; and

Va(V 2 15).

: =_ab | (1 1 T Al
LAns. w_b—a[m(r -b]-'-yz(a rﬂ

9. The problem of axisymmeric fuid in & semi-infinite or in a finite circular pipe of radius
a is described as follows in cylindrical coordinates :

Partial Differential Equation V2y =00<r <a

Boundary conditions : %t—i =0 at r=0 and

W =
55 =% 5 =V(z) at r = a.

s ax o
Show that the speed of suction [VEZ} =[§;J ) ] is given by

—iﬂfn (4, coshier,z + B, sinhat, 2)J, (et,a)

n=l

where «, are the roots of the equation Jolow) =0
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- aty o'y
10. Consider the Cauchy prablem for the Laplace equation e . 2y =0 subject to

d 1
w(x,0)=0, a’F (x, U}=‘r sin#mx, where n is a positive integer. Show that its solution is

ly( V)= —l?blnux,sinhny.

11. Let fix) and g(x) be analytic and let X y} be the solution of the Cauchy problem
described by

&'w 'y dy
= 0 = T =
el + P subject to W(x x,0) = £(x), 3y (%,0)=g(x)

and let wz{x, y} be the solution of the above partial differential equation subject to

dhpx,0 -
w(x0)=f {x},Lé;—l =gl(x)+ :—:sm nx show that

1
walxp) - v I.{x!.l"] =H—1 sin nx sinhny

12. Solve the Possion’s equation

,,*}2 32 .
_f+_f=z,ﬂgx51,l}gx§l
a’  ay

with the boundary condition w =0 on sides x=0,x=1Ly=0,y=1.

sinh(2n —1)(1 - y)ie + sin(2n - [}y
(20— 1) sinh(2n ~ 1)

sin{2n — 1)mx]

[Ans. w(x,p)=x(x~ i}i

§ 4.9. Summary

Mentioned has been made of different fields such as gravitation, electrostatics, fluid
mechanics ete. in which elliptic differential equations (Laplace and Possion) recur naturally.
Boundary value problems (Dirichlet dnd Neumann) have been discussed. Laplace’s equation
has been solved by the method of separation of variables in different system of coordinates,
e.g., Cartesian, cylindrical and spherical polar coordinates. Possion's eyuation has been
solved in a particular type of problem. The teachnique has also been considered for the

solution of Helmholtz equation.
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UNIT : 50 PARABOLIC DIFFERENTIAL EQUATIONS

§ 5.1, Introduction

The diffusion phenomena such as.conduction of heat in solids, diffusion of vorticity for
viscous fluid flow etc. are all governed by parabolic type differential equation of the form
arT
o (5.1)

where x is a constant. The equation (5.1) 15 known as hear conduction or diffusion
equation. In this unit, we shall consider various properties and tecniques for solving this type

of parabolic differential equation. Firstly, we outline some circumstances in which the solution
of such equations is of importance,

Wi =

§ 5.2. The Occurence of the Diffusion Equation

We now indicate some instances of the occurrence and derivation of diffusion equation
from the basic concepts of theoretical physics.

fa) The conduction of heat in solids. Let T (r, t) be the temperature at a point in a
homogeneous isotropic solid. Then the rate of flow of heat per unit area across any plane

¢=—k5 : (5.2)

where k is the thermal conductivity of the solid and (he operator 9 denotes the

an
differentiation along the normal 1o the plane, Now the flow of heat through a small element
of volume dr, the variation of T is governed by the equation

pe %!I =div(k grad T) + I(r,.1), (5.3)

where p is the density, ¢ the specific heat of the solid and H (r, T, 1) 4r is the amount
of heat generated in the clement 47 per unit time at the points with position vector r. The

term I (r, I, t) may arise becausc he solid undergoes radivactive decay or absorbing
radiation or there is generation or absorption of heat due to chemical reaction. If the conductivity
k is constant throughout the body, then writing
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k i
K=E;gnnq=

pe
we haye from (5.3)
o’ . o3 ;
L T +0(r,T.1) (5.4)

(b} Diffusion in iselropic substances. The process of diffusion in physical chemistry
leads to the equation of concentrations with a single phase and is governcd by the laws
connecting the rate of flow of the diffusing substance with concentration gradient. Thus it
¢ be the concentration of the diffusing substance, then the diffusion current veclor J is
governed by the Fick’s law of diffusion

J==1D grad ¢,

D being the diffusion coefficient of the substance. The eqation ol continuity for the

diffusing substance is given by

%+mu=n
ie., %Hﬁu(ﬂ grad ¢) 3 (5.6)

In most cases, the diffusion coefficient D depends on the concentration ¢ and the space
variables, However, if D is constant, then the above equation reduces Lo

de. i .
e DVee (5.5)

(¢) The diffusion of vorticity. If a viscous find of density p and coelficient of viscosity
i be started from rest into motion, the vorlicity & { = curl g, where q is the veloeity of the

fluid) is governed by the diffusion equation

ar
B uVE | (5.7)
where m=p/p is the kinematic viscosity

 (d) Conducting media. For the propagation of long waves in a good conductor,the
components of the elcetric field vector E satisfy the equation of the form

1 2
oL _
o uNEE (5.1
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where y =p? /4o, ¢ is the velocity of light in free space, g is the conductivity of the
medium and # is the permeability.

(e) The slowing down of neutrons in matier Under certain circumstances, the one-
dimensional transport equations for slowing down of neutrons can be reduced to the form

ax _3ax .
79 = = I’{z,ﬂ} (5.8)

where x(z,8) is the number of neuirons per unit time which rach the age g and the

function T{z,ﬂ} i5 a function of the number of neutrons produced per unit time per unit

volume,

§ 5.3. Boundary Conditions.

The heat conduction equation may have numerous solutions unless we specify a set of
initial and boundary conditions. The boundary conditions are mainly of three types which we
explain briefly,

Boundary Condition [ : The temperature is prescribed all over the houndary surface.

Here the temperature T = G (r, t) which is some prescribed function on the boundary. This
type ol boundary condition is called Dirichilet condition. The boundary conditions depend on
the specific problem under investigation, Sometimes G may be function of position r only or
a function of time t only or a constant. In particular, if G (r, t) = 0 on the boundary, it is called
a homogeneous houndary condition. '

Boundary condition 11 : The flux af heat is prescribed on the surface of the boundary.

. sy SR
Here the flux of heat i.e. the normal detivative E?}" l:r.f} on the surface,

- This is called Newmann condition. In particular, if f(r, t) = 0, then this homogeneous
boundary condition is called fsulared howundary condition in which case the heat flux
across the boundary surface is zero.

Boundary condition 1l : A linear combination of the temperature and its normal
derivafive is prescribed on the houndary.
Hete we have

dT %
ka—” +hT =G(r1)

where & and /i are constants. This is called Robins condition. In this case the boundary
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surface dissipates heat by convection. Following Newton’s law of cooling which states that
the rate of heat transferred from the body to the surroundings is propertional to the temperature
difference hetween the body and the surroundings, we have

aT
E—=hT-T
dn ( W)

T, being the temperature fo the surroundings.
In particular, when

ka—T-hT={}
i

i.e. for homogeneous bouncary condition, the heat is convected by dissipation from the boundary
surface into a surrounding medium maintained at zero temperaure.

In addition to the boundary conditions, the initial condilion for temperature is to be prescribed
to solve the diffusion equation.

§ 5.4 Elementary Solutions of the Diffusion Equation

Let ug consider the one-dimensional diffusion equation.

b L A ¥
Ko s — e —oa/x e, >0,
o >3

1
Putting  T(X f}=mexp{~{x—§]z {4t}

E_h 1 .{x—§}2_1 e R
so that i Tt { 7 2,-.}“?{ & s ‘”’hﬁ}

1 S 1 (x=8 1] 2
e = — = lexpl—(x~E)* 14
o dx? ~.|'|4TI:KI'{ | a2t elpf (=0 4x)

- £ heing a real constant, we find that (5.10) is a solution of the equation (5.9). The function
(5.10), known as the kernel; is the clementary or the fundamental solution of the diffusion
equation for the infinite interval. For t = 0, the kernal 'T' (x, t) is the analytic [unction of X
and t and it is positive for all x. Thus the entire x-axis is the region of influence for the
diffusion equation. It may noted that T — 0 as |x| = oo.

To get an insight into the nature of the solution, we consider the one dimensional heat
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~we assume that [ (x) — 0 as |x] — and [T (x, t)] <M as [x| — So, for T (x, t) to remain

equation for infinite region subjected to an initial temperature f{x), Thus the probilem is
described by

oT 9T
:K'_}_m 'Zuﬂ"f ﬂl
o=t S
and Tlx,0)= 1 (x),.— =L o0t =) (5.12)

Following the method of sepeartion of variable, we put

0. 1) =Xy ¢).
Substituting this in (5.11) we get

1% 1 dp

X d i (43

where A is a separation constant. The solution for f is B=ce™  If A0, then 8 and, therefore,

T grows exponentially with time which is unrealistic from the physical point of view, Thus

bounded, A should be negative, ic. we take Ah=—u*. Hence, we have

Br)=ce™™ !
Again from (5.13) we have

Whose solution is X =¢, cospx+¢, sinjir

Thus the solution of (5.11) is given hy

T(x, 0. 1) = (Acospy + Bsinpiy)e™

where A and I3 are arbitrary constants. Since [(x) is in general non-periodic, we may consider |
Fouricr integral instead of Fourier serics in our present case. Also, since A and B are arbilrary,

we may consider them as functions of i. Moreover as we have no houndary condition which

limit out chaice of m, we should consider all possible values. Thus the principle of superposition '
gives this summation of all the praduct solutions as the relation,

T(x)= J"I'{:r, £ = J[A{p}cus L+ B ) sin }Lr}ﬁ"‘“,"du (5.15)
0 LH} "

which is the solution of (5.11), Using the initial condition (5.12) we have

T{x.ﬂ}=_f{,1']=_[[zi{p}cnspx+ B{p)sin [,Lr]dj.l . (5.16)
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Mow the Fourier integral theorem

T . St
f{u}-;i i,f{.&.}mﬂ«:n{u .1}:1‘.1]

Ll
nives fEx)= ;j JJ’ () CDSH:"‘J’MH]
0 L
= i_[ J.f ( y)(cospx.cospy -+ sinpsin iy ey Jdp
i
= #I cuspxj [ y)(cospyedy+sin j S ()sin H}’E{v}fu 617
I - o
L 17 ;
Let J‘I{Li}:E jf(_v}cnﬁpydv B{u}=;lf{y]smu}uja

Then we can write (5.17) in the form

£(x)= [[ A cosix + Bl sinpxldi

Comparing this with (5.16), we write the relation (5.16) as

. e .
F(x0)= f(x) nﬂif (¥)eosp(x ylaﬁ*}ﬁu (5.18)

Then from equation (5.15) we have

T'(I,I-}:%]:[
0

I F(@)cosp(x—yje '“"”f”f}'u

—

:i J‘ j.{_y}[!e—h';;?J CGSH(.\'—J’}E{V}JH- {519}

1]

[Assuming that the interchange of the order of integration is valid]

-

s \f]l]'( K X—7
+ e cos(2hz)bz=—e o E= WK, e ——— o
Noting that _[ 3 and putting 5 Tkt ‘where b is real,

]
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L gt it A

: & cosp(x— =
we have J‘ 2 m

]

Hence from (2,19) we obtain

T{xsf}=—l— J(y)e "‘-.I'ledmdy
VARt |

Thus is fly) is bounded for all real values of yk (5.20) gives the required solution of the
problem described.

Exapmle 5.1. : In a one dimensional infinite solid —w < i<oe, lhe surface a < x< b
is initially at-temperature T, and at zero temperature outside the surface, Show that

v T ] b=x ) lo=%
T(x,n E{Jj[v%} uf[m]]

where erf is error function.

a’r
Solution ; Hence we are to solve the equation i =‘r<a—z,—°° <% <=, subject o the
X
initial conditions T{x,0)=a<x<b and T(x0)= Quiside the region.

Now the solution of the above equation is given by (5.20)

= g

L

T:'} —{x-EV Mwr
= [ ﬂﬁ
N dmit [ .
(h=x ) Ak
2 — : 3=
=7 Je'd [Puting ——F—="1l
&{a—.x'}.l'm; _ 4xr

T fa—)f AR
" £|i_3_ i _ 2 —-ﬁm}
2

JE,,“EI“'

]

. . I b 5
Hence T(x.0)= ?[E’f ( :."'4=::*J-— erf (Eﬁ‘—éﬂ
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55, Solution of diffusion Equation in One-Dimension : Separation

of variables method.

We now find out solution of diffusion equation in one-dimension by the separation of variables
technique.

I. Cartesian coordinates.
We consider the one-dimensional diffusion equation E= Kg—:-f-. To solve this equation,
we put T{x,t)=X(x)¥(r) so that this equation gives
legid o a'F

- =—= "=\, (s
T o e

where is a scparation constant, Then

d*x dy
i -)WX=0 and ?f—wlhﬂ (5.21)

Hence three distinct cases arise :
Case (a) : Let 3 =0 and ) —g? Then the solutions of the equations (5.21) are
X=Ce" +C5e s ¥=C e
and hence the required solution of the diffusion equation is
T(x,1)=(4e™ + Be ™) ™" (5.22)
where A=C, C,y, B=C,C;.
Case (b) : Let )} =g Then the solution of (5.21) are X=Cx+C,, y=C, so that
T(x,0)=Ax+B \ (5.23)
Case (c) : Let =0 and ;;_:ﬂ:!. Then the solutions of the equations (5.2) are
X =C,cose+C,sincx and Y= (:'3[;-““‘”
Hence T(x,t)=(Acosox + Bsin-:}l._x}c‘"“l‘ (5.24)

Example 5.2, ; Solve the one-dimensional diffusion equation in the region 0=xsm, T=z0
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subject to the conditions

(i) I remains finit as { —es,

(i) T=0il x=0 and r for all |

x, 0<x<mn/2
i A= ST B ey
2
Solution : Solutions of the one-dimensional ditfusion equation are given by (5.22) to (5.24). Since
by (i), T must be finite as 1 — ==, the solution (5.22) isrejected. Again, according (o (ii), the
solution (5.23) gives B=0, A= O so that T (x, 1) =0, for all t and, therefore, it is a trival sulutinn..
Hence we consider the solution (5.24), i.e.

T'(x,r)=(Acosox + B sinox)e ™'

The houndary coolition (i) gives A =0 and sin gp=0 i.e. ct=n, Thus the solution, by the
superposition principle. is of the form

T(x.1)= Zﬂrsin e

n=1

Initially, T(x,0)= E B sinny

which is a half-range Fourier-since series and, therefore,

= 2 JI (2, 0) sinnxels
Ta

nil n E
j sinmxdy+ J‘{n—x}sin Xy
i

il

r-llu

4
= ——sin(nm/2)
nm

I'hus the required solution is

Tee 1) = iz sin :ix,ml'u{:m."lja it

2

n=1 H

Example 5.3 : a conducting bar of uniform cross-section lies along the x-axis with
ends at y=(pand y= 7 Tt is kept initially at temperture 0° and its leteral surface is
insulted. There are o heal sources in the bar, The end x = 0 is kept at 0° and heart is
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suddenly applied at the end x = L so that there is a constant huar flux q, at x= L. Find
the temperature distribution in the bar fort > 0.

Solution : The given initial boundary value problem can be described as follows :

1

; - oot ;
To solve the heat conduction equation E: k;_—ﬂ—-- subject to the boundary conditions
X

J"f L.t
T(0,y=0 : Elx_) =gy for t>=0 and initial condition 7(x.0)=0,0=x< L

Prior to sudden application of heat to the end x = L and t =0, the heat flow is indzpendet
to time (i.e , stady state condition). Let I'(x,¢)=T,(x,t) where T_represents the steady
partand T is the transient part of the solution.

2

Now for steady state, the governing equation is a_;:ﬂ having the general solution
X

dT.(L
I,=Cx+D. Using the given boundary conditions. T =0 at y=( and éi )

=y, we

get C=¢, and D = 0, Hence, the steady state solution is T, =g,x

For transient part, T , the governing equation is

o _, o,
a A

: : T L.t
The boundary conditions are : 1;(0,£)=0, % =0, >0
and the initial condition is T;(x, 0)==Ts(x)=—q,x.

Now the solution of the above diffusion equation in conformity with the given conditions is
. : — ki’
I,{x.r]:(ﬂcusm+ﬂslnm}e ]

The boundary conditions give A= 0 and ¢=(2n-Un/2L, n=1,2,3,... Thus using the
superposition principle we get

_kizn=1jtat
T(l f} Eﬂusgnm 45!
h=1
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Applying the initial condition , we get

T(x0)= —qnxz aninM

n=1 3

s . 7 1 : :
Multiplying both side by sin T and inlegrating between 0 and L and noting
that
L ot g Om#=n
!Busin{ ”2_ }msin( L5 }m:dx= BL
U : 2.m=n
we have after integrating by parts
4 . :
—gy——— (1" =8 L{2
iy (3”___”2“;1{ .} il
- BL‘?E{_I}"_l
so that " an-1tn
Hence the required temperature distribution is
Blgo | (-1 . @n-tymy X
Txt)=gex+— sin 2 2L
R 2} (2n—1) 2L

IL. Plane polar coordinates.
Here the diffusionequation is

T 19 19T
dr ordr x ot
where T=T (r, t).

Let it solution is s 7(r.1) = R(r)t(t) so that the above equation gives

1 d2R+Ia*r oL

R\ dr* rdr] wt.wt (say)
Then we have

d*R ldr 1 dat .

S s s L —+oKkr=0

dr® rar H f0d el
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Solutions of these equations are
R(r)=C,Jo(0r)+ C, ¥y (ar) and x(t)=Ce™
Hence the solution of the diffusion equation is
T(r,1) = { Ady (ty (0r) + BYy (o) }e ™
where A=C,C,, B=C,C;.
Example 5.4 ; I['T (r, t) stisfied the equations.

T 19r 19T
)y —+—=——.,08rsq,t>0
(ﬂ- arl voar K ot T

(i) T(0)=f(r)0=r=a, >0

T
(iii) §+:‘1T=ﬂ atr=a, Y¢>0

where f{r) is assumed to be cxpansible in Bessel series, show that

o 2 B |
= o — af () (G 1)l
a’ E (h* + €S & a] {
b
where the sum is taken over the positive roots &,,&,, &, -+ of the equation i/, (al) -/, (6g)

Solution ; Proceeding as above, we find, by the use of superposition principle and noting
that is finite at r= 0, the solution of the given diffusion equation as

g3
T{r,r)=2r’hin{§r'}ﬂ g (5.26)
where Ai are constants and E? is the separation constant.

Now, T(r.0)=f(r)=)4/5(&)

Also the boundary condition (111) gives
ETy(Ea)+hJy(Ea)=0=> hJy(Ea) = &, (Ea). (5.27)

Let the roots of the equation be given by &, £,,Ey-- Then

)= 4 do(ED)
. =1
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Multiplying both sides by ;-J“(&_, J,il"j] and integration w.n.t.r. from 0 to a, we get

(7] o

o 30008 2= 3 4, [ € s
i T
ﬂfﬂf Er’ #E.u

jf (&) o (8 r)dr = éal[ﬁfga}«-@rﬁ (Eafork; =€,

we have ._I--'J'r () Ty (&) = %ﬂz 4| -qu (E,a)+ sz ':E.'.-ﬂ ]

0
| RE g2
=5a1dj.f§(f;fa}. ;fr
2EL I
sothat 4= ”1mz+§?)J£{g?a}Jrf{r)Jn(ﬁfr}dr

0
lence from (5.26), the required solution of the given diffusion equation is

o

T(r.t)= 2—2 & Juf{u}f (& 1)edne
VT At Ry

I1. Spherical polar coordinates
The diffusion equation in spherical polar coordinates
9’1 29T AT
-yl + —_—— |
dt

K
dr’  ror
where T is assumed to be independet of # and ¢
Let its solution be given by T (r,t) = R(r) 7 (t). Then the above equation gives

drt  rodr

L[’d‘_mﬁ]_ ldt__,
R

where (2 is a separation constant, Then we have
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d 2
and E__Ku T (5.29)

The solution of the equation (5.29) is 1(1)= ,41,5"“’!‘

To solve the equation (5.28), we put S = rR. Then it is easy to see that the equation
(5.28) reduces to

+a'§=0

=

el
whose solution is § = B, cosar + C, sin ar
Thus the solution of the given diffusion equation is

—kre’t
3

Tr0=5

( Acosar+ Bsinor) (5.30)

where 4=4 B, and B=AC,

Example 3.5. : A homogeneous solid sphere of radius o has the initial lemperature
distribution f(r), 0<r< R, where r is the distance measured from the centre. The surface

temperature is maintained at 0°. Show that th temperature T(r, t) in the sphere is the solution
of

d°7 29T ar
Kf—t—— |=——
9 rdr | o
and hence find the solution.
Solution ; The temperature distribution in a solid sphere is governed by the parabolic heat
etjuation
ar
KV =
dt
which in view of the symmetry of the sphere reduces to
d*T 29r) ar
K i ==
ar® rdr | ot
Proceeding as above, we see that the solution of this equation, by using superposition principle,
is given hy :

1 : L
T{r,r}:Z;{Aﬂ cosar+ B, sinr)e ™"
(1}
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since ‘T is be bounded at r =0, so we must have A, =0 also the boundary condition

Ta, 1)=0 gives sin ca=0, ie. o=nmn/a,(n=12,3,..) Hence, we have
T(r,f)= Eﬂs in(re f a)e
* -
Finally, applying the initial condition T(».,0)= f(r), we have

rfr)= iﬂ,,sin{nm.ﬂ'a]

n=1

which is a hall-range Fourier series, Therefore,

o

2
ey i '.'f vff'
.3" » rf (r)sin(umr [ a)dr (5.31)

[, Sea—

Thus the temperature in the sphere is given by

. 1 1 PO
T(r,)==" B sin(umr/a)e ™ ™"
(r,) rz‘, (nmr /@)

=l

where B_is given by (5.31).

§ 5.6. Solution of diffusion equation in Two-dimensions :
Separation of Variables Method.

1. Cariesian cuurd?natm (%, %) : |
The diffusion equation in two-dimensional Cartsian coordinates (x, y) is given by |
(0, 27 ar
det Ayt | o (532)
To solve this equation, we put.  T(x, y,1)=X(x)¥(¥)t(!) Then the equation (5.32) gives

1d*x 14’y 1ldv !
% dxz"f;dyz e ==0", (say) (533) |

where is @ seperation constant. then 7= ,41.:_-‘“'11‘

Again, from (5.33) we have
VX . (i, ) g
ol e T o)
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r 'l

X & . .

ot pzﬁf=ﬂ and d—r+q1Y= 0 which have solutions
dy’

d
s0 that

X = Acos px+ Bsin px,and ¥=C, cosgy+ D, sin gy where ¢* =a® - p°.
Thus the general solution of the equation (5.32) is

T(x, 1) =(Acospx + Bsinpx) (C uuﬁcjy+ Dsin qy}e'ml' (5.34)
where C'=C\4,, D=D 4,

Example 5.6 ; The boundaries of the rﬂcténgtl O0sx<a, 0=y=Db are maintained at

zero lemperature, Il a ( = 0, the temperature T has the prescribed value f (x, y), show
that for t = 0, the temperature at a point within the rectangle is given by

o . [ mm
’l 1 F ]
Tlx, 1,1} EE (m n}sm[ =

T]E b el
mi=] n=1

where fx, ) issupposed to be expansible in double Fourier series and

a b
Flmn)= —II_{{I }sm[ Jbin( nm‘}i\wﬁ/ o 1[)::1 + ';;J

Splution : The governing equation is the heat cunductmn equation (diffusion equation) given

by (5.32) as
g'r 'r) ar
Kl —*+— |=—
ox® 9yt ) o

whose solution as obtained in (5.34) is

L(x, . 8)=(Acos px + Bsin px) (C cosgx + Dsin qx}e""“g'
where o = p* +¢°.

MNow the boundary conditions T{o, y,t)=0 and T{x,0,0)=0 respectively imply that
A=0and C=10 50 th:_lt

iy

T(x, y,t)= BDsin pxsingye

mmn
Also the boundary conditions T(x, p,1)=0 gives sin pa=0 i.e. P—ﬁ 1,2, ..and
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the condition T'(x,b,1}=0 shows singb=0 i.e. q=%,n:1, e

Hence by superposition principle we have

(5]
I(x,p.6)= EEAM‘““[ ]Sm[ b ]e

wm=1n=l

e T(x, p,0)= EEAN.” JI'I[ ] 1 [m:y]é—ﬁf!!nﬂu

mi=] n=]

Finally using the initial condition 7{x, y,0) = f(x, ), wehave

fxp)= ZEAM,.sm( ] (”’:’*’ }

m=1 u=1

which is a double Fluier series, so that

w.= jjf(x y}su{ m]mn[?}k@

Hence the required solution is

I'(x, y.1) =ii F{m,n}sin[ﬂ]sin[ﬂgﬁ}-mlmr
o

=l =]

a b : 2 2
R R e P
oo

I1. Plane polar coordinates (re)

Here the diffusion equation is

[2}1?'+13T 1311"] aT

1 fsciie A Woeabeleit Bl L) P
ot rar o0t | of
We put Ti{r,0,¢)=R(r).@(8)x(¢) into equation and obtain

1d29+ 1dR 1 d'@ 1dr_ 2 ¢
Pt = « LS50
Ras Redr YOdE wedi N
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where 32 is a separation constant. Then it follows that

w(1)=Ex

. being integration constant. Also [rom (5.36) we have
3 3
,.1 lf_f + lf"ﬂ.k ?\F = l dg: Elz [;Sa}f]
R dr® Rrdr & d0°

where o7 is a separation parameter, This leads to the two equations

d*R 1dR [,» & 4@

| N —— | R=0 B e otes

dr®  rdr { p ] i da* A
which have solutions

R(r)= AJq(Ar)+ BY,(Ar) and B(8)=C, cos Q0+ D, sin £20
Hence the sniutiﬁn of the equation (5.35) is given by

T(r,0,1) = { AT, (M) + BE, (Ar)} (Ceos Q0 + DsinQB)e L (5.37)

where C=C,E and D=DE

Example 5.7. : Find the temperature in a long cylindrical region bounded by the planes
r-a B=0and @=m which are maintained at zero temperature and its initial temperature

is. f(r.0)
Solution + The solution of the heat conduction (diffusion) equation is given by (5.37)
as

T(r, 0, 1) ={ AT (A) + BE, (Ar)} (Cos 0+ DsinQ@)e "

Since T must be finite atr = 0 where ¥, (Ar) is undefined, we must put B= 0. The boundary
condition T=0at# =0and f =7 give C = 0.and sinQn=0 ie. Q=n(n=12,3..)
Also the boundar condition T =0 al r = a gives Jo(ha)=0 ie. J (ha)=0 Let

Any, Ay, Ay ... be the roots of this equation, Thus the solution for the temperature is given,
by the use of superposition principle, as '
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T(r,8,1)= ZZ o, (A ) sin nle ™

=l n=l

The initial condition ¥(r,0,0)= f(r,8) gives

ir,)= ZEA,” LA ) sinnb

=n =)
Multiplying both sides by r J/, (A ) sin p8 and performing double mtegrdtmn with respect

torand f for 0 <r<aand 0 <8 < respectively, we get

i ir

er(r(r',ﬂ}, J,, (A ) sin pBdle

[{1]

™ 22 AH_I‘:J,,(-""» ), (A r}{jsm pﬂmnnﬂdﬂ} dr

#i—1 i—] i

E : n/2 for p=n
i sin pBsinnbd =
noting that '}; pas { i
L P

and [, hdd,  pydr= {5 (haa) fori=
i 0 Jor i# |
er 1T mz

e e Jr 1o, amdr =" 10y 4,

. 4
00
oo
so that Ay = W_”rf (r @) f, (Ar)sin nBdOar.

Hence the required solution for the tf:mperaturc is

- I(r,0,0) '__Ei A4, & ?‘;:\}u;r} sin Hﬁﬂqﬂir
=1 n=l1

T

where B =erf{r,ﬁj, T (Ar) sinn® db dr
LR
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[11. Spherieal polar coordinates (r, 6, ¢) with axial symmetry

In this case, the diffnsion equation is

_]_E[,.E B—T] + ] i[sin E!ai 1ar
r or dr ) r'sing 09 af o o’ (538)

since for axial symmelry, T is independent of ¢,
We put T(r,8.t) = R(r)©(6)r(r). Then the equation (5.38) gives

Li[,-z d_R].p | -_1.. i[&lnﬂﬁ —l_ﬂ—_h: i
2Rar\ dr) rising ©do do | krdi »say  (3.39)

where _32 is a separation parameter. Then 7{f)= Ee™!

Again from (5.39) we have
li[i*z {fﬁ]+ 1 i[sin&@ ==\
R-dr :fr G sind 48 dd

1 d ‘:ﬂTR 1.2 | d A de
ap ==t = e Npt = lsmi——|=k
' Rr dr Bsind d© o

where k is a separation constant, We put k =n{n + 1). Then the above equation leads to the

two equulionﬂ,'
2
d’R 2 dR _r[}& _nfn+ |}]R=u

dr? o dr rt (5.40)
| T Y e 2
and ;ﬁd_ﬂ(SInﬁE]+n{” -H}E:‘l =0 (5.41)

1
To solve the equation (5.40) we put R(r) ={h'}—53[r}. Then the equation (5.40) reduces
to the Bessel equation

(H-I—l]2
e ’ e
d ‘25 +lﬁ+ }\2_—2. =0

dl‘_ P odr r2

which has solution S(r)4J (Ar)+BY (W) so that
”+1 I'l+2

R&):{h)'i[mf‘#,{}u-y BY ,(?\r}}

f nt—
1
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Again putting cosf =, the equation (5.41) reduces to Legendre equation

d PN (o] I
GTI[(I—,U. )E] Fr?(;a+l}9-ﬂ

Which has solution (‘}{ﬂ]=d|ﬁ{,¢t) + E|Q,_,{;L} where P{ ] and (), (,u.] are the Legendre
functions of the first kind and second kind respectively.

Thus the solution of the equation (5.38), by using the principle of superposition, is

T(r.0.1) =Z

(W)

+—

| N} 7 Hﬂr}:"r

J.l+

[ " P (cos8) + "Qr{cusﬁ}]e_“‘r' (5.42)
Example 3.8 © Find the temperature is a sphere of radius @, when its surface is kept at

zero temperature and its initial temperature is f(r,8).

Solution * Noting that }:H%{M} and (3 (cosf) are unhounded at »=( and ﬁ=;—

respectively, we wrile the general solution of (5.42) of (5.38) in the form

N Avi(W) 20 ((n) P, (cosd)e L3
@

il i-_

Applying boundary condition I(r,8,1)=0 al =g we get ,..l[h“ )=0

Let X,,A,,... are the roots of this equation. Then we have

L= oy I
T{r.ﬂ,f}=zz A, (W) 2 y(Nir) P, (cosB)e”
=1 w=l n+1
Applying the initial condition T(r.0.0)= f(r.6) we get
ZEAM}U 2.}’ l:]P(msﬁ]

i=1 n=| -

Multipling both sides by Pm[co.‘iﬁ}d(cusﬂ} and integrating between 1 to 1. we get
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£(r,8) P, (cosB)d(cosd) EEA,” hr

1 : i=l ne=i

[ SN

IP (cos®) P, (cos®)d(cosd)

ie. _[f{r,ﬁ‘}f’ (cos0)d(cost) _-ZZA‘”(}‘ P

=} =1 =l

|-.1|—

2
',,; () n+1 T n=m where we

have used the orthogonal proporty of Legendre polynomials.

Again, multiplying both sides by g l{h;.r) and integratng with respect to r between
=
1

the limits U o a, we have

i

erjm_(h J)L[ £(r,6)P,(cost)d(cosa) |dr

1] 1

Thus m gt .j’Mi['}.fa} /
2

Hence the required solution is

where

B, =[ [P0 ((NB(R)S(0)dhdr und . =cos0

n=i 2
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§ 5.7. Solution of Diffusion Equation in Three-Dimension : Separation
of Variables Method.

I Cartesian corrdinates (x,),1)

The diffusion equation is given by

- —— 4
it gyt 82t

JOT &T 3T _8r
it (5.43)
Let T(x,y, ) =X (x}}’l[.y:}Z{z):r{t]. Then the equation (5.43) gives

X VdY ALz var
X de® Ydy* Zds' krdl (say) (5.44)

where _)2, is a separation constant. Thus 7{I}=Ge_“!‘

Now form (5.44) we have,

Lo 1a%  1dl e
X &t YaP zat T () )

where —p? is a separation constant, Then

d'z

5 +':r22=ﬂ
4

where y* =\ —u?. The solution of the is equation is Z(z) = E, cosyz + F sinyz.

Again [rom (5.45) we get

| 2 ]
Xal e PTGy 645)



where _g?is a separation constant. Then we obtain from (3.46) the equations

d'y
{L?f_ R X 0 and d},I +ﬁ2}”=ﬂ

where 8% =p* —a” The solutions of these equations are

X(x)= Acosax + Bsinaw, ¥(y) = Ccosfy + Dsin By
respectively,

Hence the solution of the equations (5.43) is given by
T(x,p,z.t) =( Acosax + Bsin m](Cci}sﬁy + Dsinfy)( Ecosyz + Fsinyz)e St (5.47)
where E=E G, F=FG and X =¢’ +8° +%°

Example 5.9 : The faces of the solid parallelopided 0Sx<£a,0< y<h 0€z< ¢ are kept

at zero temperature. If initially, the temperature of the solid is given by T(x, y,2.0)= f(x, w2),
show that at time ¢ >0

T(x,y.2,1) %gn zf' m,n,q) sin - ?smqme_“]’

'I =1 £

where

Solution : The solution of the heat conduction equation {dlf‘fusmn equation) (5.43) is given
by (5.47) as

T(x,y,2,0) =(dcoscex + Bsindx)(Ccosy + DsinBy)( Ecosyz + Fsinyz)e ™"
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where N =a’ +8° +9°.

Mow the boundary conditions T{[:,y,z]zﬂj'{xﬂ‘z}:ﬂ aridl T{x,y,{])_—.ﬂ s
A=C=E=( so that .
T(J‘Jﬂzu']=Ksinm:;inﬁy5in'yze'”l’
where g = pDF. The boundary conditions I{(a,y,z) =0, T(x,b,2) =0, T(x,y,e) =0 give

; : ; T BT
respectively sinaa =0, singh =0, singe=0 leading 1o tii:—:ﬁ:?:'lf’:iﬁ- where
[# c

m=123,..; n=123,.. and g=123,... Thus by the use of superposition principle, we
have the solution

= oo B

T(x, y,z.l] 2221{“‘“ [ X gin 279 gjp I o -u*

m=In=1q=I b c

W IR
L] n

where p* = kN =kr’| = +_1+gr_}
e R i

Again the initial condition T(x,y,2,0) = f{x,y.z) leads to

(x,.2) ZEE il qm—sm?mnﬁ;-

=l n=l = =] (5
which is a triple Fourier series, so that

A

Kmrw -—-—jjjf ,y, t:mﬂ Sln!ﬂ bln—u&n}dz
o

]

Hence the reguired solution is

T{x,p.2.1) bczzzr 1, %III— sin :}. in I o'

m=1 =1 4=1 ¢
o hoe

where F[m.n,q}=“-_|-f[.x,y, )mnﬂ SIHT 5|nﬁdx@dz

o 4
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II. Cylindrical coordinates (r,0,z)
In cylindrical corrdinates (1,6,z) the diffusion equatien is
(Pr 1ar 1 o7 o1\ ar
& ror P oet 9t i (5.48)

We assume separation of variables in the form T(r,8,2,/) = R(r)©(8).Z(z).7(1) Substituting
this in (5.48) we get

1dR 148 1 4@ 1% 1ld_
Rd’ Rrdr 1'© db’

Zde* wkrd (say) (i)

where _)2is a separation constant Then r{f):@;'*”‘

MNow from (5.49) we have

ld’R 1 dR 1 d'®@ _,

d*Z
.__l‘-|-._-—. + _;_.__1- e
R dr® Rrdr »'0© do°

1 %: o
s K, (say) (5.50)

where —u” is a separation constant. Then we have

2
%- wZ=0
dx
whose solution is Z(z)= F,e* + Fe™

Again from (5.40), we obtain

14 1 dR s 148
o t———— T =

R = mar -l . Gsh

where o’ =N +u° and y? is a separation constant. Therefore this leads us

d" 8 3
——+uB=0
and 18
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whose solutions are
R(r) = A7, (ar) + BT ()
and ©(8) = C'cosvd + Dsinvf,

respectively and J, {m'},I’;(txr] are Bessel functions of order v of the first and second king
respectively. Hence the solution of the diffusion equation (5.48) is

T[:r,zJ} = {AJU (cer) + By, [oa'}}, (Ceosvé + Dsin uﬁ‘}(Ee*""' 4 Fe™s }e'”‘l’ (5.52)

where E=EG and F, =TFG :
Example 5.1 ; The eylinder bounded by the planes ;=0 and ;=7and the curved

surface p =y in cylindrical coordinates (r,ﬁ',z] has its plane faces maintained at zero

temperature and the curved surface at the temperature f(z). Show that the steady
temperature distribution within the eylinder is given by

i ”m»”% sin(nmz /1)

i |

where 4, ——I flz)sin(nmz / {)dz and I, is modified Bessel function of first kind of order

ZEro.

e ; ar
Solution ; Since the lemperature is steady, so — =0, Also the temperature is symmetric
¢

ahout the z-axis and, therefore, it is independent of . Thus the heat conduction equation
(5.48) in cylindrical coordinates reduces to

T La:r aT

FYa r'ﬂ: ﬂzi G:2%)

We assume that T(r.z) = R(r)Z(z). Then the above equation gives

ﬂ'ZRH“’R el L
Rla? Trar )T zaz " (ay)
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where 32 is a separation parameter. Thus we have two equations

2~
A
+NZ=0
a*

ﬁ-ﬁl—ﬁ—?ﬁﬂ:ﬂ and
dr ¢ odr -

which have solutions R{r}=AIU{N'}+EKU{hr} and ¥ = (lcoshz + Dsinhz respectively.

Here [, and K, are modified Bessel functions of the first and second kind respectively, each
of order zero. Hence the solution of the equation (5.53) is given by

T(r,z)={ Al,(Nr) + BKy(N)} (€ coshz + Dsin\z)
Now K],{J\r] has a singularity at =0, S0 we choose g=. m_su the boundary
conditions 1{'[;-,0)=[] and T[r,f)=[l give (=) and gin\/ =0 respectively and therefore

) %ﬁn =12.3,..). Thus we have by superposition principle

T(r.2)= ZB"I‘*[$] Rill[%}
n=i

Again the boundary condition T{a,z)= f(z)on the curved surface leads us to
= o o (mmrY . (nmz
f(z} = ;ann[T]Sm[T]

. nmz '
Multiplying both sides by 5'“(7-] and integrating w.r.t.z between 0 to /,

we have

!
H”I"[gj =%Jf[z]sin($)dz

Henee the required solution is
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!
where A, =%j-f{z}sin[$}ok

]
L1, Spherical palar coordinates-(r, 8, z)

The diffusion equation in spherical polar corrdinates (r‘,ﬁ',z} i5 given by

JOT 200 | a(mﬂg] 1 @r|_ar
F 3: 7% sind o8 r'sin’ 8 dg’ di (5.34)

Let iis solution be T[r,ﬁ',z,r} = R{r']@{ﬁ']ﬂl(tﬂ?{r} . Substituting this in (5.54) we get

f

| d*R Zt.’R 1 d [ . dE‘I]
— P I L e
R el r a’r Fosind dﬂ_ re

-+ ] | .;Fq: llﬂ _—?\I
¥ sin’ f fI- d¢® Kk ordl (say) (5.55)

where _32 15 a separation parameter, Thenwe have s =«G£:_""rjJ
N P P

Also (5.55) gives
2
S l cfE' 2dR | d(mﬂ@J+?\2
drt o odr r *sinf © 48 i

where ;2 is a separation parameter. This gives

J!
E:;—?i-i‘.i@ ﬂ
o3

whose solution is (@)= E, cosug + F sinvg
Again from (5.56), we derive
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i - JROPTE SO [ U, e
R\ d&? r dr sintf ©sinddgl da At (say)

so that, on rearrangement, we have

d'R 2 dR r{}\l _nin + I}}R o

dr* o odr r (5.57)
) L) I
and J9% “:mﬂﬁ +{”{” k= Sin? E}E'zﬂ : (5.58)

'F_] ]
To solve the equation (5.57) we put R(r)=(Nr) 2S(r). Then the equation provides us

X
ds 1ds |o \""2

whose solution is

L
so that R(r)=(N) E[AJ ((Ne) + BY ,l:?\r};]
2 )
Also we put cosff =g in equation (5.58) to reduce it to the form

nd9 __ do v’
| =t ——2n—+nn+1) -——— @ =0
L
This is associated Legendre differential equation whose solution is
0 =Cr; () + POy (1)

where p* and Q! are associated Legendre functions of degree n and of order v of

first and second kind respectively.
Thus the general solution of the equation (5.54) is

[Ar}‘%[ﬁ.f () s ér" 0 gw}][Cﬁf (cos8) +

f=—
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+DOY {uu&ﬁ'}] (Ecosug + Fsinuﬂ]e'“}‘;' (5.59)
¢ 5.8. Maximum-Minimum Priniciple and its Consequences.

Theorem 5.1 (Maximum-Minimum Principle) : Let 1(x, r] be a continuous function

af x and | and s a sofwtion of the diffusion equation

a'T _aT
Ko ¥
ox” E}.r
for 0Sx< LOS(ST where 70 is a fixed time. Then the function T(x,t) attains

ity maximum and minimum values at time t=0 or al the end points x=0 and x=1L
at some time t in the interval 0t <7

Proof. Consider the region 0<x<L,0<t<7 of the (x,f) plane, where 7 is some

chosen time. Then as in Figure 5,1, ]"{xtr} is given in darker horizontal and vertical line; the

darker portion of the boundary is denoted by [, Since the direction of heat flow between two
bodies (or parts of the same body) in contact is always from a higher to a lower temperature,

we expect that the temperature T(x,¢) in the shaded region attains its maximum of T,

To prove this, we assume the contrary, i.e, we can find a point (.rn,.'n} which is either
an interior point A or an upper boundary point B, such that T[.l‘ﬂ,flj:] is greater than the least
upper bound of T{x,r} on ['. Let us define an auxiliary function w{h.r} by

() =TOM)- (i),
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where e> () is a constant. Since w(x,,4) = T(x,,1,) which exceeds by some definite amout
the greatest value of 7{x,f) on I, € can be chosen so small that l.u(xﬂr.r,,] >Max w(x,t)on

[, Thus w(x,t) attains its maximum not on T, say at A, or B, At this maximum point, we
have
Vo <Ow 20 sothat T, <0,7 >0

But this contradicts the requirement that 1; = kT, at this point; hence the maximum principle
is proved, i
Similarly, we can prove the minimum principle.

Theorem 5.2 Uniqueness theorem : It T(x,t) is a solution of the diffusion equation

i—j=ﬁg,ﬂﬂxﬂﬂ,ﬂ£rir (5.61)

subject to the initial condition T(x,0)=f(x) and the boundary conditions 1 (0.0) =g (1)

and T(L,t)=gy(t), where f(x), g(t) and £ (t) are continuous functions on (heir
definitions, then the solution in wnigues,

Froof : It possible, let Tj(x,7) and T,(x,t) are two solutions of the diffusion cquation

(5.61) satisying the given initial and boundary conditions. Now the function

I(x.t) = T(x,0) =T, (x,1) is also a solution of the equation (5.61) in 0<x<[,0<¢ <7 and
is a continuous function of x and £ Also ¥(x,0)=0 in g<y< z and B(0,¢) =9(L,0) =0
inQ<t<r ”BIIEE:-'E?‘I:I,I) satisfies the condition of maximum-minimum principle (Theorem
5.1) and, therefore, &{x,()=0 for g<y<J and O<t<7. This implies that

Lx0) - T(x0)=0, e T(xi)= T;(x,¢) Hence the equation (5.61) has a unique solution,

Another important consequence of the maximum-minimum principle is the stability
property which we state in the following theorem without proof.

Theorem 5.3 (Stability property) : The solution I{x,r} of the diffusion equation for
Dirichlet conditions defined by
£=K&2_T‘ D<x<L 0<t<ry
a ox*
T(x,0)=f(x),0<x< L and T(ot)=g(r), T(L,1)=g,(1),0< (<7 depends continuously
on the inital and boundary conditions,
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Exercises

1. A uniform rod of length [ whose surface is thermally insulated is initially at temperature
T =T, At time ¢ =0, one end is suddenly cooled to T'=( and subsequently maintained at

this temperature: the other end remains thermally insulated. Find the temperature distribution

]"{x,r}.

Ans, T[:. ) z n[2"+1ﬂx]ﬂ_ﬂ(2;;[]l 7
b n +1 i

n==

2. Find the solution of the one-dimensional diffusion equation diffusion equation satisfying

the inital condition T{x,[]) =x{a - x},ﬂ < x < a, the regularity T'is bounded as ¢ —== and the

01(0,1) _ aT(a,r)

boundary condition =0.%1
aa ix
(4’2 4{.‘1 1 Mg _tﬂ!n!f
Ans, Axt)=—— —cos—e W
{ ) [+ w’ E n* i

3. Determine the temperature T(r,7) in the infinite cylinder (< <y when the initial

temperature is 1(r,0)= f(r) and the surface j =g :is maintained at 0% temperature.

[ﬁns. i) = j—ziﬁ—{%e'“m {j 1-5!" (1) Jﬂ(!;'”u}du],

£ (n=a23...,)being the roots of the equation Jy(Ea)= I]l

4. A cireular gylinder of radius @ has its surface kept at a constant temperature T, 1F
the initial lemperature is zero throughout the cylinder, prove that for ¢ >

xa{i—zi———‘f”(f""} ‘}

a n=l EHJI(EHG}I
where £ (n=123...) are the roots of the quation Jy(Ea)=0
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5. A conducting bar of uniform cross-seclion lies along the x-axis, with its ends at xy =0
and 1 =/. The lateral surface is insulated. There are no heat sources within the body. The

ends are also insulated. The initial temperature is [y —x",0<x </, Find the temperature

disbribution in the bar for ¢ > 0.

#

[.ﬁms. T_{.I,l"} =z A, cus[%]e‘ﬂu-‘nfﬂ'r’ i %j(f}* [ xz)ﬂﬁs%x s
1=l A

1]

AT BT e -
6, Solve the equatior E=_r'ix? satisfying the conditions T(0.r)=T(1,f) =0¥r and

2v,0<x {l
T(x,0)= | 2
2(_;—x],5§x£1

]:ﬁﬂﬁ- T(x.)= ;I:TZ—L sin %s[n{nm]e'"l“!‘]

n=| n

7. A homogeneous solid sphere of radius a has the initial temperature distribution
f(r),0&r <a where r is the distance measured from the centre, The surface lemperature

is maintained at 0°. Show that the temperature in the sphere for ¢ >0 is given by

T{x,r‘:} = %Z B" SEH(EP]E'NH]H!H"*

n=1 L

where B, = Ejrjf'[r] sin[ﬂr]dn
o

il
0

% ‘The ends 4 and B of a rod, 10 cm in lenght are kept at temperature 0°C and 100°C -

respectively until the steady state condition prevails. Suddenly the temperature at the end 4
s increased to 20°C and the end B is decreased to 60°C. Find the temperature distribution
in the rod at time £
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o
I n BOD 200 . (ame) -elE!
Ang T(x.t)=d4x+20-= = i et oniosalf 7 ) e 10
bsd) 5;'[{ ]mr m'r:| [m}
9. The edges x=0,a and y=b of the rectangle 0<x<a, 0< y<b are maintained at
zera temperature while the temperature along the edge =0 is made to vary according to
the rule 7(x,0,¢)= f(x), 0<x<a ¢ >0. If the initial temperature in the rectangle is zero,

find the temperature at any subsequent time , and deduce that the steady-state temperature
i5

2 ﬁ_ sinh[nm{b—y}fa] oy & o mmu
7 Sy vy ’“[—JJ S/ [”]5’"(7}"“

m=]

§ 5.9 Summary.

The occurrence of parabolic differential equations (diffension/heat conduction) in various
fields are mentioned. The separation of variables technique has been applied to solve the
diffusion (or heat éunduction} equation in different system of coordinates, i.e., Cartesian,
cylindrical and spherical polar coordinates. In each system, different problems have been
discussed 1o clarify the technique. Lastly, the maximum-minimum principle and its consequences
are also considered.
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UNIT 6 O HYPERBOLIC DIFFERENTIAL
EQUATIONS

§ 6.1.Introduction
One of the most important homogeneous hyperbolic differential equation is the wave
given by

e E :
= S VY (6.1)

ﬂ.}|'-‘.‘|.>

|
¢t ar’

where ¢ is the wave speed. The differential equation (6.1) is of great use in physics
and engineering. The solutions of wave equuliﬁn are called weave function. In this unit,
we consider various properties and techniques for solving hyperbolic differential equation
of this_type. '

§ 6.2.The Occurrence of the Wave Equation

We indicate several kinds of siluations which arise in physics and engineering and
can be discussed by means of the theory of wave equation.

(a) Transverse vibrations of a string. Let a string of uniform linear density pobe
stretched to a uniform (ension T and, in the equilibrium position, the string coincides with
the x-axis. Now, if the string is disturbed slightly from its equilibrium position, the transverse

displacement y(x,1) satisfies the wave equation
1P
et art  ox? (6:2)
where ¢? =T/p. At any fixed point x=g of the string, y{a.!)‘—‘ﬂ for all values of 1.
(b) Longitudinal vibrations of a har Let a uniform elastic bar of uniform cross-
section whose axis is along the direction of x-axis, be stressed in such a way that each
point of a typical cross-section of the bar takes the same displacement E{x,r). The &

salisfies the wave cquation

| 9% _ 9%
o (63)

where ¢ = Efp, E being the Young's modulus and g, the density of the material
of the bar
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(c) Longitudinal Sound Waves. If plane sound propagate in a horn, of cross-section
A(x) and abeissa x in such a way that the section has the same longitudinal displacement

£(x.t). then ¢ satisfies the partial differential equation

10, ol_1e%
axua.x“‘”} T (6.4)

: : . . : ; —[dp
which reduce 10 (6.3) for uniform cross-section, In this equation ¢ "( %p] , the
0

suffix indicating that the quantity is to be evaluated in the equilibrium  state.

(d) Electrical signals in cables. If in a long insulated cable, the resistance and the

leakage parameter are both zero, then te voltage V(x,) and the current z(x,1) both satisfy
the one-dimensional wave equation, the wave velaeity ¢ being defined by ¢? = /!/L{““ where
L is the inductance and € the capacily per unit length.

(e) Transverse vibrations of a membrane. Tet-a thin elastic membrane of uniform
density g be stretched to a tension 7 and the membrane coincides with the xy plane in

the equilibrium position.  Then for small transverse vibrations of the membrane, the

(ransverse displacement z(x,y,7) (assumed small) of any point (x, y)

by the two-dimensional wave equation

at time ¢ is given

Bz Bz | @2

dx? ¥ ay’ Tt (6.5)

where the wave velocity ¢ is defined hy 2 =7/a

(f) Seund waves in spuce. Suppose that because of the passage of a sound wave,
the gas at a point (x,3,z)at time ¢ has velocity » =(w,v,w)and p,pdencte the pressure
and density at that point. If the motion of the gas is irrotational then v =— grad ¢ and that

the function ¢ satisfices the wave equation

, |
Nidi=
¢ e gt (699

where ¢ =(dp/dp) the suffix zero indicates that the quantity is to be evaluated in
the equilibrium state,
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(g) Electromagnetic waves. Let I be the magnetic ficld and E, the electric field,

| a4
If we write H=curld, FE= “;-é!'—gmd-;b, then Maxwall equations
_ | OH dwi | OF
divE=dmp, divH=0, el B=———; éurlf=——+—_-
c ot e cdr

are identically satisfied provided A and ¢ satisty the equations

e : 2
Nid= l._:"} 4 __dhi‘ Vig= 1_311#
ot oart & ¢t art

—dmp

which, in the absence of charges p or currents 7, reduce lo wave equation. ln the
above equations, ¢ denotes the velocity of light,

(h) Elastic waves in solids. Let v=(u,v,w) be the displacement vector al the point
(x,_y,z}ul' a particle of the elastic solid. If we write y=pradg¢ teurly , in the absence

of 4 body forees, then ¢ and the componenis of ¥ cach satisfies a wave equation,

§ 6.3. One-dimensional Wave Equaftion

l.et us consider the one-dimensional wave equalion

L T
ar S 6.7

we now find the solution of the equation (6.7) by dillerent methods and different

system ol coordinates.

. Solution by canonical reduction

We choose the characteristic lines £=x+cf, N =X-¢f 50 that

ou_dudt oudn ou ou (9 8
axr dkdx Omax oF am \oE 8y

) an d i
Similarly, &_I“: o o H
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Yot atk  an ot at  dn
Substituting these in (6.7) we get
d*u =
dkdn (6.8)

Integrating we have w(£.n)=¢(£)+w(n), where ¢ and W are arbitrary functions,

Expressing £and nin terms of the variables defined above, we have

H{x,r] = tjl{x + -:'.EJ [ w(x —cr} (6.9)

The two terms in (6.9) can be interepreted as waves travelling to the right and left
respectively, :

For an arbitrary real parameter [,

ulx ) = o{k(x +ct)} + w{(x-er)} (6.10)
is also a solution of the one-dimensional wave equation (6.7). Further if w = ke, then
also ufx,1)= ¢k +wr) + w(ky - owr) (6.11)

is & solution of (6,7), Here fy +wt is called the phase for the right travelling wave
and y 4o are the characteristics of the one-dimensional wave equation,

Il. The initial value problem : D’Alembert’s solution.

Consider the Cauchy type initial value problem described by

Pu_ ,du 1
E'F_C Bt TE<x<®,; 120 (6.12)

subject to initial conditions
dii
u(x,0)=%(x) and af-‘c.ﬂ] = [ x) (6.13)

where the curve on which the initial values %(x) and v(x) are prescribed is the

x-axis. The functions #(x) and v(x) are assumed to be twice continously differentiable.

We shall consider the solution for the motion of a string,

Let u(x,r] denotes the displacement for any x and ¢, Then the initial values of the
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displacement and velocity are prescribed to be n(x) and v(x) respectively. Now we
know that the general solution of the equation (6.12) is given by (vide equation (6.9))

i x,0) = ¢(x +et) +yp(x—cr) (6.9)

where ¢ and W are arbitrary functions. Using the intial conditions (6.13) we have

a(x) +w(x)=nx), o'(x)-v'(x)]=v(x) (6.14)
so that the second equation gives on integration
x)=y(x)=- {*’(ﬂﬂ'ﬁ (6.15)

The first equation of (6.14) and (6.15) provide us

1'|
o(x)== 114511‘ EJE | w(x -—ﬂ ‘—f ! (6.16)

]

This is known as D'Alembert’s solution of the one-dimensional wave equation.

If the string is released from rest, ym(, and the then the equation (6.16) becomes

| .
H[x,f}:E[ﬂ(x +et) +q(x —ct)] (6.17)
This shows that the subsequent displacement of the string is produced by two pulses

1 . . .
of *shape’ !-'=§T](-T}. each moving with velocity ¢, one to the right and the other to
the lett. '

Example 6.1 : A tighty stretched homogeneous string of length L. with its fixed ends
at x = 0 and x = [ executes transverse vibrations, Motion is started with zero initial velocity

by displacing the string into the form f(x)=a sin® mx. Find the deflection u(x,¢) at any
time 1.

Solution, Following D' Alembert’s solution, the required deflection is
ufx,1) =%[ﬂ:x vet)+ f(x—or)]

- %a[m‘nz m(x + ot ) + sin® m{x - -::.*]]
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= %a{ff_" - ::u.s'zﬂ{x tot) - cos Z'.Tr{x —ct }]

l
= E f,]'[] - m.szmrmﬂwrcr]

. The Riemann-Volterra solution

Let us put y = ct, Then the equation (6.12) reduces to

Pu_du
R (6.18)
i
Iftu=nhdﬁan~%%y}nn£ (6.19)

and [, the projection of a strip ' on the xy plane, is a curve with the equation
ta{.a;, _1,*) ={.
Suppose that we wish to find the value of u{x ) of the wave function ¥ at a point

P with coordinates (x,)) of the wave function # at a point P with coordinates (x, yj.
Then the characteristics of the equation (6.18) through the point P are given by

X+y=x+y, x-y=x-y ” (6.20)
Let the tirst line intersects the curve O at
the point 4 and the second one intersects p{x,jp}
at B I we let B
s
"o a2 fi i C
then, since L is self-adjoint, we have -
_FJ[WL-u—uLu-]dxffy ; Fig. 6.1 *

E{]lrﬂ?]_i[u@]_pi _wﬁ +£ "ﬁ el el
a\ o) al"ae) ol o) e )Y



= _[ [U cos(n,x) +V L.?f}.'h‘[:'ﬂ, y}]ds

o

(6.21)

du  dw du aw
Uew——u— V=-w—tu—
where W e Eo P : {ﬁ.ZE]_
and C is the closed path ABEA eclosing the area %, Now the Green’s function w
must satisfy the condilions (see Unit 3, Section 3.6)

(i) Iw =1

i dw

(i) ~—=0 on AP and BP
dn

It is obvious that these conditions are satisfied if we take w =1. Usig this and the
fact that [ =(. we see that the equation (6.21) reduces to

a
[ _[ +j j' Ecm 7, x}—ﬁcos(n.y}}d.r:U (6.23)

AP PR B4
Now along the characteristic P4, which has the equation x4+ y=x+3, we have

1 I
cos(nx) =7, cos(ny) ==, ds=—2dx =2 dy

D B ! e‘iu au
so that JFL“ cos(, T}*ay cosn(n,y) ]ds_—_l[ == —dy] =0, —ttp

AF A

Similarly, on the characteristic PB having the equation ¥—y=x-}), we have

nua‘[n.x]z—%) cm{n;}'}=%_ ds = —2dx ==2dy

so that the value of the integral along PB is I/z — [/, . Substituting these values in
(6.23), we get

=—(Ua +U;;]-— _[ [ —}cm{n x]—acmfn y)]d : (6.24)

as the solution of Cauch problem,

L p

MI-
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u
For instance, if we are given that ¥ :T?{x}sg =v(x) on y=0 (6.25)

then if P is the point (x,)), it follows that 4 is

&l
(x+.0) and B is (x- y.0). r
Thus we have
U, =n(x+y)Uy =1(x-y)
du du_ Ty St
ik j[, {Ecos{u,x] - Emsl[n, y}}dx -
) ? Blx-y,0) Alx+ y,a]}x
= j.:(g)d.g Fig. 6.2
iy

In terms of the original variables x and ¢, we have, there fore, from (6.24)

X+t

u(x, ) =2l{1?{-‘~' +et) *ﬂ(x—ﬂf}]=2—|c J.“[E]'d’éf (6.26)

Example 6.2 : sove the Cauchy problem, described by the inhomogeneous wave equation

Fy g Pu
Pyl L) (6:27)

subject to the initial conditions

duf 0
H{x;ﬂ} = n{x}. { ] = v(x)
i
Hints for solution. Proceed exactly along the same lines as above by introducing an extra

term jﬁ}- F(x,y }dx@ and finally derive the resull

xted

u(x,f) = é [n(x +cf) +n(x - e)] +i J-Vl:f}df

&l

I oxtpt

_;_.;,J- J F(&,7)dEdr (6.28)

1 3=t
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IV. Solution by separation of variable method

() Cartesion coordinates
‘Consider the one-dimensional wave equation

325_ I?ZH;W{I*’CWJ’}U g
ar’ ax?’ ’ (612
To solve this equation by separation of variable technigue, we put
ulx,1) = X (x)T(¢) (6.29)
Putting this into (6,12) we have
1% 0 dT k :
G o g el separation constant, (6.30)
Case (i) : Let f =32 »0. Then from (6.30), we gst
z 2
(g
dX _wx=02T_gur_g
¢lx i
wheose solutions are X=c,ﬁ‘h +cle_}", T=r.-3er}"' +qu—:}u 50 that
u(x,t) = (rrle}" - eje_}“](c;e"h' + c*s_"?"’)
is the solution of the wave equation (6.12).
Case (ii) : Let ; =0, Then equations (6.30) give
2 42
A _pidi gy
dy* dr”
whose solutions are X =e¢,x+¢, and I'=cf +¢; so that
(6.32)

ulx,t) = (csx + ¢ )(ext +¢y)

Case (iii) : Let = —3? <. Then equations (6.30) lead to

2 2
4 ‘fn*.sr:ﬂ, £ 3+Hf?:u.
iy dt

whose solutions are X =c¢, coshx +¢,;sinhy, I =¢; coseM +¢,, sincht so that
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ulx,1) = (g coshx +cy sinAx )¢, coseMs + ¢, sineht) (6.33)

As an illusiration, consider a thin homogeneous perfectly flexible string under unifrom
tension lying along the x-axis in its equilibrium position. The ¢nds of the string are fixed at
v=p and y =7 . The string is pulled aside a short distance and released. If there are no
external forces which correspond to the case of free vibrations, the subsequent motion of the

string is described by the solution u(x,t)of the following problem :
azu i azh‘

ol el ) B A
5 2 (6.34)

subject Lo the boundary conditions
u(0,0) =0, u(L,£)=0, £>0
and initial conditions

u(x,0)=n(x).=-(x.0) =v(x) - (6.36)

For the case (i) in which k=)' >0, the solution is given by (6.31). Using the houndary
conditions (6.35) we find that

WL

=i o
¢ +c, =0, ce™ +ce ™ =0

which possess a non-trivial solution 1[f

1 1
his E-}-.I‘.

G :uz:,c.?}u'-=|:¢,}\=ﬂ [.L#ﬂ]

which is a contradiction that ) =0, Hence the solution (6.31) is not acceptable.

It we consider fhe case (i) for which f =0, the solution is given by (6.32) so that the
boundary conditions (6.35) lead to

c,_c,(c?.' +.::H} =0-¢ J’.{c,r +o)=0=0c.=0,c,=0 (L (1)
so that w=0, ¥y, which is a trivial solution and is therefore, not acceptable.

Lastly, for the case (iii) where j =N <0, the solution is given by (6.33). Using the ||

; nw
boundary conditions (6.35), we have ¢, =0and EIHM=U=:‘-?\=T.H=L?-.3;--- as the

3R




eigen values, Hence Lhe possible solution is.

nme!

onmet)
+ Bsin = ],n—i,l,l--- (6.37)

. HTX
u, (x.1) =sin = (A cos

where A = Cjyey, +€196,2. Using the superposition principle, we have

C . nmx nact . nmet '
:}:;sjn-L—[AUmS 2 +Bj_smT) (6.38)

The initial conditions give

nix au{:} 0)

u(x.0) =n(x E A, 5111—

=wlx Zﬂ sm—

A=l

which are half-range Fourier sine series. Hence
5 L
——jn sm—dr B, u?‘u['u sm—n’r: (6.39)

Henee the required physically meaningful solution is given by (6.38) where A4, and B,

are given by (6.39). u,(x,1) as given by (6.37) are called pormal modes of vibration and

[ T :
W =T, n=123.... » are called normal frequencies.

aF

Example 6.3, A string of length L is released from rest in the position y=f (x). Show

that the total energy of the siring is

3 i L
T : 4 . nmx
Hgnlk; where k,F:E!f(x]sm—L ux

T being the tension in the string.

If the mid-point of & string is pulled aside through a small distance and then released, show
that in the subsequent motion the fundam